Week 1: Preliminaries and Motivation
Reading:
- I. Dolgachev: Lectures on Invariant Theory : Chapter 1
Topics:
- What is ETF?
Motivation
Let \(V\) be a \(K\)-vector space where \(K\) is algebraically closed.
Frame
Let \(\mathrm{Fr}_n(V) := \left\{ (v_i)_{i=1}^{n} \in V^n \;\middle|\; v_i \neq \lambda v_j \text{ for } i \neq j,\; \operatorname{span}\{v_i\} = V \right\}\) be called set of frames.
We define actions of different groups on \(\mathrm{Fr}_n(V) \times \mathrm{Fr}_n(V^*)\) to define equivalence between frames:
Group actions
-
Left action of \(\mathrm{GL}(V)\): \(M\big((v_i),(\phi_i)\big) = \big((Mv_i),\; (v \mapsto \phi_i(M^{-1}v))\big)\)
-
Right action of \((K^\times)^n \rtimes S_n\)
(scaling and permuting frames):-
Scaling: \(((v_i),(\phi_i))\lambda_i = \big((\lambda_i v_i),\; (v \mapsto \phi_i(\lambda_i^{-1}v))\big)\)
-
Permutation: \(((v_i),(\phi_i))\sigma = \big((v_{\sigma(i)}),(\phi_{\sigma(i)})\big)\)
-
Definition ETB
Define \(\mathrm{ETB}_n(V) \subset \mathrm{GL}(V)\backslash \big(\mathrm{Fr}_n(V)\times \mathrm{Fr}_n(V^*)\big) /\big((K^\times)^n \rtimes S_n\big)\) to be the subspace consisting of points satisfying:
- \(\phi_i(v_i) = 1\) (similar to unit norm)
- \(\phi_i(v_j)\phi_j(v_i) = \frac{n-d}{d(n-1)}\) for \(i \neq j\)
- \(v_j = \frac{d}{n} \sum_\limits{i=1}^{n} \phi_i(v_j)\, v_i\) (tightness)
Big Questions
- What is \(\mathrm{ETB}_n(V)\)? Is it a variety?
- When is \(\dim \mathrm{ETB}_n(V) = 0\)?
In that case, what is the number of points \(\#\mathrm{ETB}_n(V)\)?
Special Case
Let \(K = \mathbb{C}\) and \(\phi_i(v) = \langle v_i, v \rangle .\) Then \((v_i)\) is called an ETF (Equiangular Tight Frame).
The defining conditions become:
-
Unit norm \(\langle v_i, v_i \rangle = 1\)
-
Equiangular \(\big|\langle v_i, v_j \rangle\big|^2 = \frac{n-d}{d(n-1)}\)
-
Tight \(v = \frac{d}{n} \sum\limits_{i=1}^{n} \langle v_i, v \rangle v_i\)
Comment Thread
This page corresponds to the GitHub Discussion or Issue for Week 1.
Comments
Note: Math in comments may render better in Firefox/other browsers than Chrome due to browser font handling.