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Preface

This book gives a unified introduction to the rapidly devéhgparea offinite tight
frames Fifteen years ago, the existence of equal-norm tight feamfie > d vectors
for RY andCY was not widely known. Now equal-norm tight frames are known t
be common, and those with optimal cross—correlation andvsstny properties are
being constructed and classified. The impetus behind tlzqseé developments are
applications to areas as diverse as signal processingtugmanformation theory,
multivariate orthogonal polynomials and splines, and casged sensing.

It can be thought of as an extension of the first chapter of @lés@nsen’s book:
An introduction to Frames and Riesz Basgiesthis series), which deals mostly with
the infinite dimensional case. For finite dimensional Hillspaces the technicalities
of Riesz bases disappear (though infinite frames are stittefest), and, with some
work, usually a nice tight frame can be constructed expfiditence the focus is on
finite tight frames, which are the most intuitive generalisation of@ntirmal bases.
In addition to analogues of familiar ideas from the infinitmdnsional setting such
as group frames, there is a special geometry, e.g., thetiomah characterisation
and the frame force.

The book is structured into chapters, with the first paragiagended to give a
feeling for its content. These give a logical developmethijebeing as independent
as possible. For example, one could jump to those givingtipoitant examples of
harmonic framesequiangular framesand SICs referring back to the motivating
chapters orsymmetriemandgroup framesas desired. Similarly, in the text we give
forward references to such nice examples. Grey boxes arktasemphasize or
paraphrase some key ideas, and may help readers to navigateok.

Each chapter haNotes which primarily give a brief description of my source
material and suggestions for further reading. The intemdiimary nature of the sub-
ject makes it difficult (and often senseless) to give exdabation for many results,
e.g., the discrete form of Nimark’s theorem, and so | have attempted to do so only
in some cases. Thistroductorybook is deliberately as short as possible, and so
its scope and list of references is far from definitive. Ifyofdr this reason, some
contributions may not be noted explicitly.
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viii Preface

The chapters conclude witeixerciseswhich contain more details and examples.
Brief solutions are given, since some are parts of proof$jmthe interests of being
both introductory and self contained. Those marked withage suitable for using
a computer algebra package suchmastlab , maple andmagma To get a real
sense for finite tight frames the reader is encouraged canshre various examples
given in the book numerically or algebraically. In partiyltheharmonic frames
MUBs and Weyl-Heisenberg SICer d < 100 (or higher), which really are quite
remarkable.

This book can be used for an introductory (graduate or umddugte) course
in finite tight frames: chapters 1, 2, 5, 6, 7, 8, 11, togeth#h wome examples
of interest, e.g., group frames (chapter 10), equiangidat frames (chapter 12)
and SICs (chapter 14). The latter chapters rely heavily ots pd classical algebra,
such as graph theory (real equiangular tight frames), cteraheory (harmonic
frames), representation theory (group frames), and Gtiemry (SICs). Examples
from these could be included in a graduate algebra courge,Theorem 10.8 as
an orthogonal decomposition &G—modules. It could also act as the theoretical
background for a course involving applications of tightfies, e.g., some of the
topics treated irFinite frames Theory and Applicatior{® this series). It is also
suitable for self study, because of the complete proofs ahdigns for exercises.

How does one come to write such a book? My initial interestitditight frames
was accidental. While investigating the eigenstructurehef Bernstein operator,
| encountered deficiencies in the existing orthogonal andtigonal expansions
for the Jacobi polynomials on a triangle. Having heard ofniea while a graduate
student in Madison, | supposed that a finite tight frame mjghkt be what was
required. This eventually proved to be so (§&6), and along the way | found that
finite frames are a fascinating and very active area of rekear

When | started this book, there was just enough material fboet ook orfinite
tight frames, a small part of frame theory, at the time. Since ttiere has been an
explosion of research on finite tight frames, which contghapace. | have called
time on the project: the book contains results from last wigelcas-Fibonnacci
SICs), but not next week (maybe a proof of Zauner’s conjegtdrere are chapters
that could have been written, e.g., ones on erasures anttaasanission. | maintain
a strong interest in finite tight frames. On my home pagegthee various links of
relevance to the book (lists of SICs, harmonic frames, typtrg.

It is my hope that this book conveys the basic theory of finghttframes, in a
friendly way, being mindful of its connections with exigjimreas and continuing
development. The applications given are just the tip of abécg: an invitation to
use finite tight frames in any area where there is a naturariproduct on a finite
dimensional space.

Shayne F. D. Waldron

Honeymoon Valley, Far North

Aotearoa (New Zealand)
July 2017
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Chapter 1
Introduction

The prototypical example of finite tight frameis three equally spaced unit
vectorsug, Uz, Uz in R?, which provide the followingedundantlecomposition

2 3
f:§;1<f,u,->u,-, Vi eR% (1.1)

Such generalisations of an orthogonal expansion have smshaxtensively for
infinite dimensional function spaces. Most notably, in thesaof wavelets, where
they allow expansions in terms of functions which have nfmemperties, such as
good time—frequency localisation and a simple descriptiban is possible for an
orthogonal expansion. Despite the fact that in these msthaiimately a numerical
approximation is computed in a finite dimensional subspané| recently little
attention has been paid to frames for finite dimensionalespac

Over the last decade, it has become increasingly apparantigiht frames for
finite dimensional spaces are useful for similar reasonsyTdan havelesirable
properties such as good time—frequency localisation, and share synesef the
space, which may be impossible for an orthonormal basisdttitian, there are
computational advantages of stability and robustnessdasuees. There is also a
special geometry (different for real and complex spacesgtwhas no analogue in
the infinite dimensional setting.



2 1 Introduction

1.1 Some history

Like many great ideas in mathematics, frames (which hava baial to the de-
velopment of wavelets) have, with hindsight, been aroursbime form or other for
quite a while. For example, in 1937, SQuthardt [Sch37] proved the generalisation
of (1.1) ton equally spaced unit vectors, ... ,u, € R?, i.e.,

2 n
fzﬁgl<f7uj>uj, Vi e RZ. (1.2)

This idea received some attention, with Brauer and Cox&€#rp] extending the
result to the orbit of any irreducible group of orthogonaltrites (also see [Had40]).
They also mention the possibility of extending the resuthiorbit of a continuous
group, e.g., taking the group of rotations gives the comtirswversion of (1.2)

2 fem cos@
:Er/o (f,ug)updd,  VfeR2 ue:(sin@)’ (1.3)

which is an example of a continuous tight frame. | don’t dotilatt there are even
earlier instances.

In 1952, Duffin and Schaeffer set out the modern theory of ésim their seminal
paper [DS52], which included the definition in termsfigime bounds

AP < S (F f)P<B|fI% Vi
J

They were interested in Fourier type series for function&4p-1t, 11 involving
functionsfj : t — it for frequencies\; € R, which might not be integers (see
Young [YouO1] for an excellent account).

From the late 1980’s onwards came thaveletera (see, e.g., [Dau92], [Kai94]).
Here frames were used to obtain Fourier expansions £6R?) in terms of func-
tions with both a simple description and good time—freqydncalisation. At the
risk of over simplification, this was done by taking a singkayelet) function, and
obtaining the others from it by applying the operations of

translation:  (Zaf)(x):= f(x—a), aeRY (1.4)
modulation:  (#f)(x) := €™*f(x), beRY, (1.5)
dilation: (Zcf)(x) = c? f(cx), c>0. (1.6)

The parametera, b,c may be chosen to be either discrete or continuous. The the-
ory has two strands: when the operations form a group (Gafsterss), and when
they don't (wavelet systems). In the former case, the grdlgqwa a description

of the dual frame as the orbit of a single function, and in #téel the method of
multiresolution analysiyields a suitable function.
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1.2 Desirable properties

Surely, three equally spaced unit vectors (aka Mercedes—Benz framg give
the “nicest” possible tight frame of three vectors ®#. In this example, one can
see many desirable properties that one might hope for marerghy in a tight
frame. To illustrate these properties, many of which do mte quite general
situations, we also considersecond prototypical exampléhe four unit vectors
@ = (v,SVQv,SQv) in C?, given by

V= % (egi 33_\(3&) , S:= (2 é) , Q= ((1) _01> , a.7)

which form a tight frame fof2?, i.e.,

2 2
f=2 5 (hoe viec (1.8)
PED

The operation$s and Q are discrete analogues of translation and modulation, and
the tight frame®, which will be termed &IC is a discrete analogue of a Gabor
system (Weyl-Heisenberg frame).

In addition to beingight, we might hope that a finite frame have some of the
following properties.

e Equal norms.As in both examples, the vectors in the tight frame have equal
norms. Equivalently, the decomposition of the form (1.1l éb.8) is a sum of
one—dimensional projections with equal weightings.

e SymmetriesThe frame be invariant under some grdaf symmetries, such as
the three equally spaced vectors (which are invariant utihdegroup of order 3
generated by rotation througt23). Equivalently, the frame is th@—orbit of
one, or a small number of vectors.

e Equiangularity.The (equal norm) vectors in both frames havedioss—correlation
|(@, )| constant for all vectorg # (. For vectors irRY, this is equivalent to the
vectors having equal angles between each other.

e Robustness to erasurels both examples, each pair of frame vectors spans a
2—dimensional space. Hence if all but two of the coefficidffitgp) (¢ a frame
vector) are lost, thefi can be reconstructed from these values.

¢ Stability. Suppose the three coefficients in (1.1) are perturbed, sdy i) + a;.
Then the error in the computeds a;u; + axus + agus, which is bounded by the
norm ofa= (a;). This error might even be zero, for a nonzero perturbatiake(t
a1 = a» = ag), a phenomenon which can not occur for an orthogonal expansi

A further property, not shared by these examples, is thapafseness.e., the
frame vectors having many zeros. This is the discrete analofhaving small or
compact support, and is of importance in algorithms for casped sensing and
data compression.



4 1 Introduction

Notes

In some sense, the theory of frames is dual to that of comgdessnsing (sparse
sampling). In compressed sensing, the (sparsenesss&witsome vectors allow
them to be represented by using fewer vectors than in a basiist in finite frame
theory more vectors than are needed for a basis are used dluadant expansion
which has more desirable properties than would be possyblsing just a basis.

Exercises

1.1.Prove (1.1) holds, by using the fagt, uj) = uj f, to write it in the matrix form

2. . 10
éVV =1, V=[up,up,ug], |:= (0 1).

Hint. Any two sets of three equally spaced unit vectors are rotataf each other.

1.2.Robustness to erasures.

(a) Suppose one of the coefficients in (1.1) is lost, fays). Show thatf € R? can
be reconstructed from the remaining two, by giving an exdiecmula for this, i.e.,
find the basis foRR? dual to the functional$ — (f,u;), j = 1,2.

(b) Now suppose a coefficient is changed, §Bys), can this be detected?

(c) What if two of the coefficients are changed?

1.3. Equiangularity/equispacing.
(a) Verify that the three unit vectors (¥ given by

a= 2 e L1 e L[L) e
1-_\/2 17 2_\/§ wa 3_\/2 wz ) L

form a tight frame forC2, i.e., f = 553, (f,vj)y;, forall f € C2
(b) Show these three vectors, and those of Exer. 1.1 arereqiuag, i.e.,

1 .
[viviol = [, ul =5, T#k

(c) Show that both these sets of three vectors are equalbedpwaith

g Juj—udl=v3,  j#k

Vi =Wl =

(d) How can the distances between the real vediaysbe larger than those for the
complex vectorgvj)? Isn't there more space i¥ than inR?!
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1.4.Gabor and Wavelet systems
(a) Show that translation and modulation satisfy¢dbhenmutation relation

%%b _ —2nia-b'//b%.
(b) Use this to conclude i andB are nonzero subgroups @R, +), then
G:={cZs#y:acAbecBceC}l, C:={e™P:acAbeB}.

is a group, which is abelian only B¢ = R. The G-orbit {TattsP}acape (Up tO
scalar multipliers) of a suitablg € Lo(RY) is called aGabor system/frame
(c) For a suitable functiogy € Lo(R), awavelet system/franie given by the func-
tions .

Wp=229(2 K = Dy Ty, jkeL.

Show{ %, I} kez is nota group, and so wavelet systems are not group orbits.






Chapter 2
Tight frames

Decompositions like those in our two prototypical exampies,

f:ZJ(ﬂfj}fj, vie 2, 2.1)
IE

will come from what is called a tight fram|)jc;. The basic ingredients are

2 — areal or complex Hilbert space (for us usually finite dimemnal)
J—an index set (often with a group structure)

(fj)jes —asequence (set, or multiset) of vectorsif

Y jes — asum (for us usually finite, but sometimes continuous)

The emphasis here, is on the possiklgundancyover completeness) of the vectors
(fj) in the expansion, i.e., the case when (2.1) is not an orthalgogansion.

In the first instance, you are encouraged to consigeasR? or CY, with the
usual (Euclidean) inner product, and to think in familiartmeaterms.

2.1 Normalised tight frames

Thepolarisation identity(see Exer. 2.1) implies that (2.1) is equivalent to
117 = S [(F, £, Ve,
2

which explains the following definition.

Definition 2.1. A countable sequendd);c; in a Hilbert space# is said to be a
tight frame (for 22) if there exists aftame bound) A > 0, such that

A||f||2:zj|<f,f,->|27 vfes. (2.2)
Je

Further(f;)jcs is normalisedif A= 1, andfinite if J is finite.
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TheBessel identity2.2) is equivalent (see Exer. 2.2) to either of the idesiti

1
P I: f=— fofi)fi f 2.
arseva AJ;( gy, vViesz, (2.3)

Plancherel: (f,g>:izj<f,fj><fj,g>, vf,ge 2. (2.4)
J€

ForA=1, (2.2) says that — ((f, f;))jcs is anisometry and so normalised tight
frames for#” are equivalent to isometrieg” — ¢>(J). The maps taking normalised
tight frames to normalised tight frames are gaatial isometriegExer. 2.7).

We prefer the ternrmormalised tight framto Parseval framgwhich is also
used), as it emphasizes the fact the frame baund is simply a normalising
factor, i.e., if(f;) is a tight frame, therifj//A) is the unique positive scalar
multiple of it which is a normalised tight frame. We will sosee that this
normalisedversion of a tight frame is convenient in many situations.

We have defined a tight frame to be a sequence, which is stralarnot uni-
versal. By contrast with a basis (which can be a set or a seglemtight framean
have repeated vectarét times, e.g., when the vectors in a frame are all distimct o
the indexing is unimportant, it can be convenient to thinkhefm as a (multi)set.
We will not labour this point, making statements such as #ig §} < is a tight
frame, without further explanation.

R
R

Fig. 2.1: Examples of normalised tight framesnef 4,5, . .., 11 vectors foiR?2,

1 This term dates back to [HLOO]. Just to confuse matters, the temmalised tight framéras
also been used for a tight frame with; || = 1,Vj € J (we call thesaunit-normtight frames).
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Example 2.1(Exer. 2.4) An orthonormal basis is a normalised tight fraffeese
are the only normalised tight frames in which all the vectwase unit length (all
vectors in a normalised tight frame have lengtii).

Example 2.2(Exer. 2.5) The unitary image of a normalised tight framegaia a
normalised tight frame, and the only invertible linear meysch map a normalised
tight frame to a normalised tight frame are the unitary maps.

Example 2.3(Exer. 2.6) The orthogonal projection of a normalised tifghtme is
again a normalised tight frame (for its span). In partigufal is ann x n unitary
matrix, then the columns of any x n submatrix is a normalised tight frame of
vectors forCY. This is effectively the projection of the orthonormal tsagr C"
given by the columns df onto thed—dimensional subspace of vectors which are
zero in some fixeth — d coordinates.

We say that f;)cj is anequal-normtight frame if || f;|| = || fi||, V], k € J, and
is aunit-norm tight frame if || f;|| = 1,Vj € J.

Example 2.4(Exer. 2.8) Equal-norm tight frames ofvectors forF? can be ob-
tained from am x n unitary matrixU with entries of constant modulus, by taking
the columns of anyl x n submatrix. Examples of sudh include theHadamard
matrices (real entries) and thEourier (transform) matrix

1 1 1 .- 1
1 w o - !
1 - i
U=F=— |1 & o Ca w=e%. (25

i wr;—l wz(h—l) w(n—i)(n—l)

Equal-norm tight frames which come from the Fourier matnithis way will be
known asharmonictight frames (see Chapter 11).

In §2.6, we will show that every normalised tight frame can beaited as the
orthogonal projection of an orthonormal basis (in a largarce).

Example 2.5(Exer. 2.9)The tight frames folR?. A sequence of vector&/; )],

Vi = (Xj,Yj) € R? is a tight frame foiR? if and only if thediagram vectorswhich
are defined byv; := (xj + iyj)2 €C, 1< j<n,sumto zero (irC).

In applications, the interest in (2.3) is usually that itegiva decomposition of the
identity into a weighted sum of projections (see Chapter.8),

I311% (f, )
=S P, = , Pifi=
% IR J A J <fj7fj>

where the particular (unit modulus) scalar multiplefefthat is used to define the
orthogonal projectiof?; is unimportant. The paifP; ),(c;) above is dusion frame
(sees8.8). When taking this point of view, we will use the epitipedjective

fi, (2.6)
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2.2 Unitarily equivalent finite tight frames

Before giving any further concrete examples of finite tigtainfies, we define an
equivalence, under which any set of three equally spacetbreewith the same
norm inRR? would be consideredquivalent

Definition 2.2. We say that two normalised tight framef ) jc; for 7 and(gj)jes
for ¢, with the same index se&, are (unitarily) equivalent if there is a unitary
transformatior : J# — ¢, such thag; = U fj, Vj € J.

Since unitary transformation preserve inner productgauiy equivalent tight
frames have the same inner products (angles) between #tors. Furthermore,
these inner products uniquely determine the equivalerasset (se§2.5).

This equivalence islependent on the indexinghich is appropriate when sét
has some natural (e.g., group) structure. The normaligbtifiames of two vectors
(e1,0) and(0, e1) for the one—dimensional spag€ = spar{e; } are not equivalent,
since there is no unitary mag — 0 (or O— e;). For such cases, where it is useful
to consider these as equivalent, we extend our definitiogaif/alence as follows.

Definition 2.3. We say that two finite normalised tight framef)c; for 2 and
(9j)jek for 2, are(unitarily) equivalent up to reordering if there is a bijection
0 :J — K for which (fj)jey and(goj)jes are unitarily equivalent.

We will say that tight frames are unitarily equivalent (uprémrdering) if after
normalisation they are, in which case we say they are equalwpitary equivalence
(and reordering).

Example 2.6Let uy, up, u3 be equally spaced unit vectorsiitf, andRg be rotation
through an anglé. Then each of the sets of six vectors

T
{U17U2, U3, Rgu1, Rguy, R9U3}, 0<6< §

forms a tight frame. Since unitary maps preserve anglaseof these are unitarily
equivalent (up to reordering).

Fig. 2.2: The unitarily inequivalent tight frames obtained® = 5, %, 5.
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2.3 Projective and complex conjugate equivalences

There are otheequivalencesvhich appear in the frame literature. Most notably, the
normalised tight frames of Definition 2.2 goeojectively (unitarily) equivalent if

g; = a;jUfj, Vjed,
whereU is unitary, andaj| = 1,V]j.

All tight frames(a; f;), |aj| = 1, V], obtained from a given tight framg;), are
projectively unitarily equivalent, but aret unitarily equivalent, in general.

Example 2.7For tight frames ofh nonzero vectors ifR? the equivalence classes
for projective equivalence up to reorderirge in 1-1 correspondence with convex
polygons withn sides (see Exer. 2.10).

Fig. 2.3: Equal-norm tight frames of three vectors ®srwhich are projectively equivalent, but
arenotunitarily equivalent.

Thecomplex conjugation mapon C¢ is theantilinear map
C4 = C¥:v=(v)) = V= (V)).

Since(v,w) = (v,w), this maps a tight framéf;) for C¢ to a tight frame(f;), and
these are said to bsmplex conjugate(or anti) equivalent The conjugation map
C: # — s extends these ideas t# (see Exer. 2.11).

These basic types of equivalences can be combined, in theusbway, to ob-

tain others, e.g., the tight framé$;) c; and (g)kek for 7 and.%z” would beanti
projectively unitarily equivalent up to reorderinf

Tm:ajUfj, VJGJ,

for 0 : J — K a bijection,|a;| = 1,V], andU : 2 — ¢ unitary.
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2.4 The analysis, synthesis and frame operators

The Parseval identity (2.3) consists of an extraction obtdinates”
cj = (f,fj), jed

for the vectorf (analysis), and a reconstruction bfrom these (synthesis). Many
important properties of a tight frame follow from this faggsation.

For simplicity of presentation, we suppa3és finite, writeF for R or C, ¢»(J)
for Y, with the usual inner product, and= |, for the identity ons.

Definition 2.4. For a finite sequencefj) <y in 77 the synthesis operator(recon-
struction operator or pre-frame operator) is the linear map

V= [fjljes : £o(J) = H 1ar— Zjaj fi,
S

and its dual is thanalysis operator(or frame transform operator)
V* i — () f = ((f, fj))jea-

It is convenient to make little distinction between the smme(fj);c; and the
linear mapV = [fj]jcJ, which we will say hag—th column fj.

The productS:=VV* : J# — 2 is known as thdrame operator. A simple
calculation (see Exer. 2.12) shows the trac€ ahdS? are given by

1
trace(S) = ||S2[|E = zjllfsz, traceS’) = || S| = ZJZ\ fi, fo . (2.7)
Je

ked

Proposition 2.1. A finite sequencef;)tcy in 7 is a tight frame for7Z” (with frame
bound A) if and only if

SZVV*:A[%&7 VZZ[fJ‘]fEJ. (28)
In particular, a tight frame satisfies

ZJHfjHZ:dA, d:=dim(27), (2.9)
Jje

and

3 3l =g (30:m)° 2.10)

Sf=VV*f=Z<f,fj>f,-, Ve,
]
the Parseval identity (2.3) implies the condition (2.2)gsligalent to (2.8). Taking
the trace of (2.8) and its square gives

Proof. Since
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Y [Ijl? = traceS) = trace(Al »-) = dA,
J

3 3 10510 = vace) = vraceAl) = (A0 = (3 (5.1))

which are (2.9) and (2.10). O

The equations (2.3) and (2.8) will be referred to asRaeseval identity, (2.9)
as thetrace formula, and (2.10) as theariational formula .

For.# =TF9 and|J| = n, V is ad x n matrix, and the condition (2.8) says that
the columns o¥/ are orthogonal and of lengifA, i.e.,V /v/Ais acoisometry
equivalentlyV* /+/Ais anisometry

In §6.2 we show that the variational formula characterised figimes for finite
dimensional spaces. Therenisinfinite dimensional counterpart of this result.

2.5 The Gramian

Unitary equivalence has the advantage (over projectivieagnequivalence) that it
preserves the inner product between vectors, and hencedngid@ matrix. Indeed,
we will show that the Gramian characterises the equivaletass.

Definition 2.5. For a finite sequence af vectors(fj)je; in 7, the Gramian? or
Gram matrix is then x n Hermitian matrix

Gran’((fj)jeg) = [(fk, fj>]j,k€J-

This is the matrix representing the linear m&pV : ¢2(J) — ¢2(J) with respect
to the standard orthonormal bagis }jcj.
The possible Gramian matrices are precisely the orthogoo@ctions:

Theorem 2.1.An nx n matrix P= [pj]j keJ is the Gramian matrix of a normalised
tight frame(f;) < for the space’? := spar{ fj}cj if and only if it is an orthogonal
projection matrix, i.e., P= P* = P2. Moreover,

d = dim(.#) = rank(P) = traceP) = Z 15112 (2.11)
Je
Proof. (=) Let ® = (fj);cj be a normalised tight frame, affd= Gram@). Take

f = f,in (2.3) to getf, = 3 ;5(fs, fj) fj, and take the inner product of this wifly
to obtain

2 Note the(j,k)—entry of the Gramian iéfy, f;) = fj i (so it factorsvV*V), not (fj, fi), which is
sometimes used to define the Gramian.
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(fi, fr) = ZJ(fj7fz><fk7 fj) <= pw = ijéjpjk —P=P%
IE

IE

But P is Hermitian, sincedjx = (@, @) = (@, %) = P«j, and so is an orthogonal
projection.

(<=) Suppose tha® is ann x n matrix, such thaP = P* = P2. The columns of
Parefj :=Pej, j € J, where{ej}c; is the standard orthonormal basis/efJ). Fix
f € 2 :=spar{ fj}|_; C {2(J). Thenf = Pf, so that

f— p(%<pf,ej>e,-) = %(f,Pe,-)Pej = %a,mfi,

i.e., (fj)j_, is a normalised tight frame fo#Z’, with GramianP.
Finally, taking the trace dP gives (2.11). O

The condition thaP = Gram(®) be an orthogonal projection is equivalent to it
having exactlyd nonzero eigenvalues all equal to 1 (see Exer. 2.17).

Corollary 2.1. (Characterisation of unitary equivalence) Normalisecdhtiframes
are unitarily equivalent if and only if their Gramians are.

Proof. Let @ = (fj)jcs, ¥ = (gj)jcs be normalised tight frames fo#” and.z".
(=) If @ andW¥ are unitarily equivalent, i.eg; = U f;, V], for some unitary
U : 7 — 2, then their Gramians are equal since

<gjagk> = <U f]7Ufk> = <fj7fk>

(«<=) Suppose the Gramians @fand¥ are equal, i.e(gj,0) = (fj, fk), V], k.
Then, by Exer. 2.19, there is a unitddy: J# — 2 with g; =U f}, Vj. Hence®
and¥ are unitarily equivalent. O

In other words:

The properties of a tight frame (up to unitary equivalenee)determined by
its Gramian.

Example 2.8Equal-norm tight frames of three vectors {of are given by

R R R

These harmonic frames are not unitarily equivalent sineg tAramians
2 —1-1 2 1w lta?
Gram®)=[-12 -1, Gram¥)=|14+«? 2 14w
-1-12 14w 1+w? 2

are different. They are however projectively unitarily aglent (see Exer. 2.21).
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2.6 Tight frames as orthogonal projections
We have seen (Exer. 2.6) that the orthogonal projection afflmonormal basis is a
normalised tight frame (for its span). The converse is alse.t

Theorem 2.2.(Naimark) Every finite normalised tight fran® = (f;);cj for Z is
the orthogonal projection of an orthonormal basis #(J). Indeed, the orthogo-
nal projection P= Gram(®) of the standard orthonormal basi®;);c; (onto the
column space of the Gramian) is unitarily equivalenftwia f; — Pej, i.e.,

(Pej,Peq) 3y = (Tjs Ty, Visked.
Proof. By Theorem 2.1P = Gram(®) is an orthogonal projection, and so
(Pej,Pag) = (Pej,e) = (k, j)—entry ofP = (fj, fi).

O

When¥ and @ are unitarily equivalent, then we will say thétis acopy of @.
With this terminology, Nanark’s theorem says:

A canonical copy of a tight frame is given by the columns of Grafw).

e
% =

Fig. 2.4: The normalised tight framg®, e;, e} and three equally spaced vectors obtained as the
orthogonal projection of an orthonormal basis o ontoR?.

This is one of those often rediscovered theorems, which eacohsidered as a
special case of Nmark’s theorem (see [AG63] and Exer. 2.26). Hadwiger [Hd4
showed that(f;)}_; in RY is a coordinate star (normalised tight frame) if and
only if it is a Pohlke normal star (projection of an orthonormal basis). In signal
processing this method of obtaining tight frames is cadieelding
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J el
AV~ K

Fig. 2.5: Examples of normalised tight frames of three vectar®foobtained as the orthogonal
projection of an orthonormal basis f&F.

Example 2.9The Gramian of the three equally spaced vectoiRaiis

1-1 _1
53| V:[V17V27V3]=\/g[0 A _jgl. (2.12)
-1 2 2 2

Wl

2
3
P=V*V=|—

WIFRWI=
WIFWI-

Wi

The (particular choice of) vectors is normalispg|| = \/g (see Exer. 2.15), so that

(vj) is a normalised tight frame, and herfeés an orthogonal projection.
The columngPe)) of P give a canonical copy of this normalised tight frame (up
to unitary equivalence), e.g.,

1

(Pey, Pey) = ( —% , —% >=§, (Per, Pey) = —% : j L
-3 -3 -3 -3

WIN

2 2
3 3

wIN
—
Il
|
wl

Example 2.10A crossin R" is the set obtained by taking an orthonormal basis and
its negatives{+tey,...,+ey}, and the orthogonal projection of a cross ontd-a
dimensional subspadéis a called seutactic star (see Coxeter [Cox73]). In view

of Theorem 2.2, a eutactic star is precisely a tight framaéeform{+ay,...,+a,}
forV, i.e., the union of a tight framéay, ..., a,} and the equivalent frame obtained
by taking its negative. When the vecta@sall have the same length one obtains a
so callednormalised eutactic star. Since equal-norm tight frames always esést (
Chapters 7 and 11), so do normalised eutactic staRs ifor everyn > d.
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2.7 The construction of tight frames from orthogonal projecions

The Gramian of a normalised tight frande= (Vj)?:]_ for ad—dimensional space is
an orthogonal projectioR. By Theorem 2.2, the columriBe;) of P give a canonical
copy of the frame (up to unitary equivalence) ad-alimensional subspace Bf.
To obtain a copy ofp in F9, we consider the rows ¢t = Gram( ®).

Theorem 2.3.(Row construction). Let B C™" be an orthogonal projection matrix
of rank d. The columns of ¥ [vq,...,vy] € C9%" are a normalised tight frame for
CY with Gramian P if and only if the rows of V are an orthonormakksafor the
row space of P. In particular, such a V can always be obtaingdpplying the
Gram—-Schmidt process to the rows of P.

Proof. (=) Suppose the columns bf are a normalised tight frame fd9 with
GramianP, i.e.,VV* =1 (the rows ofV are orthonormal) ang =V*V. Then

row(P) = row(V*V) c row(V) = row(VV*V) C row(V*V) = row(P),

so that rowP) = row(V ), and the rows o¥ are an orthonormal basis for r¢®j.
(«<=) Suppose the rows &f are an orthonormal basis for rgR). ThenvVV* =1,
and we have
(V*V)2 =V*(VV )V = V*V,

so thatv*V is an orthogonal projection matrix with the same row spaoe fence
column space) aB. ThusV*V =P. O

In other words:

AframeV = [v4,...,Vy] is a copy of a normalised tight fram if and only if
the rows ofV are an orthonormal basis for the row space of Gr@in

Example 2.11For the three equally spaced vectors of Example 2.9, apgplyie
Gram-Schmidt process to the first two rows of the GrarRigives

2 _1_
3

3
P— |

=
WIN
WIFWI=

1-1 _1
, > V=[v,Vo,vg] = \/g [0 N _fg] . (213
2 ~ 2

Wl W

12
3 3

Example 2.12For @ a tight frame with frame bound, the matrixP = % Gram(®)

is an orthogonal projection, and so a copy®fis given by an orthogonal basis

for the row space o = Gram(®) consisting of vectors of lengt/A. For the four

equally spaced unit vectors of (1.7), we h&e 2, and applying the Gram—Schmidt

process to the first two rows of the Grami@rgives



18 2 Tight frames

1 L 1 i

V3 V3 V3 :

SRS T 11 1 i
Q=|w¥ | V¥ v —>V_\/g|\/§11\/§|

RV 0% Vi vavs it e

BVE v L

Here co(Q) # row(Q), and applying Gram—Schmidt to the columns{instead
of the rows) does not give a copy &.

2.8 Complementary tight frames

Tight frames are determined (up to unitary equivalencehkir tGramian matrip,
which is an orthogonal projection matrix (when the frame asnmalised), and all
orthogonal projection matrices correspond to normaliggd frames. Thus there is
normalised tight frame with Gramian given by the compleragnprojection — P.

Definition 2.6. Given a finite normalised tight frame@ with GramianP, we call
any normalised tight frame with Gramidn- P its complement More generally,
we say that two tight frames acemplementsof each other, if after normalisation
the sum of their Gramians is the identlty

The complement of a finite tight frame imiqueup to unitary equivalence (and
normalisation), the complement of the complement is thmé&dtself, and a tight
frame is equiangular (or equal-norm) if and only if its coerpént is.

Fig. 2.6: Projecting an orthonormal basis f&f onto a two—dimensional subspace and its or-
thogonal complement, thereby obtaining a normalised tight fraftleree vectors foR? and the
complementary tight frame of three vectors Rar
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Fig. 2.7: Examples of normalised tight frames of four vector&®and the complementary frames
for R? (below). A tight frame and its complement can never be unitatgjyivalent.

In view of (2.11), the complement of a tight frame ofvectors for a space of
dimensiond is a tight frame oh vectors for a space of dimension- d.

A tight frame and its complement can never be unitarily ojgutively unitarily
equivalent (Exer. 2.23), though they do have the same syriea¢sed9.2,59.3).

Example 2.13The complement of an orthonormal basis @ is the frame for the
zero vector space given layzero vectors.

Example 2.14By (2.12), the Gramian of the complementary frame to theethre
equally spaces vectors R? is

100 2 1.1 111
Q=1-P=|010| — _3% gs_g = %%%
001 _é_%% 333

By the row construction (Theorem 2.3). this is the Gramiamofmalised tight
frame{%, %, %} of three repeated vectors fii. The Gramian of an arbitrary

normalised tight frame of three vectors ff is considered in Exer. 2.22.

We call the tight frame ofi = d + 1 vectors forRY which is the complement of
{\/ﬁ, e \/ﬁ} , thevertices of the (regular) simplexin RY. This has Gramian

& 1#k
P=I[pkl,  Pik= {dél 17 K (2.14)
d+1° ]: .

To find a copy inRY, one can apply the method of Theorem 2.3 to the Gramian.
This example can be generalised to obfzantition frames
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2.9 Partition frames

Definition 2.7. Leta = (ay, ..., ax) € ZX be a partition of, i.e.,
N=0a1+---+ o, 1<ai<ay; <--- <oy

Thea—partition frame for RY, d = n—k, is the complement of the normalised tight
frame ofn vectors forRX given by

( . T S .. ) (2.15)
Va1 v/ a1 £/ Ok v/ Ok
oy times ay times
Itis said to beproper if aj > 2,V].
The Gramian of ther—partition frame is the block diagonalx n matrix
roi-t -1 -1 1
B1 aj o q aj
B e
. a . q aj
-1 -1 a- -1
P= B , Bii=|% & q 5 (2.16)
. : . 1
o
Bx S e
L C(j aj Clj C(j aj a

where the abov8; is aa; x aj orthogonal projection matrix of rank; — 1. Since
each normalised tight frame is unitarily equivalent to tbh&umns of its Gramian,
it follows that the vectors in a proper partition frame arstidict and nonzero. If
aj =1, then the corresponding partition frame vector is zero.

Example 2.15(Simplex) Forn = d + 1, the trivial partitiona = (d + 1) gives the
vertices of the simplex iiR¢.

N

Fig. 2.8: The propea—partition frames ifR® for a = (4),(2,3) and(2,2,2), respectively. These
are the vertices of the tetrahedron, trigonal bipyramid artdgon. In four dimensions the possible
choices fora are(5), (2,4), (3,3) and(2,2,3).




2.10 Real and complex tight frames 21

Table 2.1: The proper partition framesi? andR®. Here|G| is the order of their symmetry group
G = Sym(®) (see Chapter 9, Exer. 9.5).

Partition n Description of partition frame |G|
(3) 3 three equally spaced vectorsRA 6
(2,2) 4 four equally spaced vectors R? 8
(4) 4 vertices of the tetrahedron iR® 24
(2,3) 5 vertices of the trigonal bipyramid iR® 12
(2,2,2) 6 vertices of the octahedron i&? 48

2.10 Real and complex tight frames

A tight frame for a real Hilbert space is a tight frame for itsnplexification (see
Exer. 2.28). We will call frames that come in this waal tight frames.

Definition 2.8. We say that a tight frameéfj);c; is real if its Gramian is a real
matrix, and otherwise it isomplex

By Theorem 2.3 (row construction), a tight frame for a spa€ef dimensiond
is real if and only if there is a unitary matrix : .2 — F9 for whichU fj e RY, Vj.
Moreover, a frame is complex if and only if its complementxame is.

Example 2.16The vertices of a simplex (or partition frame) areeal frame, by
definition. The second prototypical example (1.7), and ttax®le (a) of Exer. 1.3
arecomplexframes, since their Gramians (after normalisation) are

1 1 1 —i

S U
ilié{;l E A (2.17)
2 4 0 4 -8 3

23 2V/3 2v/3 2

There are intrinsic differences between the classes ofarghlcomplex frames,
e.g., see Exer. 1.36.8,812.1,§12.10 and;12.17.

The real algebraic variety of real and complex normalisetefiight frames (and
unit—norm tight frames) is considered in Chapter 7.

Remark 2.10ne could extend the Definition 2.8 to other fields, e.g., say the
three equally spaced unit vectors R? are arational tight frame, since their
Gramian has rational entries. In this case, the columnseoGitamian give a copy
of this frame in a rational inner product space (Example, @) the row construc-
tion (Example 2.11) does not give a copy@3 (with the Euclidean inner product).
These ideas are explored in [CFW15].
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2.11 SICs and MUBs

There are many interesting and useful examplescpfal-normtight frames(v;),
e.g.,group framegsee§10). Those for which theross—correlatior}(v;, )|, j # k,
takes a small number of values are of particular interepe@ally for applications).
We briefly mention two such classes of frames: 8i€sand theMUBs These
are simple to describe, and come with some intriguing caujes, which are still
unproven (despite considerable work on them). Indeed, ¢imstouction of SICs
(see§14) and maximal sets of MUBs (s€&4.2,58.6) are two central problems in
the theory of finite tight frames.

Definition 2.9. A tight frame ofd? unit vectors(v;) for C9 is aSIC if

i#k

1
|<Vjvvk>‘2 = ma
SICs can be viewed as maximal sets of complex equiangules.lith follows
from the bounds of Theorem 12.2 on such lines, that SICscameplex frames
Their origins as quantum measurements, and the known caetistts are detailed
in Chapter 14. The conjecture that SICs exist in every dioend is known as
Zauner's conjecturer theSIC problem

Example 2.17The second prototypical example (1.7) is a SIC @ The case
d = 3 seems to be an exception for SICs. Here the SICs form a anciouis family,
while ford # 3 there is currently only a finite number of SICs 8% known.

Definition 2.10. A tight frame consisting ofn orthonormal bases4,...,%n is
said to be aMUB (or a set ofm MUBs) for CU if the bases are mutually unbiased,
ie.,
(v, W) % = %7 VE Bj, WE By, j#kK

Mutually unbiased bases have similar uses in quantum steerdination as
SICs do. The maximal numbe# (d) of MUBs for CY is bounded above by + 1
(Proposition 12.12). This bound is attained tba prime power. Beyond this not
much is known [BWB10], e.g., fad = 6 (the firstd which is not a prime power), it
is only known that

3< #(6)<T.

The MUB problemis to say anything more, e.g., to show th&t(6) = 3 (as is
commonly believed).

Example 2.18Three mutually unbiased basesUR are given by

1| |0 111 1 |1 101] 1 |1
a={o ) (G0 A A= B0
The first two areeal MUBs. The question on how many real MUBs there are and

its connection wittassociation schemés of interest (see [LMO10]). Three MUBs
for R* can be obtained by choosing a subset of the vertices of theelldn R*.
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Notes

The key idea (not to be underestimated) of this section is:
Tight frames are best understood via their Gramian.

Indeed, a tight frameb = (f,—)’j‘:l is determined up to unitary equivalence (and
normalisation) by its GramiaR = Py, which is an orthogonal projection matrix.
The columns ofPy give a (canonical) copy oo, and so the kernel dy is the
space of linear dependencies between the vectdats ire.,

ker(Pp) ={acF":Pa=" ajPej =0} ={acF":} ajf; =0} = dep(®).
] ]

Since Py is determined by kéPy), this observation allows the theory of tight
frames to be extended to any finite dimensional vector spaeeasubfield ofC
which is closed under conjugation (see Chapter 4).

Many notions oequivalencef tight frames appear in the literature (see [Bal99],
[HLOQ], [GKKO1], [Fic01], [HPO4]). Here we use a descripgiterminology (from
which all of these can be described). For finite tight framiesved as sequences
of vectors,unitary equivalenceas the natural equivalence, and when viewed as
(weighted) projections (fusion framep)ojective unitary equivalences natural.
Unitary equivalence is determined by the Gramian (Corglad) and projective
unitary unitary equivalence is determined by certaiproducts (see Chapter 8).

It is implicit in the Definition 2.1 of atight framethat 5# be separable, i.e.,
have a countable orthonormal basis. The theory extendieirobvious way, to
nonseparable spaces, wihow an uncountable index set. In these cases, it turns out
that all tight frames for#Z (with nonzero vectors) have the same infinite cardinality,
i.e., the Hilbert dimension o¥#’. By way of contrast, if?# has finite dimensiod,
then there exist tight frames fo¥” with any countable cardinality greater than or
equal tod.

We will have good reason to consider representations su¢h.8s where the
sumy c; is replaced by a continuous sum (with respect to some measurs
generalisation (see Chapter 16) will be calledacatinuous tight framewith the
special case of Definition 2.1 referred to asls¢retd tight frame

The book [HKLWO7] covers the material of this section. It haseztion on
frames inR? (for tight frames inR3 see [Fic01]). The popular article [KC07a],
[KCO7b] advocates the use of tight frames in a number of exaging applications.

It outlines standard terminologyor frames (resulting from an e-mail discussion
within the frame community), which we adopt, except for owefprence ohor-
malised tight frameverParseval frameln this parlance &NPTFis aequal-norm
Parseval tight framgand similarly.
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Exercises

2.1. By expanding, or otherwise, verify thmlarisation identityfor an inner product
spaces7, i.e.,Vf,ge s that

1
O(f.0 = (I +al*~ 1 -g|?),
1 . .
0(f,g) = (I f +ig|?~ | T —ig|?), (for 2’ complex)

2.2.Use the polarisation identity to show that the following ditions are equiva-
lent to being a finite tight frame

1
Parseval: f=— S (f,f)f, ViesZ,
AL

Plancherel: (f,g>:izj<f,fj)<fj,g), vf,ge 7.

IE

2.3.Orthogonal projection formula.
Let (fj)je be a finite tight frame (with frame bourd) for a subspace?” C 7.
Show thatP the orthogonal projection onto this subspace is given by

1 1
P=_VV': = S (f.f))f;, V:i=[fjja.
A A2,

2.4. Orthogonal bases and tight frames

(a) Show that an orthogonal basi§) jc; for 7 is a tight frame if and only if all its
vectors have the same norm, and that it is a normalised tighte if and only if it
is an orthonormal basis.

(b) Show that if( f;) is a normalised tight frame, theyf;|| < 1,Vj < J, and

Ifill=1 = fi Lf, Vk#j.

In particular, the only normalised tight frames whose vectdl have unit length are
the orthonormal bases.

2.5. Unitary images of tight frames

(a) Show that the image of a tight frani& ) jc; under a unitary mapJ is a tight
frame with the same frame bound.

(b) Show that if( f;) is a finite normalised tight frame fo#, andT is a linear map
for which (T f;) is also, therT is a unitary map.

2.6. Projections of normalised tight frames are normalised tigames.
A linear mapP : .# — . on a Hilbert space is asrthogonal projection if P2 =P
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andP* = P. Show that if(fj)jcj is a normalised tight frame for a Hilbert space
2 andP is an orthogonal projection onto a subspagec %, then(Pf;) is a
normalised tight frame fag#Z’. (This is obvious in the context of Theorem 2.2.)

2.7.Partial isometries map normalised tight frames to normedisight frames.
A linear maplL : 2 — % between Hilbert spaces is @ometryif L*L =1, i.e.,
it is norm preserving:

x| =Ixll,  vxe 2.

Itis acoisometryif L* : 2 — ¢ is an isometry, i.eL.* is norm preserving.

Let @ be a finite normalised tight frame fo¥’, andQ : s — ¢ be a linear map.
Show that the following are equivalent

(@) Qs a partial isometry, i.e., its restriction tkerQ)* = ran(Q*) is an isometry.
(b) QQ* is an orthogonal projection.

(c) Q*Q s an orthogonal projection.

(d) Q@ is a normalised tight frame (for its span).

Remark.Since unitary maps and orthogonal projections are pasiahetries, this
generalises Exercises 2.5 and 2.6. It appears as a spesgahdaxer. 3.5.

2.8" If U is ann x n unitary matrix (or a scalar multiple of one) with entries of
constant modulus, then amgual-norm tight framéor F9 is given by the columns
of thed x n submatrix obtained from it by selectirgny dof its rows.

(a) WhenF = R, suchU, with entriest+1, are calledHadamard matrices. Use the
matlab functionhadamard(n) (defined fom,; or 5 a power of 2) to construct
equal-norm tight frames ofvectors inRY.

Remark:It can be shown that if a Hadamard matrix exists, thea 1,2 orn is
divisible by 4. TheHadamard conjectureis that there exists a Hadamard matrix of
sizen = 4k, for everyk. The smallest open case (in 2010pis- 668.

(b) Show that the Fourier matrix = %[wjk]0§j7k<n, w=eT of (2.5) is unitary
and has order 4. Use tieatlab functionfft(X)  (Discrete Fourier transform) to
constructt, and hence equal-norm tight frameshofectors inC9.

Remark:lt is always possible to obtain a real frame in this way.

2.9. Tight frames foiR?.

(a) Show the vectorgvj)T_;, vj = (xj,y;) € R? are a tight frame foR? if and only
if the diagram vectorsw; := (x; +iy;)? € C sum to zero (irC).

(b) Show that two tight frames fdR? are projectively unitarily equivalent if and
only if their diagram vectors are scalar multiples of eadteat

(c) Show that up to projective unitary equivalence the omjya—norm tight frame
of three vectors foR? is three equally spaced unit vectors.

(d) Show that all unit-norm tight frames of four vectors #®# are the union of
two orthonormal bases. This gives a one—parameter famibyajéctively unitarily
inequivalent unit—norm tight frames of four vectors Rx.

(e) Show the tight frames of five unit vectors f&f with diagram vectors
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. R . 1

(9 6710 dO+9) gi6+0) 11 pgcg< iZT cos B +cog20+2y) = 5
are projectively unitarily inequivalent, and that nonehis tinion of an orthonormal
basis and three equally spaced vectors.

2.10.Projective unitary equivalence iR?.

(a) For unit-norm tight frames afvectors forR? show that the equivalence classes
for projective unitary equivalence up to reorderiage in 1-1 correspondence with
convexn—gons with sides of unit length (given by a sum of diagram mesjt

(b) What do subsets of orthonormal vectors correspond to@pdlygon?

(c) What is then—gon corresponding to the tight frame f&¢ given byn equally
spaced unit vectors?

(d) Does every finite tight frames f@&? correspond to some convex polygon?

2.11.Thecomplex conjugateof .7 is the Hilbert space? of all formal complex
conjugates with addition, scalar multiplication and inpesduct given by

V+W=V+Ww, av=av, (V, W) = (v,w). (2.18)

(a) Show that theonjugation mapC : 5# — 7 : v+ Vis antilinear. o
(b) Suppose thab = (f;) is a sequence of vectors.itt” and® := (fj) C 7. Show
that the frame operator and Gramian satisfy

Sz=CSC*  Gram(®)=Gram®).

HenceC maps tight frames to a tight frames (with the same botind
(c) Suppose thatZ =V, with V a subspace @Show thats# is isomorphic to

the subspac¥ := {v:v eV} of CY, wherev = (vj) := (Vj).

2.12.Show the frame operat@for a sequence of vectoffs, ..., f, satisfies:
(a) tracéS) = 5 ;|| fj||*.

(b) tracdS?) = (||S|r)? = 3 Sk(Fj. fio) >
Hint: The trace operator satisfies tré88) = traceBA).

2.13.Trace formula Show that if( fj);c; is a finite normalised tight frame fo#”
andL : o7 — J# is a linear transformation, then its trace is given by

tracdl) = Lfj, fi).
gL) %< i» fi)

In particular, wherlL is the identity map we obtain theace formula(2.9).

2.14.Let 2Z be have finite dimensiod > 1. Show that

(a) There exists a tight frarr{efj)‘f=l for s#, with infinitely many nonzero vectors.
(b) For any such tight framé|f;|| — 0 asj — .

(c) There are no equal-norm tight frames $6t with infinitely many vectors.
Remarkin contrast, theontinuoudight frame(ug) for R? of (1.3) has uncountably
many equal-norm vectors.
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2.15.Equal-norms Show that if(f;) is an equal-normtight frame ofn vectors
(with frame bound?) for a spaces# of dimensiond, then

dA .
Il=y Vi

In particular, if(f;) is unit-norm, i.e.| f;|| = 1, V], thenz = %,

2.16.Equiangularity Show that if( f;) is anequiangulartight frame ofn > 1 vec-
tors (with frame bound) for a spaces” of dimensiond, then its Gramian satisfies

. dA LA [din=d)
<fJ7fJ>*?7 VJ, ‘<fJ7fk>|*n n—1 ’ ]#k

2.17.Let @ = (f)jcy be a finite sequence of vectors.i, whered = dim(7),
andV := [fj]jes. Show@® is a normalised tight frame fo#2” if and only if

(a) Gran{®) = V*V has exactlyd nonzero eigenvalues all equal to 1.

(b) The frame operatdsy = VV* has all its eigenvalues equal to 1.

(c) The synthesis operat@rhasd singular values equal to 1.

(d) The analysis operatdt* hasd singular values equal to 1.

2.18.IsometriesLet @ = (fj)jcy C 2, andV* : # — () : f = ((f,f}))jes be
the analysis operator. Show that the following are equitale

(a) @ is a normalised tight frame fo#?.

(b) V* isinner product preserving.e., (V*f,V*g) = (f,g), Vf,ge 7.

(c)V*is anisometryi.e., ||V*f|| = ||f|,Vf e 2.

2.19.Suppose that = (f;)_; and¥ = (g;)]_, are sequences of vectors, with
2 = spaf®) and.#” = spar{¥). Show there is a unitary map : .2# — % with
g; =U T, Vjifandonly if (fj, f) = (9j,0k), Vi,k, i.e., Grani®) = Gram ).

2.20.(a) Expressnitary equivalence up to reorderinig terms of the Gramian.

(b) Expresgprojective unitary equivalence up to reorderiimgterms of the Gramian.
(c) Show that a necessary, but not sufficient, condition onmalised tight frames
(fj)jes and(gj)jex to be projectively equivalent up to reordering is that thisre
a permutatioro : J — K with [(gsj,90k)| = [(fj, )|, Vj,k € J. In particular, the
multisets{|(fj, fk)|}j kes and{|(9;, fk)|}j kes must be equal.

2.21.(a) Show that normalised tight frame® and ¥ are projectively unitarily
equivalent up to reordering if and only if their complemesats.

(b) Show that all equal-norm tight framesrof= d+ 1 vectors inF9 are projectively
unitarily equivalent, and hence are equiangular.

(c) For the unitarily inequivalent equal-norm frames ofthrectors fofC? given
in Example 2.8, find a unitary matrid (and scalarsrj) which give the projective
unitary equivalencg; = a;U fj, where® = (f;) and¥ = (g;).
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2.22.Find all possible normalised tight frames of three vectorsC up to unitary
equivalence.

2.23.Show that no tight frame can be unitarily equivalent to itsyptement. Can a
tight frame be projectively unitarily equivalent to its cplament?

2.24™ Write amatlab function for the complementary tight frame usingll

2.25" (a) By using an inductive argument based on complementsepiat an
equal-norm tight frame af vectors forF¥ can be constructed, for ail> d.

(b) Write a functionENTF(n,d) to construct such equal-norm tight frames.
(c) Construct an equal-norm tight frame of 8 vectorsRér

2.26.M. A. Namark’s theorem.
An orthogonal resolution of the identity for a Hilbert space’” is a one parameter
family (E;):er Of orthogonal projections o, for whicht — E; is left continuous,
and

tLWDOO E: =0, tlm B =lxr, EsEt = Emingst-

A generalised resolution of the identityis a family (R ):cr, for which the differ-
encedy — ks, s< t are bounded positive operatorsy F is left continuous, and

Iim R=0, limRK=1,4.
t——o0 t—o0

Naimark’s theorem (see, e.g., [AG63]) says that every geisexdtesolution of the
identity for JZ is the orthogonal projection ontg?” of an orthogonal resolution of
the identity for some larger Hilbert spac€& > 7.

(a) Let(fj)]_, be a finite normalised tight frame for which none of the vestane
zero. Show that a generalised resolution of the identityvisrgby

thizz<f,fj>fj, vfesr.

i<t

(b) By Namark's theorem, there is a Hilbert spa¢é > 7, and an orthogonal
resolution of the identityE;) for ¢, such thak = PE;, whereP is the orthogonal
projection ofZ” onto.7Z. Conclude that

n n
lw=7% (Fi—Fj1)=3% PQ,  Qj:=E-Ej1
=1 =1

whereQj is an orthogonal projection, ar@; L Qy, k # j.

(c) Show that’z” can be taken to be dimensional.

(d) Prove Namark's theorem fors# = FY by takingV = [f1,..., fn] which has
orthonormal rows, and extend it to obtain a unitary matrix.

2.27.Suppose thatu;j +ivj)]_, is a normalised tight frame af vectors forCd,

whereu;,v; € RY. Prove that(us,...,Un,V1,...,Vn) is @ normalised tight frame of
2n vectors forRY.
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2.28.Show that a tight frame fdR¢ is tight frame forCY.

2.29.Normalised tight frames and linear mappings.

Let (fj)jcs and(gk)kek be finite normalised tight frames fo#” and.%". Denote the
vector space of all linear mapg” — 2" by £ (5, ¢).

(a) Show that thédilbert—Schmidinner product onZ (.52, ¢") satisfies

(L,M)ns = tracgM"L) = ZJ<LfJ,ij> =5 (Mg, L gq)-
IE keK

Remark:TakingM = | ,» gives the trace formula of Exer. 2.13.
(b) Let fj bes#” — F: f — (f, fj). Show that(gkf|") jeskek is @ normalised tight
frame (of rank one maps) fa¥’ (77, %) with the Hilbert-Schmidt inner product.

2.30.Matrices with respect to a normalised tight frame.

Normalised tight frames can be used to represent vectorraa maps in much
the same way as orthonormal bases. Suppose(fhat; and (g«)kex are finite
normalised tight frames fasz” and.#", and letV = [fj]jc3, W = [Ok]kek - Then the
coordinatesx of f € .7 with respect tq f;), and thematrix Arepresenting a linear
maplL : 5 — ¢ with respect tq fj) and(g«) are

x=[f]:=V*fecF,  A=[]:=WLVcF.

(a) Show thafL f] = Ax, andf, L can be recovered via=Vx, L = WAV*.

(b) Show thafalL + BM] = a[L] + B[M], a,B € F, and[L*] = [L]*.

(c) Show that the composition of linear maps satisfiék] = [M][L].

(d) Supposé. : # — s, andW = V. Show thatf is an eigenvector of for the
eigenvalue) if and only if Ax= A, i.e., eigenvectors df correspond to the eigen-
vectors ofA that are in the range &f*.

(e) Showl andA have the same singular values, and hence the same rank.






Chapter 3
Frames

A finite (normalised) tight frame is a spanning séjt)?zl for 22, for which
n
f= <f,fj>fj, vfes.
2

This expansion can be further generalised, by replacingahk one orthogonal
projectionsf — (f, f;) fj, by rank one projection$ — (f,g;) f;, to obtain what is
called a (nontight) frame expansion.

This elegant theory includes orthogonal and biorthogorphesions as special
cases. It will be mostly used as a route to obtain the so caliadnicaltight frame.
This is a normalised tight frame naturally associated wigivan frame, which is as
close as possible to it.

3.1 Motivation

Suppose thatf j)T:l spanss7, so that eac € s can be reconstructed
n
f= 2 Cj fj, <— Vc= f, V= [fj]?zl;
j=1

for somecoefficientsc; = ¢j(f) € IF, which are unique if and only ff;) is a basis,
i.e., n=dim(s¢). However, there is always @niqueleast squares solution (one
minimising ¥ ; |cj|2) given by

c=Vlf=vslt — ¢ =(fstf),

whereS:=VV*, andvt =V*(VV*)~1: % — F" is thepseudoinverseof V (see
Exercises 3.2 and 3.3), The coefficients= (f,S1f;) arelinear functions of f,
whose Riesz representers

gj = fj:=s7)

will be called thedual frame

31
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3.2 A frame and its dual

A finite frame(f;);ej for 5 is simply a spanning set (see Exer. 3.6), i.e.,
V = [fjljes: €2(J) = S is onto 7,

which implies thatS= VV* is (boundedly) invertible. Far# infinite dimensional
(or Jinfinite), the following condition ensures thétandScan be defined, such that
V is onto andShas a bounded inverse.

Definition 3.1. A countable sequendéd;) j<; in a Hilbert space is said to bérame
(for s7) if there exists (frame bound#) B > 0, such that

Allf? < Z|<f,fj>|2§|3l\f||2, vie s (3.1)
JE
The best possibla, B are calledhe (optimal) frame bounds

A finite frame for.sZ is precisely a spanning sequence éf.

Given a framep = (f;) for 7, we recall thdrame operator S= Se : S —
is theself adjoint operatodefined byS:=VV*, i.e.,

Sfi= <f,fj>fj7 Ve,
’.

whereV := [fj]jc; is the synthesis operator. The frame bounds (3.1) can btewrit
(Af, ) < (ST, f) <(Bf,f), Ve <= Aly <S<Bly. (3.2)
From this, it follows thaSis positive with abounded inverseatisfying
1 1
Sl <ST< D1y
gl = S A
and the optimal frame bounds are (cf Exer. 3.7)

A= Ap := smallest eigenvalue &, B = Bo := largest eigenvalue &.

We can therefore define the dual frame, which is indeed a frame

Definition 3.2. Given a frame® = (fj)je; for JZ, with frame operatorS the
(canonica)) dual frame! @ = (gj)je, for 7 is defined by

gj = f~J Z:S_]'fj.

1 Sometimes thelual frameis called thecanonical dual frameo distinguish it from a so called
alternate dual framésee§3.10).
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The synthesis operator for the dual fradiés W = [f;] = SV, and so
S =WW' = (Stv)v'st=gl=gl (3.3)
Thus the dual fram&’ = @ is a frame with ¢ = @, and optimal frame bounds

1 1

The Gramian of a frame and its the dual are pseudoinversesbfather (Exer. 3.3)
Gram @) = Gram ®)",  Gram(®) = Gram(®)". (3.4)

Proposition 3.1.Let (fj)jc; be a finite frame for#’, i.e., a spanning set, and let
fj :== S1f; be the dual frame. Then we have the frame expansion

f=S(ff)fi=S(f f)fj, Viex (3.5)
% it J; it

Moreover, suppose that= 3 ; ¢; fj, for some coefficients cthen

i)?= f,fi)2 —(f, fi)]2 3.6
J;|CJ| %K i)l +J;|CJ (f. 1)l (3.6)

Proof. Since|fj]jcy =SV, V :=[fj]jcJ, the equation (3.5) can be written
Ly =V(SWV) =(SWV)NV*  S:=VV',

which clearly holds. Suppose=V ¢, and writec as the least squares solution, plus
the error
c=V*S 4 (c—-Vv*stf).

These vectors are orthogonal (see Exer. 3.2) since
(V'S c-vis) = (St Ve-VvVvis) = (S f - f) =0,

and so, by Pythagorage|? = [[V*S 1 f|2+ |[c— V*S1{||?, which gives (3.6),
since(V*S1f)j = (S V)*f); = (f, fj). 0

It follows from Proposition 3.1 that given a finite spannirefsence f;j) for a
vector space (oveR or C), for each vectorf there are unique coefficients;) with
f =3y ,c;f; andy||c;j|> minimal. These; are linear functions of and are called
thecanonical coordinatesf f (seeg4).

Example 3.1For ( ;) a basis for, (3.5) implies that (-, f;)) is the corresponding

dual basig(coordinate functionals i.e., (f;) and(f;) form abiorthogonal system

- 1, j=Kk
fi, f) =
<]a k> {O, J?ék
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Example 3.2If (f}) is a tight frame, then (3.2) reducesS3e- Al ,~, and so the dual
frame is given byf; = S~1f; = ;.

Example 3.3Consider the frame = (e1, aey, Bey), a®+ B2 > 0, for R2, Then

100 1 0 1 1 0 0
V= , S= , W=S1lv= ,
Oap 00{2+B2} Oﬁﬁzﬁﬁz

so the dual frame i® = (eq, #ﬁze& %ﬁzez), and (3.5) gives the expansion

X1 axp Bxz 2
= = A A A ~A R .
X (X2> x1€1 + 02+B2(ae2)+ aZ+B2(Beg), VX e

Other choices fol that satisfy (3.5) includées, £e>,0) and(er,0, 5€) (a, B #0),
which give the (orthogonal) expansions

x:x1e1+%(ae2)+0([3ez):x1e1+0(ae2)+%([3e2), ¥x € R2,

Observe that these coefficients have gregtenorm than those for the dual frame.

This illustrates the tendency of a frame to distribute infation about a function
evenlyover the coefficients, rather than concentrate it on a fedednd, sincesis
invertible, it follows thatf; # 0 if and only if fj # 0.

Example 3.4If (f;) is a normalised tight frame fap# andT : o — J¢ is an
invertible linear map, then the framét* f;) and(T~1f;) are dual (see Exer. 3.4).

Fig. 3.1: A frame (solid heads) and its dual, for 5, 10 and 15 randectors inR?.

Example 3.5(Exer. 3.5) The imag&/ = Q@ of a frame ® under a linear map
Q: # — ¢ is again a frame (for its span), with frame bounds

Ap > AollQT|2, By <Bo|Q|%
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3.3 The canonical tight frame

Given a frame (or its dual), there is a naturally associtiggd frame which inherits
properties of the original (see, e.g., Theorem 10.1).

Definition 3.3. If @ = (f;) is a frame for”#’, with frame operato= Se, then the
correspondinganonical tight frame @°"= (4" is given by

g = fPN=s2f;, Vi

To find the canonical tight frame, one must calcu&té, the positive square root
of the inverse of the frame operatSrin practice, this may be a difficult numerical
or analytical calculation (s€83.9). IfV =U12U; is a singular value decomposition
of V = [fj], then (see Exer. 3.9) the canonical tight frame is given by

[£997 = Uy 1 0] U3 =UqU3. (3.7)

Theorem 3.1.Let @ = (f;)jcj be a finite frame for7”. Then the canonical tight
1
frame f2":= S,?f is a normalised tight frame, i.e.,
f= Z(f, fenfen  viesz (3.8)

IE

Moreover,(®)®"= @@" and the Gramian is the orthogonal projection matrix with
the same kernel as the synthesis operatet \f;], and satisfies

Gram( ®°@") = Gram(®) Gram(®) = Gram( ®) Gram( ®). (3.9)
Proof. LetU = [ff2T;c; = S2V be the synthesis operator ff°2"). Then
1 1 laal
UU* = (S 2V)(V*S 2) =S 2SS 2 =1,
which is (3.8). The other observations follow similarly édexer. 3.10). O

Example 3.6lf (f;) is a basis fozZ, then the canonical tight frame is an orthonor-
mal basis known as th&ymmetric or Lowdin orthogonalisation of (fj). It was
first obtained via aymmetricversion of the Gram—Schmidt algorithm, and is the
closest orthonormal basis té;) (see Corollary 3.3).

Example 3.7If (f;) is an equal-norm frame fa##’, then the dual frame and the
canonical tight frame need not have vectors of equal lergth, the canonical dual

of the frame of Example 3.3 ®°@"= (e, \/a‘z”+52e2, \/aL23+;32e2) (takea =B =1).
They do satisfy (see Exer. 3.13)

(fj, fp) = (fj. f) = | Ff22, v) = Z(ijﬂ) =d=dim(2).
=
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Example 3.8(Exer. 3.16) If® = (f;) is a frame forZ, andQ: 7 — J¢ is an
invertible linear map, thel := Q® = (Qfj) is a frame for#’, and

wcan — U q,can

whereU is unitary. Equivalently, Gra/®@") = Gram ¢°a").
The synthesis operator of the canonical tight framedfos (f;)jes

U=[fjes =S 2V :6() » 7

is apartial isometry which appears in the polar decompositioVof [fj]jc3.

Corollary 3.1. (Polar decomposition). Leb = (f;)jcj be afinite frame fop#’, and
U = [f{Tjes. Then the polar decomposition of the synthesis operater V] <,
into a product of a partial isometry and a positive operatsr i

V=UGZ=S:U, G=Gram(®)=V"V, S=Sp=VV". (3.10)

Proof. LetV =U;2U; be a singular value decomposition\6f Then (3.10) is the
polar decomposition oA =V, where

1 1 1 1
U:U1U2*7 P:(V*V)?:G?’ Q:(VV*)?:S?7

and we recognise that is [f27, by (3.7). O
The Gramian of the canonical tight frame is an orthogongkotmn

P=Gram @) =V*S v : /,(J) = £2(J), (3.11)

which gives the coefficientswith f = 3 ; ¢; f; of minimal £—norm.

Corollary 3.2. Let @ = (fj)jcy be a finite frame forsZ, and V = [fj]jc. If
f = Va, then the coefficients ¢ of minimgl-norm with f=\Vc are given by
¢ = Gram ®®@Ma. In particular, V can be expanded

V =V Gram(®%"), (3.12)

where
ran(V*) = ker(V)* = ran(Gram(@°@")). (3.13)
Proof. By Proposition 3.1, the coefficientsof minimal /2—norm are given by

c=V*S1f =VvV*Sa= (S 2V)* (S 2V)a= Gram ®*")a. (3.14)
Left multiplying c = V*S~Va= Gram ®*@"a by V gives
VV*'Slva=Vva=VGram®®“@a, va =— V =V Gram®®%").

Finally, sinceSis invertible andV is onto, we obtain (3.13) from (3.11) O



3.3 The canonical tight frame 37

Fig. 3.2: A frame of randomly chosen unit vectors (solid arrowheads), its dual, leadanonical
tight frame (circles), fon = 8 andn = 16.

Thus, ifV = [f;] is the synthesis operator of a finite frarbe= (f;), then

1
V =V Gram( @) = U Gram(®)? = S3U,
where Grani®“") is an orthogonal projectiort) := [f7@7 is a coisometry,

Gram(®) is positive semidefinite, an8ly is positive definite.

For a given a framc{afj)’j‘zl, the canonical tight frame is thdosesttight frame
(gj)?zl in the sense of minimising the least squares error

n
S I =gyl = 11— [gi]]-alI?-
=1

Theorem 3.2.Let® = (f,-)?:l be a frame fors7’, andAy, ..., Aq be the eigenvalues
of Sp. If ¥ = (gj)’j‘:l is a tight frame for2Z, with frame bound A, then

n d
3 Iti-gl> 5 (Vi VA2 (3.15)
i= =

with equality if and only i = \/Agca",
Proof. With V = [fj]_;, W = [g;]}_;, we compute

i llf;—gjll? = trace(V —W)"(V —W))
=traceV"V) +tracW*W) — tracéW*V) — tracgV*W)
= tracgVV*) + tracd WW*) — trac§W*V ) — tracgW+V)
= trac€Sp) + tracg Sy) — 20 tracgW*V)
=S+ SkA—20tracgW*V).
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Hence we must prove that

O(tracgW™V)) = 0y (fj,g)) < Z\//\T(\//K. (3.16)
J

Letuy,...,uq an orthonormal basis of eigenvectors & corresponding to the
eigenvalued,...,Aq. Then (3.16) can be expanded

n

0 f-,-:l]n f.. g
J;( i»9i) > > (fi ) (U, gj)

d n
=50 Z(fj,uk {gj, W) < z\/ AVA.
It would therefore suffice to prove that

<f,7u.< (g, ) < VAWA, Yk

WMJ

which we now do. Firstly,

]

n S
73 (13000 < (£ ) (97 .

1

i
with equality if and only if

n
(fj,u0) gy, ) =

J; ] ]
By the Cauchy-Schwarz inequality,
n 3 3
3 (f:ud @] (311600 (z|<g,-,uk>\2)
=1 ]

= /(Souk, u) v/ (S, t) = vV AVA,

n

Z £}, ) (0] U |>o (3.17)

with equality if and only if

<fj7uk> = Ck<gj7uk>7 VJ, ‘CKA| = \/XKﬂ (318)

Thus we obtain the desired inequality (3.15).
There is equality in (3.15) if and only if (3.17) and (3.18)ldhoThese together

imply o = /Ax/V/A, and hence
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d d VA N/

gi= ) (ghugwk =Y —=(fj,u)u=—=> (Sp* fj, SHUk) Uk

] k; ] kZl\/)\k J \//\kkzl e e
VA 8

iy _1
- kZl<S(D2 i, VAU U = VAS,? £ = VAT

as claimed. a

Corollary 3.3. Let® = (f,—)?:1 be a frame forz#’, andA, ..., Aq be the eigenvalues
of the frame operator S Sp. Then

n . . | 2

i o qi 2 W—(a) i , _ )

mm{glufj gjl|“: ¥ = (g;) is a tight frame for.z’} k;Ak d(kzlx/)Tk),
which is attained if and only if

V.

Mea

Y- VAO® VA=t
dk 1

Proof. The minimum ofV/A > ¥ (1/Ak— v/A)? occurs when its derivative is zero:

VA

1

o

S (Vi VA -0 — VA=l
k=1

o

k

and this minimum valug (1/Ax — v/A)? can be simplified as claimed. O

In terms of matrices (see Exer. 3.17) this result says tteatrtimimum

min ||V —-W|g, rankV)=d
WeFdxn A>0
WWH=Al

is uniquely attained for

_ tracg(VV*)?)
-

1
(v dy = TS gy

W d

LetV = [f;] be a finite frame foFY. Then there is a unique tight frame closest
to it given by

VA(FS),  VA=tracd(VV*)?)/d.
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3.4 Unitarily equivalent frames

As for tight frames, we say that finite fram@s= (fj)jc; and¥ = (g;)jeJ, With
the same index sét areunitarily equivalent if there is ac > 0 and a unitary) for
which

gj =cUfj, Vjeld

The dual and canonical tight frames are related as folloass Exer. 3.16)
= 1 2 can can ;

Moreover, the Gramians satisfy Gré#) = c2 Gram(®), which gives the following
generalisation of Corollary 2.1.

Unitarily equivalent frames are uniquely determined byrtlgamians (up to
a positive scalar multiplier).

The Gramian of a normalised tight frames is a projection ixatnd vice a versa.
Any positive semidefinite matrix is the Gramian of some frame

Theorem 3.3.An nx n matrix M= [Mi]j kej is the Gramian matrix of a frame
@ = (fj)jey for the space’” .= spar{ f; } jc; if and only if it is positive semidefinite,
i.e., M=M*and(Mf, f) >0, Vf € 2. Moreover,

d =dim(s) =rankM), (3.19)

and a copy of the frame is given by the columns of any matrix Wiich L'L = M
(e.g., the positive square roott M %, or a Cholesky factor &= R).

Proof. Since the Gramian can be factorised as Gr@n=V*V, V = [fj]jcj, it is
positive semidefiniteV*V f, f) = (Vf,V f) > 0.

Conversely, suppose thist is a positive semidefinita x n matrix. ThenM can
be factoredM = L*L for somem x n matrix. For example, letn = n, and take
L = Rfrom a Cholesky factorisatiohl = R*R (which exists, though it may not be
numerically stable to calculate), or with = UDU* a unitary diagonalisation d{l,
take the positive square robt= M? := D3U*. The columns of. are a frame with
GramianM, since

<Lej ) LQ(> = <L* Lej7a(> = <Me]7a(> = (k7 j)_entry ofM.

a

This result, i.e., that every positive semidefinite matsixtie Gramian of some
sequence of vectors (which is a frame for its span) is wellln¢cf [Ros97]).
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Example 3.9(Exer. 3.19) A sequence afunit vectors® = (v; )?:1 inRY, d>1,is
said to bef—isogonaf if

(Vj, W) = a:=cosf, Vi #k

The eigenvalues of the Gramidn of such a sequence ama—a-+1 and 1-a
(multiplicity n—1). Since the Gramian is positive semidefinﬁ:g% <a<1,andits
rank is either 14d=1),n—1 (a= n%ll), or n. Thus the only isogonal configurations

up to unitary equivalence are thet- 1 vertices of of the regular simplex &9, or a
unique set ofl vectors inRY with n%ll < a< 1. Inthe latter case

bc---¢C
. chb ¢ c _a
Gram(@®) o b na-2a+1’
cc---b

and so the dual fram@ is isogonal, and it is unitarily equivalent ® if and only if
a=0,i.e.,®is an orthonormal basis.

Remark 3.1As for tight frames, a frame is said to beal if its Gramian is real, and
to becomplexotherwise. A frame is real if and only if its dual is, in whichse the
canonical tight frame is real also. However, if the candrtight frame is real, then
the frame itself need not be real (see Exer. 3.20).

3.5 Similar frames and orthogonal frames

We define a second equivalence relation on frames, for wlaich equivalence class
contains a unique tight frame (up to unitary equivalence).

Definition 3.4. Frames® = (fj)jcy and¥ = (gj)ej for 2# and.%’, with the same
index setl, are said to bsimilar if there is an invertible linear maQ : 77 — ¢
such that

gj:ij, VjEJ.

For frames which are not tight, this equivalence relatiowésker than unitary
equivalence. Indeed, a frande= (f;), its dual frame, and canonical tight frame are
all similar, since

fi=st, fon—sif,
but they are unitarily equivalent if and onlyd is tight.

Example 3.10Every basis is similar to an orthonormal basis.

2 |sogonal vectors appear in the structure of soap films and bulsig#le$Mur93].
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Theorem 3.4.There is exactly one tight frame (up to unitary equivalenneach
equivalence class of similar frames, namely the canonight frame.

Proof. Supposep = (fj) and¥ = (g;) are similar, viaQ, andS= Se. Then
0i=Qf =QSIS ¢ =T  vj,
whereT = Q&l is invertible. HencéV = (T ") is tight if and only if
Sy =T[AMfETT =TT =, c>0,

i.e., T=cU, with U unitary, and¥ is unitarily equivalent tap®@", O

In other words, the study of frames up to similarity reduaethe study of tight
frames up to unitary equivalence.

Finite frames are similar if and only if their canonical Giians are equal.

Since orthogonal projections, suchRs- Gram(®°@"), are uniquely determined
by their range (or kernel), Theorem 3.4 implies the equivedeclasses of similar
frames (or of unitarily equivalent tight frames) ofvectors for ad—dimensional
space are in 1-1 correspondence withdhdimensional subspacesldi, i.e.. points
on the Grassmannian &").

These considerations lead to many conditions equivalesintarity.

Proposition 3.2.(Similarity) Let® = (fj);cy and¥ = (g;) <3 be finite frames with

synthesis operators V and W. Then the following are equitvale

(8) ® and¥ are similar.

(b) Gran(®°@") = Gram W), i.e., V*(VV*) "V = W*(WW*) 1w,

(c) ran(V*) = ran(W*), or, equivalentlyker(V) = ker(W).

Furthermore, these imply the equivalent conditions

(d)WV* is invertible.

(©)3j(f. f)gj #0,¥f #0,

Proof. Recall, from (3.13), that rai*) = ran(Gram @®°a")).

(a)<=(b) Theorem 3.4 and Corollary 2.1.

(b)<=(c) The orthogonal projections Gra&m®@") and Grani¥’2") (which are de-

termined by their ranges) are equal if and only if (\H) = ran(W*).

(c)=(d) If ran(V*) = ran(W*), then rafWV*) = rafWW*) = ran(Sy), so that

WV* onto, and hence invertible.

(d)<=(e) This is follows immediately sinc&/V*f = 5 (f, fj)g;. O
At the other extreme, we consider frames which are far froingogimilar.

Definition 3.5. Frames® = (fj)jcy and¥ = (gj)jey for 2 and.#", with the same

index setl, are said to berthogonal (or strongly disjoint) if

ranv") LranW?), V= [fj], W= [g]].
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Orthogonal framesannotbe similar (similar frames have r&n*) = ran\W*)).
There are many conditions equivalent to orthogonality (ssama 5.1), including

S(ff)gi=0, ¥ie# <« WV =0 (3.20)
]

This can be written suggestively as

Zgjfj*:o, fi: o =T (f, 1) (3.21)
]

Example 3.11(1-dimensional frames) Fo#’ = ¢ = F, the condition (3.21) is
orthogonality of vectors. Hence the rows of any unitary imat.g., the Fourier
matrix (2.5), are orthogonal frames fGr

Example 3.12(Projections) Le{ f;) be a normalised tight frame fo#, andP, Q
be orthogonal projections onto subspacés 73, with A 1 7%, i.e.,PQ= 0.
Then

®=(Pf), ¥=(Qfj

areorthogonalnormalised tight frames faf#73 and.7#, since
WV*=QUU*P*=QP=0, U =[fj], V=[Pfj] =PU, W=[Qfj] = QU.

In §5.2 we will see that effectively all orthogonal frames appedhis way.

3.6 Frames as orthogonal projections

We have seen (if§2.6) that every finite normalised tight frame is the orthagjon
projection of an orthonormal basis (tight frame withoutuedancy). Thus, it is
natural to ask whether every frame and its dual is the priojedf a biorthogonal
system with the same frame bounds (cf Exer. 3.5).

Let (f;) and(g;) be a biorthogonal system fo¥’, i.e., (f;) be a basis forz’,
with (g;) the dual basis uniquely determined by

<fj,gk>:6jk — VW' =WV'=I, V::[fj],W;: [gj],
andP be the orthogonal projection onto a subspa€e Then (see Exer. 3.12)

f= §<f,ng>Pfj = §<f7Pf1>ng, Ve,

butthe frames® = (Pfj) and¥ = (Pg;) for s need not behe (canonical) duals
of each other (they are alternate duals in the sen$@.aD). They are dual if and
only if the synthesis operators @f and¥ are equal, i.e.,

(PV(PV)*)"1PV =PW=P(V*)"1,
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which equivalent to
PS=PSP <= SP=PSP <= SP=PS S:=VV*.

In other words (see Exer. 3.21):

Let (f;) and(g;) be a biorthogonal system fo¢’, S=VV*,V = [f;], andP
be the orthogonal projection of” onto a subspace?’. Then(P f;) and(Pg;)
are (canonically) dual frames fo#’ if and only if

¢ is an invariant subspace 8fi.e.,S# C 7.

Therefore, the answer to the above question takes the folgpform.

Theorem 3.5.Every finite frame and its dual is the orthogonal projectiohao

biorthogonal system (onto an invariant subspace of franexatpr). Moreover, the

two bases making up the biorthogonal system can be takernviotha same frame
bounds as their projections, i.e., the frame and its dual.

Proof. Let (¢)jes be a frame forzZ, with frame bound#\ andB. This will be the
projection of a basisg; + () jes in a larger Hilbert space? @ ..

To see what this might be, consider the condition tifatbe invariant under the
frame operatoB= Sy, ;) of (¢ + ¢j). i.e.,

Sf= Z<f7(l’j+4’j>(§0j+4’j) = Z<f7¢j>¢1 +Z<f,(l’j>‘l’j e, Vien.

This is precisely the condition that the frames be orthog(efinition 3.5), i.e.,

z<f,(pj>t,uj:0, ViecH <— Z(g,wj>cpj:0, vge .z, (3.22)
] ]

which implies (cf Theorem 5.1)
S((pj+wl)(f+g):S((pj)(f)+3(¢,])(g)7 er%,gEg.
Hence the dual frame td;), fj := @+ yj, is
fi = Sguy (@ +U) =S50 +Sy Wi = ¢+,

and the orthogonal projections &f andﬂ- ontosZ areg, and&,.
Further, (3.22) implies

St a+uP=5Lo)P+Y o),  vier, ge?,
J J J

so that(¢; + ;) will have the desired frame bound& &ndB) provided that
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Algl> <y Kg.¥)l> <Bllgl?,  vge.2. (3.23)
J

LetV := [¢;]. The bijection[g; + ;] : (2(J) — 5 &£ maps the kernel o
onto.Z (by a dimension count). Hence, we take

& :=ker(V) =ranV*)*,

and it therefore remains only to finfi; € .2 = ker(V) satisfying (3.22) and (3.23).
Let Q: ¥ — ¢2(J) be positive (self adjoint), with rang€&’, and eigenvalues
between/A and/B, e.9.,Qg:= Ag, Vg, wherey/A < A < v/B. Then

Y =Q'sy,
where(ej);ey is the standard basis fés(J), satisfies

DOue =5 (9.Q%e)p = (Qge)@ =V(Q9 =0,
J J J

A||gH2<z|gw, z\g,QeJ z|Qg,eJ >=Qgl* < B|g|l%,

which completes the proof. ad

The sum(g; + ;) is the motivating example of direct sum(see§5.2). The
above argument holds witlf a proper subspace of K#t), with the only difference
being that(¢; + ;) is not a basis. It also extends to frames for infinite dimemeslio
27, where the role of a basis (and dual basis) is replaced byofraRiesz basis
(anddual Riesz bas)sWe give the relevant facts (cf [Chr03]).

Definition 3.6. A sequence of vectorsfj) is aRiesz basisfor a Hilbert space#’
if it is a perturbation of an orthonormal basis;) for /7, i.e., there is a bounded
invertible operatofl : 7 — 7, such thatf; = Tej, Vj.

Equivalently,(f;) is a Riesz basis if it is an unconditional basis with

0< irj1f||fj|| < supl|fj]| < co.
j

From the orthogonal expansion, we have

F=TT ) =T (T . e)e =5 (f.(T 1) e)Te;
J

]

and similarly forT replaced by T ~1)*. This gives thebiorthogonal expansion

f:Z“?ngj:;“»fﬂgja vie 2,

whereg; := (T*)~1e; = (T~1)*g; is called thedual Riesz basigcf Example 3.4).
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3.7 Condition numbers and the frame bounds
The frame bounds foff;) imply, and are equivalent to, a number of similar bounds
for the various maps obtainable from= [f;] (see Exer. 3.24).

Proposition 3.3.Let @ = (f;) <3 be afinite sequence i¢¢’, and V= [fj], S=VV*.
The frame bounds (3.1) are equivalent to the inequalities

Alf| < |sfl<B|f|, Vfes, (3.24)

VA|[f|| <V < VB|fll, Ve, (3.25)

Allc]| < ||Gram(@®)c|| < B|ic|,  Vce ranGram(@)), (3.26)
VAle| <|IVe| < VB|c|,  VeeranV?), (3.27)

which are sharp if and only if A and B are the optimal frame bdgjnmespectively.
The frame expansion (3.5) of a functidre .77 involves the representation
f=Vc= ZJijj7 c=V*Stf eranV*).
IB
Whenf is constructed frong in this way, there will be rounding errors which yield a

perturbed vectoc+ dc. The perturbation will have a componedd in ran(V*), and
a componendb € ker(V) = ranV*)+. Hence, we will obtain a perturbed function

f+0f=V(c+0dc)=V(c+da+db)=Vc+V(da), dacranV®).
By (3.27), the relative error in the computédatisfies

VA|sal _ 51| _ vB|gal _ vBlc|
VBlel =TT = Valel ~ VAld

whereA andB are the frame bounds. This estimate motivates the following

(3.28)

Definition 3.7. Thecondition number (of the frame expansion) of a frand, with

frame bound#\ andB, is
B
=4 /=>1
cond @) \/; >1

We observe that a frame has condition number 1 if and onlysftight, and that
a frame and its dual have the same condition number, since

cond @) = %; = \\/fE =cond ®).

In view of (3.28), the relative error in the computed vafue 6 f of f is bounded
by the condition number times the relative error in the fraroefficientsc. If @ is
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a basis, then corf®) = ||V|||V~1||, the usual condition number of a basis, ahd
has kernel 0, so thata = dc, and we obtain the lower estimate on the relative error
1 lloel| _ flofll

cond @) [lc] = [f]

In contrast, for a frame that i®ota basis, a nonzero perturbatiéo € ker(V) in the
coefficients leads too errorin the constructed.

Another measure of how errors propagate in calculations aitrame (and its
dual) is thecondition number of the frame operatd®= Sp, i.e.,

B
condSy) = 18]S ¥ = = cond @)?> 1.

Thus, either con@®) or cond Sy ), and its distance from 1, can be used as a measure
of how well conditioned calculations with the frandeare.

Both theredundancyand thetightnesgas measured by the condition number)
of a frame make it better conditioned than a basis.

3.8 Normalising frames and the distances between them

Here we consider whether or not there is a natncamalisationof a frame, which
extends that of a tight frame. Since the canonical tight &arha tight frame is its
normalised version (which is its own dual), we would hopd thaormalised frame
and its dual are botbloseg in some sense, to the canonical tight frame.

There does seem to be one normalisation which capaltdéke properties one
might reasonably hope for, and so we proceed directly to &@.tkén investigate
how close this normalised frame and its dual are to the caabtight frame for the
following metrics

dist(®,¥) = ||Gram(®) — Gram(¥)|| (frames up to unitary equivalence)

distg(®, Q@) = log(max(||l — Q|| ||l —Q~}||)+1) (for similar frames)

If a frame @ = (f;) with frame bound#\ andB is multiplied by a scalac > 0,
then the resulting fram@’ = c® = (cf;) and its dual = %53 have frame bounds
c?A,c°B and%, ﬁ, respectively. Thus there is a unique scaling which enghegs
a frame and its dual have the same optimal frame bounds, i.e.,

1 1 1
A= B=— <+ C=-——.
c?B’ c2A YAB
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Definition 3.8. We say that a frame@ is normalised if its optimal frame bound#
andB satisfy
AB=1.

We emphasize this is simply a normalising factor:

If ® = (f;) is a frame, with optimal frame boundsandB, then

1 1
7ae” s

is the unique positive scalar multiple of it which is a norisadl frame.

After this normalisation (used in Figures 3.1 and 3.2), theie bounds are

VA S VB =cond ®). (3.29)

VB cond®)” VA
Hence being normalised is equivalent to either of
ISoll = ISsll, | Gram(@)|| = || Gram(®)]|.

A natural distance on the unitarily equivalent frames (vehttie non unit scalar
multiples are not identified) is given by

dist( @, %) := || Gram( @) — Gram(¥)||,

where|| - || is the induced (spectral) norm. L&t,...,Aq > O be the eigenvalues of
the frame operatdBy, Then (see Exer. 3.25)

. 1. _ 2, 1.4

dist(c®, ECD) = || —S%¢|| = lr;1j,ag>(<j|c Aj— ?/\j [, (3.30)

dist{c®, @) = || So — Speen]| = max |c*A; — 1], (3.31)
<J=

S ) _ 1.,

dlst(EtD,tD “)7\\5%®—s¢can||f1@j@é\?)\j -1 (3.32)

The following inequality shows that (3.30) is minimised byr@quec > 0.
Lemma 3.1.The following inequality holds

1 1
max{|A—=|,[A — = 0<A<A<B
ax{’ AP AT sAsAsE

1 B-A
B—=|} > —,

B‘} ~ VAB
with equality if and only if AB= 1.

Proof. SinceA — A —/\1 is increasing fol > 0, and zero ak = 1, the maximum
is either|A— %| or [B— |, which is bounded below b%’é (see Exer. 3.26). O
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Theorem 3.6.Let @ be a finite frame with optimal frame bounds A and B, then

. ~ ~ B-A
dist(®, &) = | Gram(®) — Gram( &) | = [|So — S| = ~_—.
with equality if and only if® is normalised.

Proof. Let A= A; < --- < Aq = B be the eigenvalues @. Then by Exer. 3.25
(witha =1, =-1,y=0) and Lemma 3.1, we have

- 1 B—A
—_ = —_ = = §i— — > —_—
| Gram(@) - Grant®)] = o - Spll = max|A; - | = 2.
with equality if and only ifAB= 1, i.e., when® is normalised. ad

We note that any function of the ratﬁmf the optimal frame bounds, such as the

condition number, and
2 _ B[R
VAB VA B’

is invariant under any scaling of the frame.
We now investigate the minima of the distances (3.31) ar@R{dfc® and its
dual %CD, from the canonical tight frame®a". They are the same

B-A

é, (Dcan) - m <

1
(= 1
& ,

mindist(c®, ®°@") = mindis
c>0 c>0

which occur forc? = FZB andc® = %, respectively (see Exer. 3.27). These values
for care equal if and only iR = B, i.e., the frame is tight.

Hence, when® is not tight, the scaling which make® closest tod@" does not
make® closest tod®@". Thus we seek to minimise the maximum of these distances.

The minimum is\/g— 1, which occurs once (see Exer. 3.27), when

ct= ﬁ : % = %3 = co and%@ are normalised

In this case, and only this case, the distances are equal:

Theorem 3.7.Let @ be a finite frame with optimal frame bounds A and B, then
| Gram( @) — Gram( @°")|| = || Gram(®) — Gram(®°")|,

which is equivalent to
1Se =1l = 1I1Se =11,
if and only if @ is normalised. In this case, the common distance is

dist(®, @ = dist( P, ®°A") = cond ®) — 1 = \/E 1 (3.33)
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Proof. LetA=A; <--- < A4 = Bbe the eigenvalues &. ForA > 0, the functions

A+ [A —1]and4 — |§ — 1| decrease to 0 &t = 1 and then increase, and so take

their maxima ovefA, B| and[%, %] at an endpoint. Thus (see Exer. 3.25), we obtain

| Gram( @) — Gram @) || = ||Sp — | || = max|Aj — 1| = max{|A—1|,|B— 1]},
|
3 ca 1 1 1
| Gram(®) — Gram( &%) || = ||S5 — 1| = max| -~ 1] = max{‘x—l‘, ‘E —1]}.

By Exer. 3.28, these are equal if and onlAB= 1, i.e.,® is normalised. The frame
bounds of® after normalisation are given by (3.29), and so the commstadce is

VB VB-VA VB-VA, VB
7’ﬁ—1‘}:max{ 7B VA }:ﬁ_l'

max{‘:/ﬁg—l

We now summarise our results so far:

If @ is a finite frame with optimal frame boundsandB, then the following
are equivalent

Dis noImaIised, i.,eAB=1.

@ and® have the same frame bounds. _

[Soll = IS5, j-e..[| Gram(®)|| = | Gran{®)|.
S0~ S|l = 278, i.e.,[| Gran(®) — Gran(®)] = 528,
[So =1l =1[ISe —1- 5

| Gram(®) — Gram(@°@")|| = || Gram(®) — Gram( @2")||.

o0 pwWN P

There is a unique closest tight frame to a normalised framand its dual®
(individually and simultaneously) amongst all tight fragrgmilar to®.

Theorem 3.8.Let @ be a finite frame which is normalised, i.e., its optimal frame
bounds satisfy B- %, then

1-A2

méﬂ max{dist(®,¥),dist(®,¥)} =

Y=Qo
This is attained fot = 7”};:1 @@ (up to unitary equivalence), for which

A 1o .
1 2AA < % = dist(®, @) = dist(®, "),

dist(®,¥) = dist(®, W) =

with equality in the above if and only @ is tight.

Proof. If ¥ is tight and is similar tab, then it is similar to®®@", and so
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W = cU o ¢>0, U unitary,

(see Exer. 2.5). For thi¢/, Gramy) = c? Gram(®°2"). Hence (see Exer. 3.27)
dist( @, ) = dist(®, ) = max{|A— |, ‘%fczl}.

. . .. 2 . .
This function ofc has a minimum value o?fETA, which occurs precisely when

CZ_A+%_A2+1
T2 oA

(the minimum must occur whel— ¢?| = | 1 — c2|). By (3.33), we have

1-A2 - VB 1-A
<di cam _ i cam _ 1 .
A < dist(@, ®°@") = dist( D, ¢2") VA 1 A

SincelA — LA _ (A D® s this inequality is sharp, unlegsis tight. O

Another notion of distance between (certain) frames is dasethe theory of
perturbations of orthonormal bases (called Riesz basesjolMgw [Bal99]. A frame
Y = (gj)jes is closeto a frame® = (fj);ey if there exists & > 0 such that

1> ci(@—fIl<All Y cifill,  vVeelzQ),
J; i(95 — Tj 1; ifi

with the infimum over such called thecloseness boundand denoted by (¥, @).
We say that® andW arenear if @ is close to¥ and¥ is close to®. This is an
equivalence relation, and a metric gdistlled thequadratic distancecan be defined
on all frames which are near each other by

distz(@, W) := log(max{cl(®,¥),cl(¥, D)} +1).

Frames® and¥ are near if and only if they are similar (see Exer. 3.30), i.e.
@ = QY, for some invertible, in which case

distg(®, W) := log(max{[[Q 11, |Q"* 1|} +1). (3.34)
Unlike dist @,¥) = || Gram @) — Gram(¥) ||, distg is scaling invarianti.e.,
disig(c®,c¥) =distg(P, W), vc# 0.

A frame, its dual, and canonical tight frame are all near. 824), we have

. 1. 1
diste(c, - @) = log(max([[c*So 1]} S5 ~ 111} + 1),

distz(c®, ") = distg(

Ol

- 1 1 1
@, ) = log(max{[|eSg — [, [ - Sp? — 11} +1)-
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By minimising these distances over alt- 0, we obtain the following analogue
of Theorems 3.6 and 3.7.

Theorem 3.9.Let @ be a finite frame with optimal frame bounds A and B, then

disig(®, @) > %(Iong logA), (3.35)

distg(®, 2" = disig(P, P*2") > %(Iong logA), (3.36)

with equality in each if and only i is normalised.

Proof. Since log is strictly increasing, it suffices to minimise thexima in these
distances. By Exer. 3.25 (and a slight variation of Exer7B.these are

1 1 1
2 1 _ —
max{ |28 — 11, | Sg* ~ 1} = max{|PA— 1| |?B— 1|, | 5~ 1], 5=~ 1|},
max{lcsh 1. I So 111} = max{levA-1], levB-1], | —1|. | -1 —al}.
c cVA cvB

By Exer. 3.27 (with appropriate changes of variables) tepeetive minima of these

are\/B/A—1and\/v/B/vA-1, giving the dis distances} log(8) and} log(%),

which are attained if and only & = O i.e.,c® andz @ are normalised. O
The analogue of Theorem 3.8 is as follows.

Theorem 3.10.Let @ be a finite frame with optimal frame bounds A and B, then
- 1

min disig(®,¥) = z1r(IogB— logA),

Wtight
Y=Qo

with equality if ¥ = v/AB®®@" (and possibly other unitarily equivalent frames).
Thus, if® is normalised, the®®@"is a best tight frame approximation to it.

Proof. Since¥ is tight and similar ta®“@", we have¥ = cU @°@" wherec > 0 and
U is unitary. Hence

distg(®,¥) = |09(maX{IICU5§>% =1, II(CU%%)A— i} +2).

By Exer. 3.23, the maximum above is only made smaller by dngdd = |, and
! 1
so, effectively, we need to minimise micS,% — 1|, |2S5 — 1|}, i.e.,

VA

c

_la )

?—1‘}.

max{‘%\—l,’%

By Exer. 3.27, this is minimised if and onlydf= v/AB, with minimum(B/A)2 —1,
which gives the minimal distance digtp,c®°@") = 2 log(%). 0

IS
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3.9 Approximate inverses of the frame operator

Calculations with a fram& require the inverse of the frame opera8, e.g., to
determine the dual frame. This can be done numerically usiagdard iterative
algorithms for the calculating the inverse based on an aqupiate inverse.

Definition 3.9. An approximate (left) inverse of bounded linear magon 7 is a
bounded linear map on s# for which

Iy —MS) < 1.

If M is an approximate left inverse &f thenMSis boundedly invertible. Hence
if Sis invertible, therS~! can be calculated & = (MS)~M (see Exer. 3.31).

Let A andB be known, but possiblyot optimal frame bounds for a fram@.
Then =5 A gl is an approximate inverse 8= Sp, with

B-A

Sl < <l

I
| A+B

7A+B
This leads to the standafiked point iteration method for finding the solution of
Sg= h (see Exer. 3.32)

2
S h k=0,1,2,...
g(JrAJ’_B? bt Bt} )

=0 =0k—
do ) Ok+1 = Ok ALB

with g, converging tay at the rate

gn—gll < ||§lh||(A+ B) < ”ZH (A—i—B)n

In particular, takingh = f gives a sequence converging $o'f, and the choice
h=Sf,i.e.,g= f, leads to the so calledame algorithm

go:=0, Oke1:=0Ok+ k=0,12,.... (3.37)

ATt %)
The frame algorithm, which requires some estimate for thmé& bounds, allow$
to be reconstructed from the coefficierifs f;) without calculating the dual frame.
It can be accelerated by standard techniques, includinGie®yshev methodand
the conjugate gradient method(see [Gro93] for a detailed analysis).

It is also possible to calcula® 2 (and hence the canonical tight frame) numer-
ically in terms ofS via the absolutely convergent series expansion

1 2 i
S 2 S)
VA+BZﬂa ~A+B

(see Exer. 3.33 for details).
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3.10 Alternate duals

The notion of a basis and its dual functionals can be furtbeegalised as follows.

Definition 3.10. Finite frameg fj) and(g;) for %, with synthesis operatok$ and
W, are said to beual if VW* =1, i.e., they give the reconstruction formula

fF=35({fa)fi=>(f.f)g;, Vvier. (3-38)
J J

Since (VW*)* = WV*, being dual does not depend on the order of the frames.
The sete = o/p of all frames dual to a given finite fran® = (f;);c; for 7 is an
affine subspacef .7#7, which contains thécanonical) dual framep. The elements
of &7 are commonly referred to akial frames, and those of7 \ @ asalternate
(or noncanonica) dual frames of the frame®.

Example 3.13Let (f;) and (g;) be a biorthogonal system fa#", and P be the
orthogonal projection onto a subspag€ of %", then (Pf;) and (Pg;) are dual
frames for.Z’. Moreover,(Pg;) is the canonical dual ofP f;) if and only if 77 is
an invariant subspace of the frame operator(fgy. See Exer. 3.21 for details.

A finite frame(f;) is dual to(g;), where we writegj = fj + hj, if and only if
[fillgil* = [FIf]" + (] =1+ [f]lh) =1 <= [fjllh] =0,

i.e., the framgh;) is orthogonal tq f;), in the sense of Definition 3.5, see (3.20).
Some conditions equivalent to being dual include the falhgw

Proposition 3.4.Let @ = (fj)jcs and ¥ = (gj)jes be a finite frames fop?’, with
synthesis operators V and W. LeSVV*, and R, = V*S 1V be the canonical
Gramian of®. Then the following are equivalent

(a) ® and¥ are dual.

(b)W is a leftinverse of ¥, i.e., WV =1.

(c)W* is aright inverse of V, i.e., VIN=I.

(d) ¥ — @ is orthogonal to®, i.e., g = fj +h;, with (h;) orthogonal to( ;).

(e) rar((W — S~IV)*) L ran(V*).

(HW =SV +L(I —Py), where L: £,(J) — 2 is a linear operator.

(QW* =V*S 14 (1 —Pp)R, where R s# — (,(J) is a linear operator.

(h) Q=V*W is a projection, i.e., &= Q.

Proof. (a)<=(b)<=(c) UseVW"f =5 ;(f,g;) fj and(VW*)* = (WV").
(d),(e}=(a) As observed¥ — ® and® have synthesis map¥ — SV andV).
(b)=(f) Suppose thatvVVv* = I, and take. = W. Then we have

SWHLI-Pp) =S WV+W—-(WV)SV=wW.

(f)==(b) We haveNV* = (S IV +L(I = V*SWV)V* = +L(V* —V*) =1.
(f)<=-(g) Take adjoints.
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(b)=(h) If WV* = I, then(V*W)2 = V*(WV*)W = V*W.
(h)=(b) If (V*W)? =V*W, thenV (V*WV*W)W* =V (V*W)W. SinceVV* and
WW* are invertible (p and¥ are frames), they cancel to givév* = 1. O

Corollary 3.4. Let @ be a frame of n vectors foZ, where d= dim(7#). Then the
affine subspacey of all frames dual to® has dimension ¢h—d). In particular,
there exist alternate dual frames if and onlyifis not a basis.

Proof. By (3.13), we have that kfir— Pp) = ran(Py) = ranV*). Thus by (f), the
dual frames are in 1-1 correspondence with linear maps: ¢ — 5, where
K =ranV*)L =ker(V), dim(_#) = n—d. The space of linear mapg — J# is
isomorphic to the subspaceg — SV, and sa< has dimensiom(n—d). O

Let @ = (f;) be a finite frame for#’, V = [f;], with canonical GramiaRy.
Then all framegg;) that are dual tg f;) are given by

W = [gj] = [fi] +L(I ~ Po), (339)
whereL : ker(V) — 27 andPp = V*(VV*) 1V,
Example 3.14(Exer. 3.34) Let®d = (fy, fp, f3) be the tight frame of three equally
spaced unit vectors iR2. Then the affine space of all duals of® has dimension
d(n—d)=2(3—1) =2, and is given by

(f~1-|-W,]?2—|—V\/7IF3—&-W)7 we R

Vv

Fig. 3.3: The tight frame of three equally spaced vector&frand some alternate duals. Here the
vectorw of Example 3.14 is depicted with a hollow arrow head .

If (gj) is dual to a finite framef;) for 27, then takinge; = (f,g;) in (3.6) gives

SIFa)P=S (L TP+ I(hg - ), Ve
J J J

Thus thecanonicaldual is characterised by minimisiryg [(f,g))|?, Vf e 2.
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In a similar vein, taking the Frobenius norifA||2 := tracg AA*) of the formula
(3.39) for a dual framég;) of (f;), using (3.12), i.eY =V Py, gives

S 11931 = [WI|[E = trace{(S™"V Po +L(I —Po))(PeV*S ™ + (I —Po)L"))
J

= [SVIE +IIL0 = Po)lE = 3 I i1+ IIL0 —Po) 2.
J

(3.40)

Thus thecanonicaldual frame to( f;) is the unique dual framég;) of (fj)
which minimisesy | ||gj||2.

Example 3.15(Exer. 3.35) Let® = (f;) be a finite frame fo’z’, V = [fj], and
Q: 42(J) — ¢2(J) be an invertible linear map. Then

W= [gj] = (VQ'QV")"'VQ'Q

gives a framég;) dual to( f;), which uniquely minimise§W Q 2|, W = [g;]. For
D an invertible first-order difference operator, the (alte) dual frameg;) which
minimises the Sobolev-type nodf#/(D")*||r is called the—th orderSobolev dual
These are motivated byA—quantisation (see [BLPY10]).

The canonical tight frame can also be characterised in tefrsignilarity:

Proposition 3.5.No two distinct duals of a finite fram@ are similar to each other.
Thus the canonical duab is the unique dual ofb which is similar to®.

Proof. Suppose thafg;) and(Qg;) are similar frames, which are duals®f= (f;).
Then

Qf=3(Qf,g)fi =3 (f.Qu)fi=f,  vfer,

] ]
so thatQ = I. Hence® = S 1@ is the only dual which is similar te. O
For finite frameg(f;) and (g;) for J#, with synthesis operatoi andW, the
conditionVW* = | for being dual can be weakened as follows:
(fj) and(g;) areapproximately dual framesif |[VW* —1|| <1,
(fj) and(g;) arepseudo—dual framesf VW* is invertible.

It is easy to verify that these notions do not depend on thadrarder, and that the
pairs of frames satisfying the different dualities sati$fy inclusions:

canonically dualC dual C approximately dualC pseudo-dual

Example 3.16The set of all frames approximately dual to a given finite featn
is a convex set. IfP has optimal frame boundsandB, thenc® is approximately
dual to® for any scalar 6< ¢ < % (see Exer. 3.37).
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Example 3.17If two frames are similar, then their synthesis operatoesratated
W = QV, whereQ is invertible. Sinc&/ W* = (VV*)Q* is invertible, it follows that
similar frames (for the same space) are pseudo—duals. Thgynat necessarily
approximate duals (see Example 3.16).

3.11 Oblique duals

The dual frame expansion (3.38) can be generalised by altpttie coefficients
cj = (f,g;) to be given by vectorg; from outside the space?’. For example, in
signal processing one may try and choosegh&o be outside some subspace for
which measurements are known to be corrupted by noise.

Definition 3.11. Let (f;) and(g;) be finite frames for subspacé&sand? of 7,
andV := [fj], W := [gj]. Then(gj) is anoblique duaP of (f;) if VW*|, =1y, i.e.,

sz(f,gj>fj, vfev.
J

Example 3.18Let #(u) be the space of multivariate orthogonal polynomials of
degreek for a measurgu (see§10.10), andQ be the orthogonal projection onto it.
Let (f;) be a frame for%(p), andg; be leading term ofj (its homogeneous term
of degreek), so that(g;) is a frame for the homogeneous polynomials of dedree
Sinceg; = Qf; andQf = f, f € %(u), we have

S (fonfi=S(FQff=S(f.f)fi=1f Ve,

] ] ]
i.e.,(gj) is an oblique dual offj).

Example 3.19Suppose f;) is a finite frame for?’, and(§;) C 7 is a dual frame.
Let Q be the orthogonal projection ont6. Forh; € ¥+ = 2# 7, define

gj :=§j+h;j, W = spar{g;}.
Then(g;j) is an oblique dual off;), sinceQg; = §; gives

F=3%{fafi=3%(f.Qg)fi =5 Qf.g)fi =3 (f.opfj, vie”.

] ] J ]

Similarly, if (g;) C # is an oblique dual, the(Qg;) is a dual frame for(f;). It

may be that dirt) > dim(7'). For example, le¥’ = R? x 0 C R3, and(f}) be the
normalised tight frame fo¥” given by three equally spaced vectors. Thgnt-ces),

c+#0,e3=(0,0,1) is an oblique dual wherg” = R3,

3 The termpseudodualis also used in the literature, e.g., see [LO04].
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Let @ = (fj) be a finite frame for/, V = [fj], with canonical Gramiae.
Then all framegg;) that are oblique duals ¢ff;) are given by

= [g5] = [fi] +L(1 = Po) + [hy], (3.41)
whereL : ker(V) — J#, Pp =V*(VV*)~1V, andh; € 7.

The condition of being an oblique dual is not symmetric, ifg(g;) is an oblique
dual of(f}), then(f;) may or may not be an oblique dual(@j) (see Example 3.19).
For (gj) a frame for#” to be an oblique dual of a frarié;) for 7', we must have

YN#+=0

Otherwise
0£fevnwt = f=3(fg)f=0
J

Thus a necessary condition to ensure being an oblique dsgiimetric is that
VOW+E=wNny+t=0,
which is equivalent to the algebraic direct sums
H =Y GaW =W ®a¥V ",

and implies that dirfi”") = dim(%#") (see Exer. 3.38). We now show this condition
is sufficient. For an algebraic direct susf = ¥ @, # - theoblique projection of
2 onto¥ along#/* is the linear mag = P, .. on.# given by

Ply =ly, P#")=0.

Proposition 3.6.Let (f;) and (gj) be finite frames for subspac#Sand? of /7,
with 7 N+ =#»n ”I/L 0. Then the following are equivalent

1. The oblique projectionP,, . of 7 onto¥ is givenby B .. f =3 ;(f,gj)f;.
2. The oblique projectionp.,, of 7# onto” is givenby B, ,. f =5 ;(f, fj)g;.
3.(gj) is an oblique dual off), i.e., f=73;(f,g;)f;, Vf € 7.
4. (f;) is an oblique dual ofg;), i.e., =3 (f, fj)g;, Vf € 7.

Proof. The condition N# - =% nN7+=0 ensure®, . andP, . are well
defined, and satisf{P, . )* =P, . (see Exer. 3.38). Lat = [f ]andW [9j].
1.<=2. These conditions af, ,, . =VW*, P, ,, =WV~ WhICh are equivalent.
1—=3.1fP, . =VW, thenf =VW*f = (f,g;)f},Vf e b2

3=—1. DefineP on . by Pf := yi(f,gj)fj, thenPf = f,Vfc ¥ andPf =

vf e #* (since thenf,gj) = 0), sothaP =P, ..

2.<=4. Interchangg¢f;) and(g;) in the argument for k=-3.. O
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For a given finite frame fo¥ there is acanonicaloblique dual from?’.
Theorem 3.11.Suppose that” and# are subspaces o7, with
VYOW-=wny+t=0,
and(f;) is afinite frame for#". Then the unique coefficients< c;(f) satisfying

J

which have minimaf,—norm are given by
c=WV)Iwf,  vi=[f], (3.43)

where W is the synthesis operator of any frames#ar
Proof. Itis easy to verify (take\ =W in Exer. 3.40) that”,, . = V(W) Tw,
and so we seek a minimum norm solutioto

Ve=V(WV)Wwf.

The unique sucle is given byc = VTV (W*V)"W*f. SinceVV is the orthogonal
projector onto the range &f*, and raf(W*V)") = ran\V*W) c ran(V*), we can
simplify this toc = (W*V)TW* f. 0

For thec;(f) = (f,g;) of (3.43), the framég;) for #/, which is given by
[9i] = (WV) W) =w(v'w)T, (3.44)
is called thecanonical oblique dualof (f;) in . As would be hoped, the canonical

oblique dual of thigg;) in 7 is (fj) (see Exer. 3.39).
Example 3.20If ¥ =% = s andW =V, then (3.44) gives (cf Exer. 3.9)

[fil=v(v'V) =vGram®)!, & =(f)).

Example 3.21In signal processing, (3.42) can be used as follows (se®8dLet
P be the orthogonal projection on#’. Thenc;(f) = (f,Pg;) = (Pf,g;), so that
the sampling of a signdl can be done by first projecting it onto tekempling space
# (where signals can be accurately measured), then measieipgojected signal
Pf.

Corollary 3.5. Suppose tha® = (f;) is a finite sequence is’, with V := [f;], and
S:=VV*: 2 — 2 (which may not be invertible). Theifj) is a finite frame for
¥ := spar f;}, with the canonical dual framéf;) given by

[fil=VGram®)T = S'v.

Proof. Take”” = ¥ in (3.44), and us¥ Gram ®)" = S'V (see Exer. 3.11). O
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Notes

An early appearance of the canonical tight frame wasiwdlin’s well known work
in Quantum Chemistry in the late 1940's, where he constdutethonormalised
atomic orbitals” from a basis of orbitals (seedju70], [AEG80]). This also known
asSchweinler-Wigner orthogonalisatigaee [SW70]). Symmetric Gram—-Schmidt
methods for infinite dimensional spaces are explored in (PT

The material of this chapter extends to infinite dimensi@palces, see [HLOOQ],
[Chr03]. Source material and further reading includesi ¢haaes [Li95], oblique
dual frames [EId03], [CE04], [LO04], approximate dual freen[CL10], [LY09],
and optimal dual frames for erasures [LH10].

Exercises

3.1.Rank one projections.etA; : 77 — . f — (f,0;)fj, wherefj,g; € 2.
(a) Show that traqd\;) = (fj,g;).

(b) Show thatA = A; is a scalar multiple of a projection, i.é\,= cP, wherec € F
andP? = P, provided(fj,g;j) # 0.

(c) ShowP is orthogonal if and only iff; andg; are multiples of each other.

(d) Show that Hilbert—Schmidt (Frobenius) inner produdteen them is

traceAjAY) = (fj, fi) (O, 9j)-

3.2.Least squares solution.

Let.o := {ce ¢»(J):Vc= f} be all possible sequences of coefficients from which
f € 2 can be reconstructel= y ; cjv;, where(fj) spans’.

(a) Shows is an affine subspace, i.da+(1—-A)be o/, Vabe o/, A eR.

(b) Show that =V*S™1f € 7. Herec; = (f,S1f}), whereS=VV*.

(c) Since affine subspaces are translates of linear subsagand (b) give

o =V*SHf 4 ker(V).

Show thatc = V*S~1f is the unique solution té =V ¢ of minimal /,—norm.

3.3. Pseudoinverselake the definition of thpseudoinverseof A: J# — ¢ to be
the unique linear map' : ¢ — 7 satisfying
AAT, ATA are Hermitian AATA = A andATAAT = AT

(a) Show that ifA is onto, therAT = A*(AA")~L. In particular, forV = [fj]je; the
synthesis operator of a finite spanning setftr

vi=vrvv)l=vist  s:=vv
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(b) Show that ifP is an orthogonal projectioR, thenPt = P.
(c) Show that the Gramian of a frame and its dual are pseu€rses, i.e.,

Gram @) = Gram @)
(d) Let @ = (f;) be a finite frame with synthesis operator= [f;]. Show that

Gram @%") = V'V = Gram(®) Gram(®)".

3.4. Perturbation of a normalised tight frame.
Let (fj)jcs be a normalised tight frame forZ”, and T : JZ — J¢ be invertible.
Show that the frame@T * fj) and (T ~f;) for # are dual, i.e.,

f= Z(f,T*f,)T‘lfj = Z(f,T‘lmT*fj, Vi e 7.

IS IS

3.5.1f @ = (fj) is a finite frame forsZ, then its image! = (Qf;j) under a linear
mapQ: 7 — ¢ is a frame for its span, with frame bounds satisfying

Ao||QT(|72 < Ay < By < Bo||Q|2.

In particular, ifQ is a partial isometry, e.g., an orthogonal projection otangimap,
then
Ao <Ay < By < Bog,

and so partial isometries map tight frames to tight framégxer. 2.7).

3.6.Let (fj)]_; be a finite sequence ix’, with synthesis operator = [f;]]_;.
Prove the following are equivalent:

. f,1;)[2
(a)A::mff?éoz?:l|<”'f|ig‘ > 0.

(b) (f;) is a frame forZ.

(c) (fj) spanss.

(d)V is onto.

(e)V*is 1-1.

() (ST ) = (V.7 ) = [Vf|2= 5 |(F, ) > 0,7 £0.

3.7.Suppose thatf;) is a finite frame, an¥ = [fj]. Let{A;} be the eigenvalues of
S=VV* (sooj = /Aj are the nonzero singular values\jf Show that

(a) The optimal frame bounds afe= min; Aj andB = max; A;.

(b) The frame bounds (3.1) are equivalentel minj Aj andB > max; Aj.

3.8. Let (fj) be afinite frame with optimal frame bounésandB. Show that
@|/fjl|> <B, vj.

(b) || f;|?=Bifand only if f; L span; f.

(©) [ fjlI> < Aimplies f; € span; f.
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3.9.Let @ = (fj) be afinite frame forZ’, and
\Y :Ulzug, Z:diag(al,az,...)

be a singular value decomposition of the synthesis opevateif f;]. Show that
(@) [fj] =V Gram®)" = U, diag'1/01,1/02,...)U;.
(b) [£7 = V(Gram(®)")? = U; diag(1, 1,...)U;.

3.10.Canonical tight frameLet @ = (fj);cy be a frame foZ”. Show that

(a) (P)%an = pcan

(b) Gram(®°@") = Gram(®) Gram(®) = Gram®) Gram ®).
~ _ 1 1 1. 1.
(c) fean= fean— s, 2 f; = S2fj = S,% ) = Sh . Vj e .

3.11. Commutativity of the synthesis, frame and Gramian opesator

Let @ = (fj);es be a finite sequence s, with synthesis operatdf = [fj]jcJ,
frame operato6=VV* and GramiarG = V*V. Show that these satisfy
(@SV=VG,j=12...

(b) S2V =V G3.

(c)S'V =VG.

3.12.0rthogonal projection formuldgeneralises Exer. 2.3).
Suppose(fj)jes is a finite frame for a subspac#” C 7, and letV = [fj]jes,
W := [fj]jes. Show the orthogonal projection onto this subspace is diyen

P=VW' =WV*: fs S(f,f))fj = S (f, )T

3.13.Let (fj) be finite frame for7Z’. Prove the analog of the trace formula (2.9)

(f5, f) = (fj. f)) = | FF22, v) = Z(ijﬂ? =d = dim(7).
IE

3.14.Show that ifV = [f4,..., fy] maps onto a proper subspagé of J#, so that
S=VV*: . — 5 isnotinvertible. Then the dual frame and canonical tight frame
for (f;) are given by

fi=s'fy,  fEn=(shif =(sh't,.

3.15.1f the Gramian of a frame = (f;)]_; can be factored Grafw) = L*L, where
L = [v1,...,Vn] is @anmx n matrix, then the columns df give a copy of® as a
subspace of™ (cf Th. 3.3). Show that the dual frame and canonical tightaf

this copy are given by the columns @fL*)TL and((LL*)T)% L.
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3.16.Let @ = (fj) be a finite frame forzz” with synthesis operator = [f;], and
Y =(g;) :=Q® = (Qfj), whereQ: s# — J is invertible. Show that

(@)W is a frame for7”.

(b)¥ =(Q") .

(C) Wean=U @A U := (QVV*Q*)"2Q(VV*)Z, whereU is unitary.

(d) If Q= cU, with ¢ > 0 andU unitary, then thidJ is theU of part (c).

3.17.Let V be ad x n matrix, n > d, with full rank, i.e., rankV) = d. Use the
singular value decompositioh = U; >U3 to show that the minimum

min ||V -W|e
WeFdxn A>0
WWH=Al

is uniquely attained for
W = Ltrace (VV*)2)(VV*) "2V = L tracdS?)S 2V.

Remark:This generalises the problem of finding the unitary matvixvhich best
approximates a square matkix(cf [HJ90], Problem 3 0£7.4).

3.18.Modify the argument of Theorem 3.2 to show that for any seqesn

d

n d d d
Z HfJ *gj”Z > kz )‘kJrkz Mk —2 z z \/ /\kl\/ l-lk2|<uk1avk2>‘7
= =] =] 1

Ki=1ky=

where(Ax), (L) are the eigenvalues of the frame operatorg foy, (g;), and(uy),
(vk) are corresponding orthonormal bases of eigenvectors.

3.19.Isogonal configurationgExample 3.9). Let® = (uj)]_, be a sequence of
isogonal of unit vectors iiR%, d > 1, i.e., one with Gramian

a, j#k

(a) Show the eigenvalues bf arena—a+ 1 and 1— a (of multiplicity n—1).

(b) Determine the condition oa that ensured/ is positive semidefinite, and the
corresponding rank dfl (which can be 1n—1 orn).

(c) When rankM) = n— 1, concludgu;j) are the vertices of the simplex.

(d) When rankM) = n, show that the dual fram(@;) is an isogonal configuration.

M = Gram(®) = {

3.20.Real and complex frameket @ be a finite frame.

(a) Show that is real if and only if its dual® is real.

(b) Show that if® is real, then canonical tight fram®°@"is real.

(c) If the canonical tight frame is real, then does it folldvat® and @ are?
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3.21.Suppose thatfj) and(g;) form a biorthogonal system fa#", andP is the
orthogonal projection onto a subspagé€. Let S be the frame operator fqf;).
Show that the dual frame @P f;) (for #’) being equal tqPg;) is equivalent to
(a)PS=PSP

(b) SP=PSP

(c) SP=PS

(d) #Z is invariant undes, i.e., S C 7.

3.22.LetL: 2# — ¢ be alinear map between finite—dimensional Hilbert spaces,
with singular value®, 02, - - - , Om. Show that

|Lx|| < (maxa;) x|, VX € A,

with equality forx # 0 if and only ifx € (kerL)* is a right-singular vector for the
largest singular value (which impligis. | = max; g;), and

inoj) x| <L vx € (kerL)*
(5?7'&%0])”)(”_ L[], x € (kerL)™,

with equality forx # 0 if and only if x is a right—singular vector for the smallest
nonzerosingular value.

3.23.Let L be a self adjoint invertible map on a finite—dimensional Elittspaces.
Show that ifU is unitary, then
L=V LU =1, UL =T]} > f[L—1]].

3.24.Suppose that = (f;) is a finite frame for#” with (possibly not optimal)
frame bound#\andB. LetV = [f;]. Show that the frame bounds (3.1) are equivalent
to any of the bounds

VAlc| < Vel < VBle|,  VeeranV?),

VAT < IV < VBIIf|.  viess,
Alfll < ST <Bfl, Ve,
Allc] < | Gram(@)c|| <B|ic|,  Vce ranGram®)),

and these are sharp if and onlyAfandB are the optimal frame bounds.

3.25.Suppose tha® = (f;) is a finite frame. LefA1,...,Aq be the eigenvalues of
its frame operatoBy. Use a singular value decomposition for the synthesis ¢epera
V = [f;], to show that for any scalats, 8,y € F one has
|aSe +BS; + ¥ || = ||a Gram(@) + B Gram( ®) + yGram( @) |
_ _ -1
= Ejiﬁm)‘l +BA; +yl.
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In particular, sinc&oe = ¢Se andS, g = C—lzs,i,, we obtain (3.30) (3.31), (3.32), by
taking (a, B, y) to be(c?, %,0), (¢2,0,—1), (0, 5,—1), respectively. We also have

[So |l = || Gram(®)|| = |V = max; = Bo.

3.26.Show that the inequality

0<A<B

)

max{‘A—%\

B 1 ’} > B-A
BI' = VAB’

holds, with equality if and only iAB= 1.

3.27.Let @ be a finite frame. Here we investigate how clog® its dual%&?, and

®°@"can be for the metric dig®, ¥) := || Gram @) — Gram(¥)|.

(a) Fix 0< A< B. Show that

1 B-A

: . 1
rtn>|61max{\tA—1|,|tB—1|} = rtrllgmax{‘a— 1 B ‘} =ArB

bl

which are attained if and only tf= ;25 andt = 518, respectively.

(b) Let A andB be the optimal frame bounds f@r. Use (a) to show that

B-A

1.
¢, PN = —
(8.0 = <

mindist(c®, ®°@") = mindist(= 1,
c>0 c>0 Cc

H H 2__ _2 2 _ A+B -
which are attained for* = 755 andc” = 545, respectively.

(c) Fix 0 < A < B. Show that
1 B
-3
which is attained if and only if = 1/+/AB.

(d) Let A andB be the optimal frame bounds f@r. Show that

. 1
minmaxi tA—1[,[tB-1|,|——1
minmax{tA— 1/, tB—1], |

)

1~ B
i dist(c®, @), dist(= &, p°? =\/>—1
rcn>|ch1max{ ist(ca, @), IS(C , %N } A D

. . . . . 1
which is attained if and only i¢* = 2.

(e) Supposep is normalised, i.e AB= 1. Letc > 0 andU be unitary. Show that

. o 1
dist( @, cU 0" = dist(P, cU d%" = max{|A—c?, A —-c2|},
and )
. 1 L, 1-A
mpgmax{iA- 3 =]} = 55

with the minimum occuring foc2 = 1 (A+ 1) = 241,
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3.28.Let 0< A < B. Show that
max{|A—1] |B—1|}—max{'1—1‘ ‘3—11} — AB=1
) — A 5 B = 1.

3.29. Prove the followingone—sidedrersion of Proposition 3.2.

If @ =(f;) and¥ = (g;) are finite frames, with the same index set, and synthesis
operators/ andW, then the following are equivalent

(@) ¥ = Q@ for some linear mag (possibly not invertible).

(b) Gram(®%@") Gram(¥°@") = Gram Wcan),

(c) ranw*) c ranV*), or, equivalently, kelv) C ker(W).

Furthermore, these imply the equivalent conditions

(d)VW*is 1-1.

(€)3i(9,9) f; #0,vg.

3.30.Suppose tha¥ = (gj)jey is closeto a finite frame® = (fj);c; for 7, i.e.,
1> ci@i— I <Al cifill,  veel(d).

Use Exer. 3.29 to show

(a) ¥ = Q@ for some linear mag.

(b) Thecloseness boun@gmallestd) is cl(W, @) = cl(Q®, @) = || —I||

() If A :=cl(¥,®) < 1, then® is close to¥, with cl(®,¥) < In particular,
the Q of (b) is invertible (since|Q — 1| < 1).

3.31.Let S: X — Y be a bounded linear map between normed linear spaces, and
M :Y — X be an approximate left inverse §fi.e., a bounded linear map with

=M < 1.

(a) Show thaSis invertible.
(b) Letk € X. Show that the map : X — X given by

F(g9) :=(I—MS)g+k
is a contraction map with constaxt= ||| — MS||, and its fixed poing satisfies
MSg=k,
i.e.,MSis invertible.

(c) Show thatMS)~! is bounded.

3.32.LetA Bbhe (possibly not optimal) frame bounds for a finite fragador 7.
(a) Show thaivl := A gl is an approximate left inverse f@= S, i.e.,

B-A

I — .
| A+B

89 ars
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(b) Consider the contraction mappiRg ¢ — 2 given by
F(g) := (I —MS)g+ Mh,

which has fixed poing satisfyingMSg= Mh, i.e.,g = S~h (see Exer. 3.31).
Estimate the error in the fixed point iteration method

2

h
tare"

Jo:=0, Ok+1 .= (| —MS)gk+Mh:gk_ Su

2
A+B
for findingg = S th as limg.

3.33.Let A and B be (possibly not optimal) frame bounds for a finite fraghe

with frame operato5S = Sy. Show thatS 3 can be calculated via the absolutely
convergent series

: 22 (2) 2 o
gz:VA+B;ﬂ;a>O_A+B®{

3.34.Let (fi.) be the tight frame foR? given by the three equally spaced vectors
fi = (cos?l,sinZl), 0< j < 2, and(fj), f; = 2f;, be the canonical dual frame.

(a) Show that all dual frameg);) of (f;) are given by

gj:ﬂ-+vv, we R?.

(b) From (a), it follows that there is a du@d;) of @ with g; € R? arbitrary. Show
that there is a pseudo—duajj) of ®@ with g1, € R?, g1 # g arbitrary.

3.35.Let @ = (fj)ey be a finite frame forZ, with synthesis operatdl = [fj],
andQ: ¢2(J) — £2(J) be an invertible linear map. Define a norm on the linear maps
fz(\]) — I by

IW|lo:=WQ?|r (Frobenius norm)

(a) Show that frames with synthesis operatdrandW are dual if and only if the
frames with synthesis operatdr€)* andU =W Q! are dual.
(b) Show that there is a unique dual fraifgg) of @ minimising |W|lo, W = [g;],
given by

W= (VQ'QV")"VQQ
Remark ForJ = {1,...,n} andQ~! = (D*)", r > 1, whereD is the first-order
difference operator

1 -1
1-1
1
the dual frames of part (b) are callee¢th orderSobolev dualsof @ (see [BLPY10]).
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3.36.Let @ = (f;) be a finite frame with frame boundsandB, and® = (f;) be a
perturbation satisfying

SIE A — P <RIfIZ Vi
J

(a) Show that iR < A, thend is a frame with boundsy/A— v/R)? and(vB+vR)?.
(b) Show that iR < f; then the canonical dual @ is an approximate dual ap.

3.37.Show that a finite framep with optimal frame bound# andB is approxi-
mately dual to the scalar muItipte;:D if and only if 0< ¢ < 3, and that|VW*|| is

minimised by the choice = A+B

3.38.Suppose that” and? are finite dimensional subspacesif.
(a) Show that the following are equivalent
O7vnwt=wnyt=
(i) =V ©aW+ = //69 ¥+ (algebraic direct sums).
(b) Show that if¥ N %+ = % n¥* =0, then the oblique projections satisfy

dim(¥) =dim(#),  (Py,.) =Py ..

3.39.Let (fj) be a finite frame for/” and(gj) be its canonical oblique dual i¥".
Show that the canonical oblique dual(@f) in #"is (f;).

3.40.Supposéf,—)rj‘:1 is a finite sequence in a linear spateand(A)y" ; is a finite
segence of linear functiona¥— F. LetV := [fj] : F" — X andA’ := [A] : F
X' i.e A(f) = (A(f)),, and

P:=V(AV)'A, ¥ :=spar(fj))c X, £ :=sparA)cX.

(a) Show thaP : X — X is a projection, i.e.P> = P

(b) Show that\ (Pf) =A(f),Vf e ¥ =ranV).

(c) Show that ran{P) = rank AV) = rankA|y ) = dim(Z|y).

(d) Show that if dinf¥") < dim(%|y ), thenP projects onto?’, i.e.,PV =V.
(e) Show that if dinf.¥) < dim(.Z|y ), thenP interpolates?, i.e., AP=A.
(f) What is the formula foP if X is a Hilbert space, and s (f) = (f, k).

3.41™0Orthogonal polynomialsFor a suitable (nonnegativejeightfunctionw on
(a,b), an inner product can be defined on the univariate polynanbial

(f,9) ::/abf(t)g(t)wt dt

If the Gram—Schmidt algorithm is applied to the finst 1 monomials, or any other
sequence of polynomials with degree4 0. ., n, then polynomials obtained are (for
various weights) thelassical orthogonal polynomials
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Fix some standard weight, e.g., thegendre weight w=1 (a= —1,b=1).
Investigate the orthonormal basis obtained by taking tmewizal tight frame for
the monomialsl(éwdin orthogonalisatiop What happens for other bases?






Chapter 4

Canonical coordinates for vector spaces and
affine spaces

If (fj)jesis afinite frame foriZ, i.e., a spanning sequence 4f, then eaclf € 7
can be written
f= Z Cj fj,
]

for some choice of coefficients= (c;j). The unique coefficients which minimise
2=y Icj[?
]
arecj = ¢j(f) := (f, f}), where(f)) is the canonical dual frame. We observe that

The linear functional$ — c;(f) do not depend on the inner product.g#i.

In this way, it is possible to extend the frame expansion (@thér elements of
frame theory) to any finite spanning sequence for a vectarespaer any subfield
of the complex numbers which is closed under conjugation.

The linear functionald — c;j(f) will be called thecanonical coordinate$or f
with respect to the spanning sequetg for the vector spack = spar{ f;}. They
depend only on the vector space structur¥ ghough they can be calculated via the
canonical dual frame KX is endowed with an inner product. They generalise the dual
basis (the case when the vectors are linearly independertiare characterised by
the fact that the associated Gramian matrix i@ehogonal projectionThe unique
inner product for which a finite spanning sequence is a nasetltight frame is
given by the Euclidean inner product between the canonazaidinates of vectors.

The canonical coordinates are ideally suited to situatigmsre there is a natural
spanning set for a vector space (which is not a basis), agn-th roots of unity
in cyclotomic field (as vector space over the rationals) uchscases, computations
can be done directly with the canonical coordinates, in finiefit and stable way,
which preserves the geometry of the spanning sequence.

71
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4.1 The canonical Gramian of a spanning sequence

Throughout, leX be a finite dimensional vector space over a subfietd C. To be
able to calculatg ; [c; |? for a vectorc = (cj) € Y, it is necessary tha be closed
under conjugation. Therefore, from now on:

We assume tha is closed under complex conjugation.

Recall (Theorem 2.2) that ¥ = (f;);es is finite normalised tight frame with
P = Gram(®) (an orthogonal projection), the@ is unitarily equivalent toPe;),
the columns oP. In particular, they have the sanléar) dependenciesi.e.,

dep @) :={ceF: Y ¢ifj =0} = {ce F': 5 cjPe = Pc= 0} = ker(P).
] ]
ThusP is the orthogonal projection onto degp)*. We now show that the orthogonal
decomposition oFY extends to the case whéhs notR or C, e.g.,F = Q.

Lemma 4.1.(Orthogonal projections iffY). Supposé& =T, and# is a subspace
of FY (J finite). Then there is the orthogonal direct sum decontjoosi

F=waew:  w':={xeF :(xa) =0Vac¥#},
and matrices QP € *J giving the orthogonal projections ontg” and # .

Proof. It suffices to show there exists mati@X giving the orthogonal projection
onto# (then takeP to be the complementary orthogonal projectida: | — Q).

We can apply Gram—-Schmidt orthogonalisation, without radising, to any
spanning set fo”” to obtain an orthogonal basis of vectdssy, ..., w;} in FY (it
may not be possible to normalise and stay within the fi&ldThe j—th column of
the matrixQ is then defined by

L (&),

Qe =
J kZl (Vi Vi

By construction, this is the orthogonal projectionepion 7. ad

<l

v e Y.

<l

Definition 4.1. Let @ = (fj)jc, be afinite sequence in a vector spcaverlF (with
F = F). The canonical Gramian of @, denoted byP, € FY*J, is the orthogonal
projection onto def®)~.

By Lemma 4.1Py is well defined, and can be calculated by

VY
Po=1-Y ok,
& (Vi Vi)

(4.1)
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where (vy) is any orthogonal basis for dée@). Such a(w) can be obtained by
applying Gram—Schmidt (without normalising) to any spagrset for dep®).
We can generalise Proposition 3.2 as follows.

Proposition 4.1.(Similarity) Let® = (fj)jc; and ¥ = (gj)jes be finite spanning
sequences. Then the following are equivalent

1. @ and¥ are similar, i.e., there is a invertible linear map:@; — g;.
2. Pp =Py.
3. dep @) =dep¥).

In other words:

Every spanning sequen@ corresponds to a unigue normalised tight frame
determined by depb) (with GramianPy).

Example 4.1(Basis) If® = (f;) is a basis, then d¢@) = 0, and sPp = I.
Example 4.2(Simplex) Suppose thak = (fj)?:1 has just one dependency

fi+fo+- -+ fh=0.

Thenl=(1,...,1) spans def®), so thatPy = | — %1*1, d=dim(X)=n-1,i.e.,
d C e
dr1> J:k1
(Po)jk =4 T =
: d+11’ J#k'

Example 4.3(Frames) Le{(fj);c; be a finite frame, with synthesis map= [f;].
ThenPy can be calculated as above from a spanning sequence fgbdepker(V),
or by

Po=V'Sly,  S:=vv. (4.2)

This follows, sinceV*S™1V is clearly an orthogonal projection, and its kernel is
dep @) = ker(V) (sinceV is onto,V* is 1-1). The(j,k)—entry ofPyp is

(Po)jk = (S71Vey)"S (Ve = (S ) fiu= (fc. fj)
— (S 21j)"S B = (£ 2, 4.3)
In particular,Py is the Gramian of the canonical tight frame associated with

Example 4.4(Equiangular tight frames) We can use the identificationgdanning
sequenceP with the uniqgue normalised tight frame with GramiBg, to extend
elements of frame theory to spanning sequences. For examlsay a spanning
sequencep is equiangular if the tight frame given by the columns & = [pj]
is, i.e.,Pp has a constant diagonal afmx| = C, j # k. In this way, an equiangular
tight frame could be given by a spanning sequence for a vegiaeeX (which is
notCY), as in Example 4.2.
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4.2 The canonical coordinates of a spanning sequence

We now define theanonical coordinatesia the canonical Gramian.

Theorem 4.1.Let @ = (fj)jcy be a finite spanning sequence for a vector space X
overF (withF =F), and f=y;a; f; € X, ac F. Then there are unique coefficients
¢ = c®(f) € FY of minimal/y—norm with

f:zcj'(f)fj7 (4.4)
]
which are given by
c®(f) =Poa, (4.5)
where B is the canonical Gramian ob.

Proof. LetV = [fj] (the synthesis map fap).
Sincel — Py is the orthogonal projection onto dgp) = ker(V), we have

V:V(P¢+(I —P(p)) =VPyp. (4.6)

Thus,f =Va=V(Ppa) =V(c?(f)) = 3;c;(f)fj.
Finally, we show the choice = c¢® has minimal/,—norm. For any choice of
coefficientsc € FY, we have the orthogonal decomposition

¢ = (C— PoC) + Poc € depg @) & de( @),
and so Pythagoras gives
lel|? = llc— Poc]|? + || Poc||?.

If f=y;c;fj, thenc® = Pyc, and we obtairjc||2 > ||c®||2, with equality if and
only if c=c®. O

It follows from (4.5), thatf — cf’(f), j € J, are a linear functionals, and

Po = ¢ (fi)]j keu- (4.7)

Definition 4.2. The canonical coordinates(or canonical dual functionalg for a
finite spanning sequenee = (f;) for anF—vector spac are the linear functionals
c® = (c?) given by
c?(f):=Poa, f=Yafj,
]

wherePy is the canonical Gramian ap. We call (4.4) thecanonical expansion
and (4.6) thecanonical factorisationof the synthesis may = [fj].

By Theorem 4.1, the canonical coordinatds are well defined. They are the
minimal £,—norm coefficientgc;) for which f = ¥ ; ¢; f;, and
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The linear map
Lo : X — ran(Pe) = dep(@)* : f — c®(f)
is a vector space isomorphism, with (fj) = c®(f;) = Peg;. In particular,

c®?(f)=0 «— f=0.

Example 4.5(Dual basis) If® = (f;) is a basis, theRy = |, and (4.7) implies that
the canonical coordinates are the dual basis. The canaroeatliinates therefore
generalise the dual functionals to the case wiighis not a basis.

Example 4.6(Frames) If® = (f;) is a frame, then (4.3) and (4.7) give

cf(f)=(f.fj),  vf,

i.e., fj is the Riesz representer of the linear functiocj%tl

Example 4.7(Matrices) We can definmatriceswith respect to spanning sequences
in the usual way. Thec@nonical) matrix representing a linear mdp: X — Y with
respect to spanning sequencks= (f,-)'j‘:l and¥ = (gk)g.; for X andY is the
A=A_ e F™"given by

j—th column ofA = Agj = c¥(Lfj).

i.e.,c¥(Lf)=A(c®(f)),Vf € X. The map. — A_is linear, and. can be recovered
fromA=A_via
L=WAS®, W=][g

The canonical coordinates for@ which spansX can be computed from any
spanning sequenc@y) for the algebraic dual spac€, as follows.
Proposition 4.2.Let @ = (fy,..., fy) span X. IfA = (A ), : X = FMis any1-1
linear map, i.e.A1,...,Am span X, then the canonical coordinates fdr are given
by
()= (AV)TAE,  V=[f,... f), (4.8)
where(AV)™ is the pseudoinverse the mat/ € F™<",

Proof. Let a = ¢(f) € F" be a solution to (4.4), i.e., tda= f. Since the linear
functionalsA1,...,Am spanX’, Va= f is equivalent to\y(Va) = Ak(f), VK, i.e.,

AVa=Af,

where/AV € F™ M andA f € F". This (possibly) underdetermined linear system has
a unique minima¥,—norm (least squares) solutian= c®(f) given by (4.8). O
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4.3 A characterisation of the canonical coordinates

Let @ = (fj)jej Span a vector spacé andy = (Aj);es be linear functionals oiX.
We say thatp and¥ aredual sequences (see Exer. 4.1) if

F=S A0,  vieX (4.9)
J

This implies( fj) spansX and(A;) spansX’, and is equivalent to

)\ZZ/\(f)/\j, VA eX'.
]
The matrixG = [Aj(f)] is called theGramian of @ and¥. We now show that:

(Aj) are the canonical coordinates (canonical dual functigrieis f;) if and
only if G = [Aj(fi)] is an orthogonal projection of rartk= dim(spar{ f;}).

Recall that the canonical isomorphism betweeand its biduaX” is

XXt f(A) i=A(), vAeX.

Theorem 4.2.(Characterisation). Suppose X is @h-vector space (witlf = [F),
® = (fj) in X and¥ = (A;) in X’ are dual, i.e., satisfy (4.9), and G is the Gramian

G=AV=[j(f)], V:=[f]:F =X A=) :X-=>F.

Then the following are equivalent

1. =v.

2.V = .

3. G=G%, i.e., G is an orthogonal projection.
4. Pp =G.

5 Ry=G'.

6. Ry = Pj.

7. deg¥) = dep ®).

Proof. First, observe that (4.9) can be written\&8 = Ix, and so
GZ=A(VAV)=AV =G,

i.e.,Gis a projection of rankl = dim(X). A
1—2. Suppose tha¥ = c®. Then¥ = (c{) spansX’ and(fj) spansX”, and so
Proposition 4.2 gives

¢/ =(w)'L,  Wi=[cP:F =X, L=(fj): X =F.
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Now LW = [f;(c®?)] = [c?(f;)] = P is an orthogonal projection, §aW)* = LW,
and we obtain

¢/ (A) = (PpLA)j = gwbjk(u)k = Zcﬁ’(fm‘km = Zcﬁ’(f,-)mk)

:)\(ch’(f,-)fk):A(f,-):f‘,-(/\), aex — o'=f.

2=5.If (ﬂ-) are the canonical coordinates 18 then (4.7) gives
Py = [fj(M)] = [A(f)] = G-

5—=—-4.If Py = GT, thenG is an orthogonal projection matrix of rawk= dim(X).
Moreover,
PoG = (c®V)(AV) = c®? (VA =c®V = Py,

and soG = Py.
4—-3. Immediate Py is an orthogonal projection).
3.=7. Suppos& = G*, i.e.,Aj(fx) = A(fj), Vk. Then

aedeql#) <~ zaj)\j(fk):o, vk «— Zaj)\k(fj):o, vk
] ]
= Yak(f)) =0, vk < A()af)=0 Vk
] ]
= >&fj=0 <« acden?)
]

7.=—-6. Suppose that dé¢{/) = dep(@®). Let () be an orthogonal basis for dgp),
so (V) is an orthogonal basis for déf), and from (4.1), we obtain

ViV

e (W)t 5
=12 w2 Tewy e P

6.—>1. For eachf € X, we have the orthogonal decomposition

w(f) = (Aj(f)) =c®(f)+p(f) € ran(Py) @ ker(Po).

Fora e ker(Py), we have

Now supposé®) = Py, so thata € ker(P},) = ker(Py), and we obtain
<p(f)7a>:07 Vva = p(f):o,

ie.,W=c®. O
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Example 4.8The second equivalence shows that any spanning seqééfmeX’
is the canonical coordinates for somei.e., the® given by® = c*. For example,
let X = 1, the (three dimensional) space of linear polynomial®&3nand¥ be the
point evaluations

W= (5(0_’0),5(1!0),5(071),5(&@)7 &: M —R:f— f(X)

These are the canonical coordinatesdoconsisting of the linear polynomials (with
the obvious indexing)

ab—1—a—b?)x+(ab—1—b—a)y+1+a2+b?
( y

foo(xy) = (@+b)2+(a— 12+ (b—1)2 ’

fLo/(ky) = (2+ab—a+2b? — 2b)x+ (a—a? — 2ab)y+ab+a —a

10 %Y (@+b)2+(a—1)2+ (b—1)2 ’
froa(xy) — (b—b? - 2ab)x+ (2+ab— b+ 2a® — 2a)y +ab+b’—b
XY (a+b)2+ (a—1)2+ (b—1)2 ’
) = e e e 10

Note that these polynomials are continuous functionads).

4.4 Properties of the canonical coordinates

Becauséy = [c}”(fk)] is an orthogonal projection, the canonical coordinatesesha
many properties of the coordinates for a basis (wRere- 1). We write the sequence
obtained by removing the vectdy from & = (f,..., fy) as

O\ fj = (fr,..., fj_1, fj41,..., Tn).

Proposition 4.3.(Properties). The canonical coordinate$ e- (cj) for @ satisfy

1. Cj(fk):Ck(fJ‘).

2. |cj(fi)| < Lwith|cj(fx)|=1ifand only if k= jand fj ¢ spar{®\ fj), in which
case ¢(f;) =1and g =0onspar{®\ fj).

3. ¢(fj) > 0, with ¢j(fj) = 0ifand only if fi = 0.

4.Z]-Cj(fj)=d=dim()().

5.¢ =ac, a € Fifand only if fj = afy.

Proof. Let P = [pj] = [cj(f«)]. These properties follow from those of orthogonal

projection matrices, e.gb, = P*, givescj(fx) = pjk = Pkj = (fj).
Orthogonal projectionB have the propertyfPx|| < ||x|| with equality if and only
if Px=x, so that
i (fi)l = [pik| < [IPad| < [l&ll = 1,
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with equality if and only ifPg. = & and |pi| =1, i.e., j =k, ¢j(f;) = 1, and
cj(fy) =0, ¢ # j. The conditionPe; = g; is equivalent to thg—th column ofP not
being in the span of the others, and since the columr? afd the vectors ofp
have the same linear dependencies, this is the safiezaspar{® \ f;).
Similarly,
cj(fj) = (ej,Pe;) = (Pej, Pey) = |[Pej||* > 0,

with equality if and only ifPg; = 0, i.e.,c®(fj) = 0, which givesf; = 0.
We have
ch(fj) = tracdP) = rank(P) = d.
]

Finally,

szﬁfk <= C[(fj)zcg(ﬁfk):a(:[j(fk), M/
= cj(fy) =ac(f), W
= ;Cj(f/j)f(:a;q((fg)f/j — fij=afx
O

Example 4.9If @ = (fj)’j‘=l satisfiesy j fj = 0, i.e.,(1,...,1) € deg(®), andQ s
the orthogonal projection ontd, ..., 1)+, then

1 1, n-1 1
. — _Z — N VS T — N
i (fio)| < [|Poex|| < [|Q& = & n;ezH \/(1 S \/1 :

n
The canonical coordinates transform naturally under thieraof a linear map.

Proposition 4.4.(Linear maps). Suppose th@= ( f;) spans thé&—vector space X,
L: X =Y is an invertibleF—linear map, andV = L@ = (Lf;). Then the canonical
coordinates for® and ¥ satisfy

ciP(Lf)=cP(f), VfeX (4.11)
Proof. ChooseA as in (4.8), so that
c?(f)=(AV)*AT, VvV =[f]].
ThenAL™1:Y — FMis 1-1, and so, withV = [L fj] = LV, we have
c?(Lf) = (ALTW)TALTL(LE) = (AV)TA T =c®(f).

O

The canonical coordinate® have the same symmetries@gsee Example 9.5
of §9.2 for details).
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4.5 The canonical inner product for a spanning sequence

We observe that i = F, then inner products can be defined Bavector spaces
in the usual way. In this case, there is a unique inner profduathich a spanning
sequence is a normalised tight frame.

Theorem 4.3.Let @ = (fj)jc,; be a finite spanning sequence forErvector space
X (with F = TF). Then there exists a unique inner product on X for whizhs a
normalised tight frame, namely

(f.9)0 = (c®(f).c®(g)). (4.12)

Proof. The linear mapX — FY: f — ¢®(f) is 1-1, and so (4.12) defines an inner
product onX. For this,

(fk, fj) 0 = (Pot, Po€j) = (Poex,€j) = (Po)jk,

so that Grari®@) = Py, and@® is a normalised tight frame (Theorem 2.1).
Conversely, for any inner product,g)x onX for which @ is a normalised tight
frame Grani®) = Py, and hence (sinc@® is a spanning set)

<fk,fj><p=<fk,fj>x, Vj,k — <f,g>q>=<f,g>x, Vf,geX.

This proves the uniqueness. ad

Definition 4.3. Thecanonical inner product (-, -) ¢ for a spanning sequenae for
anF—vector space is the unique inner product ox for which @ is a normalised
tight frame, i.e., the inner product given by (4.12).

Example 4.10(Frames) If® is a finite frame for7#, with frame operates=\VV*,
then
(f.o=(S21,572g) = (f,5hg),  Vigen (4.13)

This follows fromc(f) = (f,S fj) = (S2f,5% fj) (see Exer. 4.2).

In summary:

Whenever there is a natural spanning sequence for a vectoe,spaan be
viewed as normalised tight frame (in a unique) way, and cdatfns can be
done directly with it, in an efficient and stable way. This iaéothe need to
obtain a basis by thinning which may destroy the inherentrgeoy.

We now illustrate this principle for the cyclotomic fields(@—vector spaces).
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4.6 Canonical coordinates for cyclotomic fields

Let w be the primitiven—th root of unity

2mi

w=en.

The cyclotomic field Q(w) is aQ—vector space of dimensiah= ¢ (n), where¢
is the Euler phi(totienf) function. The number of primitive—th roots is¢ (n), but
they do not form a basis fd@(w) in general, e.g., the primitive 4—th roots até
which areQ-linearly dependent. Far square free, the primitive—th roots are a
basis. When the primitive roots are not a basis, bases wititi@uial properties can
be constructed in a noncanonical way. Most prominently asedheintegral bases
(each element of the ring of integers has its coefficien)irand thepower bases
(these have the forrfil, z 22, - -- , Z-1}).

A natural spanning sequence f@fw) is given by therth roots themselves, i.e.,

d = (wi)jezn — (1’0_,’&,27,.. 7wn71)_

We now consider the corresponding canonical coordinates®. These naturally
inherit the geometry of(w), e.g., if

z=ag+aw+---+an_ 1w ao,...,an_1 € Q,
then
wz=aoW+aw?+- - +a1w",  z=ag+aw" t+- - +an 10,
and so the canonical coordinates satisfy
Cj(wz) = cj4+1(2), (4.14)
Cj(2) =c_j(2), (4.15)

i.e., multiplication byw corresponds to #orward cyclic shiftof coordinates, and
complex conjugation to the permutatipr- — j of the indices.
Let u be theMobius function

1, n=1,
p(n) =< (=1)", nissquare free;
0, otherwise
which satisfies _
w' = u(n). (4.16)
i€Zq

HereZ is the group of units it%, (the primitiven—th roots arew!, j € Z}).
The canonical coordinates can be computed as follows.
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Proposition 4.5. (Calculation). The canonical Gramian f@P = (w')jcz, is

1 . i 2 -1)]
Po=— 3 Xixj.  Xi=(Lo, o o™ (@417)
1€74

which has entries

1 - 1 n .
Po)k== S I W="¢(@u(=), g:=gcdj—kn).
Na&z; n g

Proof. The vectorsy; are the characters @, and hence are orthogonal.
Suppose that € depg @), i.e.,

X1a=a+aw+---an 10" =0,
then applying the Galois actian™! — w/, j € Z};, which fixesQ, gives
Xja=ao+ aw 4+ Fa 0 ™Y =0,
and soxj € def(®@)", j € Zn. A dimension count shows thdl; : j € Z;} is an

orthogonal basis for dég), and hencéy is given by (4.17).
Evaluating the entries &% gives theRamanujan sum

*1 * 1 — * 1 i—
(Po)jk =€ > XaXat =~ > @ akera:ﬁ S w9,
a

acZ; acZ; EZ;,

Using (4.16), and (n) = ¢(g)¢(g), this can be simplified to

1 agick 1 ag_ 1 p 1 n
=y WV =2 % W¥="¢(g) Y (09 =¢(Qu(:).
nae%ﬁ nae%ﬁ n be;;/g n g
|
Example 4.11The canonical Gramiari® for n= 3,4,5 are
4 -1-1-1-1
2 -1-1 2.0-20 -14-1-1-1
1 110 2 0-2 1
5—12—1,1_2020, —|-1-14 -1-1].
-1-12 0_-20 2 -1-1-14 -1
-1-1-1-14

Example 4.12Forn = 2¥, the canonical expansion af! is
1 1 o
w=w- w2,
2 2

More generally, fon = p¥, p a prime, the canonical expansioneof is
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1 ; jien iion i+(p—1)P
mJ:f{(pfl)wlwapwa P _glT(P >p}

0 .

These canonical coordinates have norm

otz =2 /p- 12+ (b1 = H< L

Multiplication in Q(w) corresponds to convolution of the canonical coordinates:

Proposition 4.6. The canonical coordinates-e c® for @ = (w')jcz, satisfy
clax+By) = ac(x)+Bcy), a,BeQ xyecQuw), (4.18)

c(xy) =c(x)*cy),  xyeQ(w), (4.19)
where a« b is thecyclic convolution of a and b ovefZ,, which is given by

n—1

(a*b)k:: ajbx_;.
,Zo D j

Proof. The firstis just the fact — c(f) is linear. For the second, observe thawlif
is a circulant matrix (such &), then

M(axb) = (Ma)xb=ax(Mb).

Leta,b € Q" be coordinates fax,y, then
_ S b M — b SH b k: b k’
Xy (Zasw)(z rw) ZZas r Q0 Zzaj k—j @ Z(a* kW
so thatax b are coordinates fary, and we have

c(xy) = Pp(axb) = (Ppa) *b = c(x) xb = c(x) *c(y),

where for the last equality, we made the particular chbieec(y). d

The canonical inner product has the following properties.

Proposition 4.7. (normalised tight frame) The uniq@-inner product or)(w) for
which® = (w!)cz, is a normalised tight frame satisfies

Xy, 20 = (\, X200,  YXY,z€ Q(w) (4.20)

@MZ, whenevetz? € Q. (4.21)
In particular, multiplication by any z Q(w) of unit modulus is a unitary operation.

(22)o =
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Proof. In view of (4.15) and (4.19), the first amounts to showing
<a*b,w>:<b,é*w>, a:(&J)v

wherea = c(x), b= c(y) andw = c(z). This holds for all, b, w by direct calculation:

(axb,w) = Z(Zajbk J)Wk ZZank j Wi,
<<b,§*W>> = Zbk(ZakjWkij) = Zgajbkwkﬂ- = Z Zajbk,jwk.
J J J

Finally, when|Z? € Q, we have
(220 =(221)0 = (17°1,1)0 = 2*(1,1)o.
In particular, all ther-roots have the same norm, and so
dim(Q(w)) = ¢(n) = rankPe) = tracgPyp) = ¥ (w), w')o = n(1,1)¢.
Combining these gives (4.21). ad

Example 4.13This inner product is different from the one induced by viegvthe
n—th roots of unity as vectors iR? (with the Euclidean inner product), which gives
a tight frame forR2. For example, when = 5, we have

too=—5  ((5) (Sed)) -0 e

Here, the coordinates for 1 which minimigg ICj |2 overc € R", and overc € Q"
(the canonical coordinates), and those given by1: 1+0-w+---+0-w" ! are

2

gl
-

5
% cos?!
cos? [, c®(1)=
g COSGn
5
g cos¥!

[ ld el
O O O OoOPR

respectively, which have norms

2/1+2c08 % +2c0847 ~ 063246 2 ~089442 2 ~089442 1

V5
Example 4.14We observe that
w! is orthogonal taw* <« u(g) =0, g=gcdj—k,n),

and so twath roots cannot be orthogonalifis square free.
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Example 4.15(Subfields) Len=8. Thenw= /i = % , andQ(w) is 4—dimensional,
with cyclotomic subfields

Q Cc Q(i) c Q(Vh).

The canonical coordinates of @, w?, w® are

, civi) =

2
H
S—
|
O O ONF O O ONIE
o
s
|
O ONR O O ONE O
2
|
onIk O O ONE O O

N O O ONFO O O

Therefore one can determine what is the smallest cyclotsutidield of Q(v/i) a
given element lies in by considering which of its canonicarlinates are zero.

By viewing @ = (w')jcz, as a normalised tight frame (for the canonical inner
product), we can easily show that the natural action of tlticgroupC, = (a) on
the Q—vector spac&(w) given bya- w! = w!*tis irreducible.

Theorem 4.4.(Irreducibility) Let {-,-) be the canonical inner product o (w)
given by® = (w)jcz,. For any nonzero £ Q(w), the vectoryz, wz,...,w" 12)
are an equal norm tight frame fd@(w), i.e.,

Y (xwz)0lz,  ¥xeQw). (4.22)

X=—5
2
|Z| ngn

Proof. Using (4.20) and the facﬁwj)jezn is a normalised tight frame, we calculate

> (x wz)wz= (Z((Z)g W >>wj)z: (zXz= |7?.

] ]
Thus evenCp—orbit of z# 0 span€Q(w), i.e., the action is irreducible. ad

The forward) cyclic shiftoperatorSon Q", which is given by
Sg :=¢j1, | € Zn,
and defines a natural action@f = (a) on Q" via
a-v=_Sv
By (4.14) the canonical coordinates- c® for ® = (w!) satisfy
c(w*2) = Sc(2). (4.23)

Thus it follows that depd)* is an irreducible shift invariant subspace@f.
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Corollary 4.1. (Irreducibility) The shifts of any nonzerocddep @)+ are an equal
norm tight frame foran(Py) = dep(®)+ (with the Euclidean inner product), i.e.,

a= ¢E1n)<b1b> S (a,9b)Sb,  Vaedep®)-.
VL j€dn

Proof. Expanding the canonical inner product in (4.22), using3}.gives

X= iz ; (c(x),9¢c(2)w'z,  VxeQ(w).
‘Z| je n
Applying c to this, and lettinga = c(x), b = ¢(z), gives the result. O

The shift invariant subspace dgp) of Q" is not irreducible whem is not a
prime. In this case there is a proper 1-dimensional shiétriamt subspace spanned
by (1,1,...,1). Nevertheless, we are able to give an single linear depeeden
whose shifts give a tight frame for dep).

Theorem 4.5.(Shift invariant tight frame) Let@ € Z" be n times the first column
of | — Py, i.e.,
dp = Xj-
V€LY

Then the shifts of @ are an equal norm tight frame fatep @), i.e.,

x== Y (xYas)Yas,  Vxcden®). (4.24)
j€%Zn

Proof. By (4.17) and the fact the charactggsare orthogonal, — Py is the circulant
matrix given by

1 o1 ]
n XiXj :ﬁ[a@Sap,Sza(p,...,S“ 1a¢].

J€245

The columns of the orthogonal projection matrix Py are a normalised tight frame
for its range depd), and the corresponding frame expansion is (4.24). O

Example 4.16Forn=6,Z; = {1,5}, and

4 -11 2 1-1 4
-14-11 2 1 -1
|*Pa>:% ; 11_41 41_11 f ; ap=Xo+ X2+ X3t Xa= ;
1 2 1-14-1 1
-11 2 1-14 -1

Thus the linear dependencies between the 6—th roots carpbessed as



4.7 Generalised barycentric coordinates for affine spaces 87
40l — It 4 @It2 4 20013 4 I — I t5 =0, 0<j<6.

Here the 4—dimensional subspace @2pcan be decomposed into two 1-dimensional
and one 2—dimensional orthogonal shift invariant subspagkich are generated by

(1a 1a 17 17 17 1)T7 (1a_17 1a_1a 1a_1)T3 (07 17_1707 17_1)T7

respectively.

4.7 Generalised barycentric coordinates for affine spaces

We now give the analogue of the canonical coordinates (foe@ov space) for
affine spaces. Amffine space Xs, in effect, a vector space for which there is no
distinguished point that plays the role of the origin in ateespace (or, equivalently,
the translation of a vector subspace). As such, we candtikee combinationsf
“points” in X, i.e., linear combinations where the sum of the coefficients and
differencef points to obtain “vectors”.

Let X be an affine space witthmension di.e.,d + 1 is the number of points in
affinely independent affine spanning set ¥arA sequencer,...,vpof n=d+1
points inX is affinely independent if and only if each poxt X can be written
uniguely as an affine combination of them, i.e.,

X:ZE,-(X)VJ-, ZEj(x):l. (4.25)
] ]

The affine functiong;, so defined, are thigarycentric coordinatesfor © = (v;).

Definition 4.4. Let X be an affine space ovEf with F =, and® = (v,...,Vn) be
points with affine spaiX. Then the &ffine) generalised barycentric coordinate$
E9(x) = (& (X))j—y € F" for © of a pointx € X are the (unique) coefficients of
minimal /,—norm for whichx is an affine combination a®, i.e., (4.25) holds.

These are well defined, since the set of vectoesF" satisfyingx = ¥ j ajv; and
¥ jaj = 1 form a nonempty affine subspacelt

Proposition 4.8.(Calculation) The generalised barycentric coordinaf&s= (& )?:1
for points@ = (vj)’j‘:l, with barycentre b= by = % Z?lej, are given by

£2(x) :c?_be(x—beﬂ—%, (4.26)

where ©-be = (c;) are the canonical coordinates & —bg = (f;), fj :=Vv; —bg.
In particular, each x— Eje (x) is an affine function.

1 There are many generalisations of barycentric coordinatesinggometric modeling (computer
graphics) for nonsimplical polytopes. These are the only onesendsehé; is an affine function.
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Proof. We seek to minimisg ; |£j(x)|? subject to (4.25). Writ; (x) = aj(x) + =
Theny ; &j(x) = Lis equivalent tg ; aj(x) = 0, and so

1 1—
2
> 0P —;{am Foa 4 a0+ = > I3y 242
Sincey; fj =¥ ;(vj—b) = ¥ vj —nb=0, expanding gives
]
Thus we must minimisg j |a; (X)|2, subject to the constraints

x—b= Za, ) fj, > aj(x) =
]

The minimiser subject to just the first constraintaigx) = c@ b‘”(x— bo). But
¥ fj = 0 implies the dependency; cj = 0 (by Theorem 4. 2) and so the second
constraint is also satisfied by this choice &p(x). 0

The generalised barycentric coordinates have similargt@s to those of the
canonical coordinates (see Proposition 4.3).

Proposition 4.9. (Properties) The generalised barycentric coordinafés =
for points@ = (v,-)T:1 with affine span X satisfy

1. &j (Vi) = &(v)).

2. |&(w)] < 1with|&j(v)| = 1if and only if k= j and v; € aff(© \ vj), in which
caseéj(vj) = land&j =0onaff(0\vj).

3.1 < &(vj) <1, with&j(vj) = £ if and only if y = bg (the barycentre 0©).

4. Y Ej(Vj) =d+1

5. & =& if and only if vj = w.

Proof. By Proposition 4.8,
E-(v)—c-(f)—s—l fui=w—Db b =1 Vj
jWVk) = LjlTk n; k -= Vk o, 9'_n§ja

and so, by Proposition 4.3, we immediately obtain 1, the fdveeind in 3, 4 and 5.
Sinceyi can be written as the affine combinatign= 1vk + ¥ ;. Ovj, we have

& (w1? < Y 1&(vl? <22+ ;02 =1 = [§wl=1,
] J

with equality if and only itk = j and&,(v;) =0,V¢ # j,i.e.,§; =0 on aff©\ v;). If
& =0onaffo\v)), thenv; ¢ aff(©\ vj). Otherwiseyj = ¥ j aVk, Ykzja = 1,
andv; can be written as an affine combination
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vj=(1-t)vj+ gtakvk, t e R,
KZj

where the sum of the squares of the coefficients above is
1=+ 5 Claf = 1-2t+ (1 > 1&2),
kZj k|

which is strictly less than 1 fdr> 0 sufficiently small, and s@j(v;) < 1. g
From the formula (4.26), we also observe that

¢ The coordinates of the barycentye= bg areé;(b) = % vj.
e ¢ is constant (equal tﬁ) if and only if v; is the barycentre.

These imply that the set of points where the generalisecckatyic coordinates are
nonnegative
N=Ng:={xeX:&°(x) >0, Vj} (4.27)

is a convex polytope, with the barycentre as an interior {pdéiar the purpose of
illustration, we also define the ellipsoid with centre theyloantre

E=Eo={xeX: Y [EP(0P =1},
]

inside which the points have generalised barycentric éoates with/,—horm< 1.

Example 4.17(Four points inR?) (See Figs. 4.1 and 4.2) Suppose, without loss of

generality, that
o= ((o)- (o) () ()

where there are no restrictions ¢ab). The generalised barycentric coordinates
(indexed by the points) are given by the linear polynomidlé4dl0). We observe
that these coordinates depend continuouslyaph) € R2.

If the convex hull of the points is a quadrilatef@li.e.,a,b > 0 anda+b > 1,
then the polytop&s (which depends continuously @) has four vertices, one of
which lies on the edge frorf0, 0) to (0, 1), namely

Eon(%Y) =Eap(xy) =0 <= (xy)= (&1 0).

Thus we conclude thag circumscribes the boundary @ with one point on each
edge. The barycentre of the verticesNy is notbg = %(aJr 1,b+1) in general,
since the vertices are

ath-1 0 2 a1
<2a+obl> 3 ( at+b-1 ) ) b2+l | a;i)l .
a+2b—1 b1 a+l
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Fig. 4.2: The point®, Eg,No,Co for Example 4.17 witt{a,b) = (0,0),(3,3).(3,9). (£, 2).

Example 4.18(The vertices of a regular polygon) (see Fig. 4.3). et) be n
equally spaced unit vectors B?, say

v = COS*’ i=1,....n
J SInnJ bl DI} .

&(X) = (% 2v)) + 7,
so thatNg is then—sided regular polygon (inscribing a circle of radiy§2cos? )
given by

. 1  [cos?(j+13
No =confw;: j=1,...,n}, W; ::—m (sm((JJJrg)))’
n

Then

andEg is the disc of radius = |/ "5 centred at 0. Heré&;(v;) =
By writing the expansion as

(nE,- (X)) =

D\I—‘

1 1
Z nEJ pj> ﬁ

™5

we can obtain the limiting case (of points on the unit circle)

1

2 1 2n
x=or [ E0gvede, oo [T Ea(d0 -1

where
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cosbO
sin@

&g 1= Vp, v9::< >, &o(X) :==2(x,vg) + 1, 0<o<am

Here the coordinate® are nonnegative on the disc with centre 0 and ra%ius

OIS

Fig. 4.3: Then = 3,4,5,6 equally spaced point3 of Example 4.18, witiNg andEp.

We have the following analogue of Proposition 4.4.

Proposition 4.10.(Affine maps). Let AX — Y be an invertible affine map between
affine spaces X and Y, a®= (v1,...,vn) be points in X with affine span X. Then
the canonical barycentric coordinates f@ and A9 = (Awy, ..., Av,) satisfy

EROAX) =E%(x),  WxeX.

Proof. Write Ax= L(x—bg) +a, whereL is a linear map (on the vectorsX), and
be := % 3;vj is the barycentre o®. Then the barycentre &0 is

bao = i;(uvj o) +) =L( 3 (- be) +a=a

and soAX—bae = L(x—bp). Let @ = (vj — be)’j‘zl, thenA® —bpo = L(O — byg),
and using (4.11), we obtain

_ 1 _ 1
£ (A% = ™ (Ax—bao) + = = & * % (L(x— bo)) +
- 1
= (x—bo) + = = &P (¥).
O

A similar argument shows th@ and&® have same symmetry group (Sge2).
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4.8 The Bernstein frame

Here we index the generalised barycentric coordinatesiferd 4+ 1 points@, with
affine sparX = RY, by the points that they correspond to, i&% = (& )vco. Let
IM,(RY) denote the polynomialR? — R of degree< n. Since

X= Z S(X)V, z &) =1, (4.28)

ve®@ veO

it follows that (&, )vco spangTy(RY). More generally, for anp > 1, the polynomials

E=M&r  lal=Ya=n (aez®)

spaniTy(RY). Here thea € Z€ aremulti-indices By the multinomial theorem,

o=z (e (@)-a

Thus the(" ™ 1) polynomials (which spaiiin(R%))

BO = B, = ('g'>5“, jal=n, (4.29)
form apartition of unity, which is nonnegative on the regidly given by (4.27).

Definition 4.5. We call the polynomial§Bg )|q|—n Of (4.29) theBernstein frame
(of degreen) for I,(RY) given by the point®.

By construction (and a dimension count):

The Bernstein framéBq ) /- is @ frame (spanning sequence) fig(RY). It
is a basis if and only i® consists ofi + 1 affinely independent points Y.

Example 4.19(Bernstein basis) When the Bernstein frame is a basis@.is.d + 1
affinely independent points iRY, then it is the usuaBernstein basisFor example,
whend =1, © = (0,1), we haveép(x)1— x, &1 = X, which gives the univariate
Bernstein basis o

Bn_j ) = (1-x" ¥, 0<j<n,

and wherd = 2,0 = ((0,0),(1,0),(0,1)), we have
00 (%Y) =1=X=Y, §1oXY) =% &onXy) =V,
which gives the bivariate Bernstein basis

Bin_j—kjj(X) = (1—x—y)"I7hdy* 0<jk<j+k<n.
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Example 4.20(Vertices of the square) Whéis the verticeg0,0), (1,0),(0,1),(1,1)
of the unit square ifR?, thena= b = 1 in Example 4.17, gives

1 1
00 = Z(*ZX* 2y+3), (1,0 = Z(ZX* 2y+1),

1 1
Sop = z(=2x+2y+1),  fuy=(2x+2y-1).

The corresponding Bernstein frame for the bivariate quadrhas 10 polynomials
(a basis has 6). However, the Bernstein frame shares the siyiamof the square,
whereas a Bernstein basis cannot.

4.9 Properties of the Bernstein frame
The Bernstein frame shares the following well known and wisafoperties of the
Bernstein basis. Led, be the multi-index which is 1 at, and O at all other points.

Proposition 4.11.The Bernstein framgBy ) q—n Can be calculated recursively via
BC{ = %EvBafe\,; BO = 17 (430)
ve

and expressed in terms of the Bernstein frame for polynerofadlegree A 1 via

ay+1

=Y ——Bgte,- 4.31
3 T 1% (4.31)

a

Proof. We calculate

laf-1

V;EVBG_QIZV;(G_@)EU:VGZ/&(|g|>éa:Ba7

and, usingy, & = 1, that

la! ay+1 |a+e ay+1
By =B 5 = Z/ifuf — 75“4’9\/: I A— =] ‘e,
=B 2 8= 2w YT Dl v tarent & lal1tere

O

Let Dyf denote the directional derivative éfin the directionv € R9. We recall
thatv — Dy f is linear.

Proposition 4.12.(Differentiation). For uv,w € V, we have

Dv-wéu = &u(Vv) — &u(w) = &y(u) — Ew(u).

Thus the Bernstein frame satisfies
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Dyv-wBqa = |a] Z (EU(V) - EU(W))BC(—Qy

uee

Proof. Sinceé, is affine

(Dyv-wéu)(x) = lim SuX+t(v—w)) — &u(X)

t—0 t
— »![;% EU(X) +t£u(V) _ttEU(W) B EU(X) — EU(V) _ EU(W)

By the product and chain rules, we have

af!
al

|
D [0 = a7 3, e )~ )

=la] 5 (&0~ @(w))i'f'jff

=|a] E(Eu(v) — &u(W))Ba-—e,-

I:)v—wBor =

g

4.10 The generalised Bernstein operator

For a Bernstein fram@By ) 4/—n given by pointsd in RY, with convex hull
T =conv0O),

we define the deneralised Bernstein operator B, = Bng : C(T) — IMy(RY) of
degreen > 1 by the usual formula

a
Bn(f) := Baf(Va),  Vg:i= ;ﬁv, (4.32)
ve

la=n

which is equivalent to

Vit
Bn(f) = f(Q)gvl...gVn,
V1€0 VheO
This has thepositivity property
f>0 onT=cony®) — B,f>0 onNg, (4.33)

and reproduces the linear polynomials (see Example 4.21).
We now show that the generalised Bernstein operatdedggee reducing i.e.,
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...............
---------
--------------
-----------
.......

............
....................
............

.......

...........
.................
.........

Fig. 4.4: The point§Vy }|4|—n Used in the definition oB,y f, wheren = 7 andV is the vertices of
a triangle, square, pentagon and hexagon (respectively).

Bn(f) € M(RY), Vel (k=0,1,...).
Define the univariate and multivariate (falling) shiftedtfarials by

M= x(x- 1) (x-n+1),  [alf = []la?,

veV

and the multivariate Stirling numbers of the second kind by

S(Tvﬁ) = |_| S(TV,BV),

veV

whereS(t, By) are the Stirling numbers of the second kind. We note that

St.B)=0, BZ£rT, (4.34)
and define
<g|> —0, a¥o. (4.35)
These are related by
a" =y 1,B)al’. (4.36)
Bt
Lemma 4.2.For any 1 and n, we have
5 at(9)ee = 5 srpmPes @.37)
lal=n B<t

Proof. Since[|a|]|/3|(‘g:g‘) = (19 [a]P (without restriction ona and B), (4.36)
gives

5 seplal® (56N = (1) 5 swpiar = (7))o

B<t B<t

Thus, we calculate
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C;ﬂw(g)@: S ZS(T’B”“”‘;('g:g')E“

lal=nB<t
a_
— 5 SEB)NPE Y (' B')s“-ﬁ — 5 ST,
gt 4 a-B fizs
with the last equality given by the multinomial identity. a0

Observe that (4.28) is equivalent to the reproduction fdanfar affine functions

f= %f(v)fv, vf e My(RY). (4.38)

Theorem 4.6.(Degree reducing). The generalised Bernstein operatpisRlegree
reducing. More precisely,

1Bl vl
Bu(eh)=Nrer s s ey per (4.39)

0<y|<|BI

where W, ..., Wn, is the sequence of points inV, and

a(y,B) := <B¥M>EH(W1) (éNm)me(wm)S(rﬁ o T, Y).
1=Buy [Tl =Bum 1 m
(4.40)
Proof. Since eacly, is an affine function, anéy(v) = & (w), we have
AT N ' N
Gulva) = & 3 157V) = 3 7élv) = 3 foréw)

and the multinomial identity gives

€= (3 araw) "= 5

weV

= 3 ey (B (B T

_ ; ; 5
0By [T B \ T2 m jal

Thus, by rearranging (4.32) and Lemma 4.2, we have

ml)gfl(wl)..(%”m)gﬂm(wm) > 01“:;""(”)5“

T]_ m \a\:n a

Bn(EB) = ’ <
[T1[=Bw;  [Tm[=PBam

_ lmg&vl ... lelZﬂNm (B;”f) EM(wy)--- (é":) & ™ (Wm)

[n]\vl
WS(TH- o+ Tm, Y) €Y
y<T1+++Tm
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HereBn(&P) is written as a polynomial i§ of degree< |8/, so thatB,, is degree
reducing. The terms of degré@| can be simplified using the multinomial identity,
&v(wj) = &w; (v), and (4.38), as follows

I8
o . ..lel:me <B1\-I;I_l)ET1(Wl) e <B‘[‘_’:T> Erm(w )[n}p‘ Er1+ +Tm
1Bl m . _ y Bl m |
% I—II<T'|§B\N- (ﬁ;livj)frJ (V)& J) - [:]M (Ve EV(WJ)EV)ﬁW

| m Bu, [n] !Bl

- rl(v;swj )g) ™ - I M = e

By collecting the terms of degree | 3|, we obtain (4.39). Here, (4.34) allows us to
remove the restrictioy < 11 + - -- + T, and there are no terms of degree 0 since

S(1,0) =0. O

Since[n]M = 0, |y| > n, the formula (4.39) implies tha, is degree reducing.
Example 4.21(Linear reproduction) Foi3| = 1, we have
Bn(&v) =&,  WeV, (4.41)
i.e., B, reproduces the linear polynomidik (RY) = spar{&,}. This is equivalent to

x=S Bg(X)Vq, Ba(x) =1, xeR% (4.42)

lal=n lal=n
Example 4.22(Quadratics) Fo[B| = 2, we recallS(1,0) = 0, §(2,1) = 1, so that
a(ey,2ew) = E2(v) = £2(u), aleu,8,+8w) = &u(V)&(W) = (&véw) (),
vV # w, and we obtain

e = (1 0)E0 LS PWE, =2 (@)

Corollary 4.2. (Convergence) For all polynomials f,Bf) — f, as n— oo.

Proof. It suffices to considef = 8. Forn > |B|, (4.39) gives

[l WO

Where[mii‘—l,%w‘l:O(%),asn%oo. O
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The spectral structure &, can easily be deduced Theorem 4.6 (see [DW15]).

Notes

The canonical coordinatesvere introduced in [Walll]. They allow the theory of
frames to be extended to vector spaces (without an inneuptpoh a natural way.

Exercises

4.1.Dual sequenced_et (fj)jc; and(Aj)jes be spanning sequences for a vector
spaceX and its algebraic dua{’, respectively, with Gramian

G:=A(f)]=AV, Vi=[f]:F =X, A=(}):XTF.

Show that the following are equivalent
(@)VA = Ix.

(b) f=3;A5(f)fj, Vi eX.

(©A =3jA(f)A;, VA e X\

d)G? =G.
(e)V =VG.
() A = GA.

4.2. Show that if@ is a finite frame forZ, with frame operate$=VV*, then then
the canonical inner product is given by

(f.9)o = (S 2f,S2g)=(f,S'g), Vfge. .
Hint: Usec? (f) = (f,S71f)).

4.3.Let © be a set ofd + 1 affinely independent points with affine spXn and
£ = (v)veo be the corresponding barycentric coordinates. Supposétha(y;)
is a sequence of points @, with eachv € © appearing with multiplicitym, > 1.
Show that the canonical barycentric coordindi§s for ¥ are

1
& = Eév when ¢ =v.



Chapter 5
Combining and decomposing frames

We now give a list of ways in which two or more frames can be doebto obtain
a new frame, for which the frame and its dual are related intarabway to those
of its constituent parts.

Given a frame, these methods offer a way of decomposingatsimhpler parts.
Sometimes this can be done severaldifferent ways, and at present there is no
coherent decomposition theory for frames (or tight frames)

The inner product on the orthogonal direct suffi & .72 and the tensor product
JA ® st are given by

((f1,01), (f2,02)) := (f1, f2) +(01,02),  V(f1,01),(f2,Q2) € JAD 5,

(fi@o1, fo@92) == (f1, f2)(01,02), Vii®o, oo € 74 ® 2.

If no confusion arises, then one can identiff and.># as subspaces o¥7 & .74,
and writef; or f; +0 in place of( f;,0), etc.

5.1 Unions

The(disjoint) union of finite frames® = (f;);cj and¥ = (gx)kek for 741 and %

PUY = ((g)>(:k>)jelkeK G.1)

is a frame fgr the orthogonal direct su#f & 773 (which is indexed byl UK), with
dual frame U ¥, and

Gram @) 0

Gram @ UY) = Gram(®) ® Gram¥) := ( 0 Gran{lﬂ)) . (5.2)

Conversely, if a frame fag?” has a Gramian matrix which can be block diagonalised
as in (5.2), for some partitionin@ U ¥ of its vectors, ther® andW are frames for

99
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their spanss# and.”3, which are orthogonal complements, i.6%, = 54 © 523,
and the dual frames @ andW¥ are given by the corresponding dual vectors of the
original frame (see Exer. 5.2).

Example 5.1The frame bounds satisfy (see Exer. 5.4)
Apuy = min{Ag, Ay}, Bouy = max{Boe, By},
and so a union of normalised tight frames is again a nornthtigat frame.

Example 5.2In the (extreme) case when Gré#) is diagonal, we have

%z(p@spar{fp}, = o0

and® is an orthogonal basis.
The union is a natural first candidate for decomposing a frame

Each frame can be uniquely decomposed into a union of fraomesthogonal
subspaces (each corresponds to a component of the franfedafréh3).

If @ =(f;) and¥ = (gk) are finite tight frames for#, then so is the frame
consisting their union as a subset#f. In [LMO14] a finite tight frame for7 is
said to bedivisibleif it can be partitioned into two tight frames fo¥’, i.e., it has a
proper subset which is a tight frame fe#°, and otherwise it iprime Clearly, every
finite tight frame can be partitioned into prime tight franfg®ugh not uniquely).

5.2 Direct sums

We consider two notions of the sum of frames: thiect sum andsum(see§s.5).
The first of these requires that each summand have the saree sed and the
second has no counterpart for infinite dimensional spaces.

Definition 5.1. Let @ = (¢;)jes and¥ = () je be frames forr7g and 72, with
the same index sét Then their(inner) direct sum is

¥ = (¢ +Yjjes C DA
The direct sum may not be a frame fefff & 72, e.g., when
dim(A4 @ 74) = dim(J4) +dim(22) > |J).

A necessary and sufficient condition (see Exer. 5.8)sfintness i.e,
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ranV*) NnranW*) = {0}, V= [@ljcs, W= [Yjljes. (5.3)
If @ W is aframe, i.e.® and¥ are disjoint, then we say

@ @ W is anorthogonal dilation of @ and¥,
@, ¥ areorthogonal compressionof @ oW,

The direct sum othree(or more) mutually disjoint frames is not well defined, in
general. For example, the frames

(Dl:(elaoae270a)a ®2:(07el707e2)7 <D3: (91791762762)

are mutually disjoint frames fdR?, so the direct sum of any two is a basis ®f,
which cannot be disjoint from the remaining frame (by a disien count).
The stronger condition afrthogonality (see Definition 3.5), i.e.,

ranV*) L ranW™),

leads to a direct sum for which the dual frame is the direct efithe duals.
The direct sunip; @ = 1@ - - - ® P, of mutually orthogonal frames fotA, . .., 4,
can be defined in the obvious way, and is associative, since

ran([@ + i)") = ran([@)]") + ran([y;]°).

We observe by definition (and Proposition 3.2) that:

Disjointness and orthogonality depend only on the frame® gimilarity.

Lemma 5.1.(Orthogonality) Let® = (¢;)jes and¥ = () je3 be finite frames for
764 and ., with V = [¢;] and W= [(;]. Then the following are equivalent

1. @ and¥ are orthogonal (strongly disjoint), i.eran(V*) L ran(W*).

2. The canonical coordinates df and¥ are orthogonal, i.e.ran(Py) L ran(Py).
3. Gram @°@") Gram(Wca") = 0.

4 WV =0,ie,y(f,@)y;=0Vf ecA.

5. VW' =0,i.e,y;(g,¢;j) ¢ =0, Vg€ 7.

Proof. 1.<=>2. We observe that rg*) = ker(V)* = deg(®)* = ran(Py), and,
similarly, ranW*) = ran(Py).

24=3. SincePy = Gram(®") and Py = Gram(¥°@"), this follows by the
fact that two subspaces are orthogonal if and only if the pecbdf the orthogonal
projections onto them is zero.

3.=—4. By the factorisation (3.12), we have

S (£, @) =WV f =WRy(VP)"f =W(RyPo)V"f =0.
J
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4.=55. We have/W* = (WV*)* = 0* =0.
5=1.[fWV* =0, i.e . W(V*f)=0,Vf, then

ran(V*) C ker(W) = (ranW*))* = ran(V*) L ranW").

O
Theorem 5.1.The (inner) direct sun® @ W is a frame for A & 74, with
Soaw(f+0)=So(f)+Su(9), Vfesa, Ve, (5.4)
or, equivalently, dual frame given by
(DY) =daW (5.5)
if and only if @ and ¥ are orthogonal. In this case, the frame bounds are
Apgy = Min{Agp, Ay}, Bogyw = max{Bge,By}, (5.6)

and so a direct sum of normalised tight frames is a normaltggd frame.

Proof. Expanding gives

Seaw(f+09) = So(f) +Sw(@)+ ) (. @)Y+ (0. ¥)) @,
I ]

with the last two sums depending only érandg, respectively. Thug and¥ are
orthogonal if and only if (5.4) holds. In this case (see Exet), ® ¢ W is a frame
for oA ® 74, with frame bounds (5.6). The condition (5.4) is equivalen(5.15)
for the spanning sequendgeg ¥, i.e.,

(@ + 0= Spt (@ +0) = SpH (@) + S,1(0) = @,

and similarly(0+ ; J'= @;, which gives (5.5). O

Example 5.3(Gramian) The Gramian and canonical Gramian of a direct suisig

Gram @ ¢ W) = Gram( @) @ Gram¥),
ran(Poqy) = ran(Py) -+ ran(Py).
Therefore, wherp andW are orthogonal, we have
Poow = Po + Py,
and the canonical coordinates satisfy

c®¥(f4+9) =c®(f)+c¥(g).
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Theorem 3.5 can be restated in terms of direct sums as follows

Theorem 5.2.Given a finite frameP = (¢;);cy for 27, there exists an orthogonal
frameW¥ = ()jcs for some?’, such that® ¢ W is a basis forz @ 7, with the
same frame bounds &. In particular, @ and its dual are the orthogonal projection
of the biorthogonal system given By® W and its dual.

The aboveV is an example of what will be calledcmplementf @.

Example 5.4(Decomposition) Let? = (f;)jcj be afinite frame, witv = [f;], and
P:FJ — Y be any orthogonal projection onto a subspace ofan Then® is a
direct sum of the orthogonal frames with synthesis opes&t®andV (1 — P), since

ran((VP)*) =ran(PV*) L ran((V(I —P))*) =ran((l — P)V").

Thus a frame can be decomposed into a direct sum of orthogoeatiimensional
frames in many ways. Therefore the usefulness of direct $anmdecompositions
seems very limited, unless some additional structure isgmtg(see Example 11.7).

Example 5.5Consider the frame of four equally spaced unit vectoi&3n

o- (3 B[ [2)

and the frame#4 andys for R? given by
1111 1 11
V2 V2 V2 V2 V2' V2’2

These are mutually orthogonal tight frames, e.g.,

«_(10-10Y/ 1 1 1 1)\_ (0
VW—(01 0—1>(ﬁﬁﬁﬂ)_(o>’

with the same frame bound. The tight franes; Y4 and® & Y4 for R2 are the lifted
four equally spaced vectors (see Example 5.9) and the gertitthe tetrahedron.
The direct sumi, & Y consists of two copies of an orthonormal basisE3r and
® @Y @Y is an orthogonal basis fd*.

= ) H=( )-

Nis

Example 5.6Let @ = (1,1,1) which is a (tight) frame foff. Both of the frames
l'IJl: (17_110)1 %: (27_17_1)
are orthogonal t@p, but neitherdy and% are similar, nor ar& & ¥ and @ ¢ Y4.

We now consider two special cases of the direct sum: when ansunah is for a
space of 1-dimension (lifting) and when the direct sum issisbh@omplements).
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5.3 Lifting

The idea of lifting is to take a frame, and add an additionahgonent to each of
its vectors, so as to obtain a frame for a space of dimensiemiyher, i.e., take the
direct sum with a frame for a one—dimensional space.

Definition 5.2. Let @ = (@) j<J be frame forZ’, and¥ = (a; ) jcj be a frame for
A =spady}, Y 0. Then® ¢ ¥ is alift of @ to &% (by W) if @ and¥
are orthogonal, i.e.,

> aig =0, (5.7)
]
and is asimple lift when all thea; are equal.

Since the lift of a frame is an inner direct sum, Theorem 5Svegthat the dual
frame of the lift of ® by ¥ = (a;y)es is the lift of @ by

- 1
Caiwlicn = gys TP

A finite frame(¢) is said to bebalancedif y ; ¢ = 0. Clearly, a balanced frame
cannot be a basis, and a frame is balanced if and only if itsfchrae is balanced.

Example 5.7(Simple lifts) A frame has a simple lift if and only if it is bahced,
and (see Exer. 5.5) a fran@ = (f;) is a simple lift if and only if

Zfﬁéo, <ij,fk>:C, vk.

] ]
Example 5.8(Repeated lifts) If® = (¢)[_; is in 4, then condition (5.7) is that
a = (aj) is a nonzero vector orthogonal to the rows of the mdtpix. . ., g]. Thus

a finite frame can be lifted if and only if it is not a basis. Mover, since
Ay =By =YY |ajl?,  ¥=(ajy),
]
the lift by ¥ has the same frame bounds@gprovided

Ao < |W[? |ajl? < Bo.
]

In this way, one can successively I until a basis is obtained, which gives a
simple proof of Theorem 3.5 (also see Proposition 5.1). kample, the frame

o~ (B[ o= (5[0 -

for R? has frame bound&e = 2, Be = 3. The vector = (2¢, —c, —c) is orthogonall
to rows of the matrix with these columns, and so lifti4o a basis foiR3, i.e.,
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11 1] 1 1/3 1/3 1/3
QR e[ i)
2c| |—-c| |-c 1/(3c)| |-1/(6C)| |—1/(6C)

This has the same frame boundsfai 2 < 5; |aj|? = 6/c|? < 3, i.e.,% <lel < %

€

Example 5.9(Lifted roots of unity) Let® = (u; )’j‘:l ben > 3 equally spaced unit

vectors inR?. Since these vectors sum to zero, they can be lifted by addthigd
coordinate, say; lifts to v; = (uj,a), a > 0. The condition ora which ensures

that (vj) is tight isAp = § = nja?, i.e.,a = \%2 Thus we obtain the equal norm
tight frame

omj . 2m 1.

— —,—)]=1,...

which we call thdifted n—th roots of unity (or thelifted equally spaced vector$.

Fig. 5.1: The liftech equally spaced unit vector & for n= 3,6,9.

5.4 Complements

Every normalised tight frame has a unique complement, aod feame is similar
to a unigue normalised tight frame. Thus we can define a cangie (which is
unigue up to similarity) for an arbitrary frame. This can beught of as anaximal
orthogonal direct summand, or as the direct sum of a sequerlifes which take
the frame to a basis.

Definition 5.3. We say that finite frame® = (¢;) jey and¥ = ({)j) ey for 741 and
7%, with the same index s&t arecomplementsof each other if they are disjoint
andJsA @ i = (>(J), i.e., dimsA) +dim(2) = |J].

For normalised tight frames this is equivalent to Definitth6. We recall (see
§2.9) that thear—partition frame is the normalised tight frame of nonzero vectors
which is the complement of

oy times ay times




106 5 Combining and decomposing frames

Disjoint framescannotbe similar, and so, in particular, no normalised tight frame
is equal to its complement. By way of contrast, this is nat fruinfinite dimensions,
e.g., [Cas98] shows that every frame for an infinite dimemaidlilbert space can
be written as the direct sum of three orthonormal bases.

Here are some equivalences that follow easily from the presvdiscussion.

Proposition 5.1.Let ® = (@) jc, ¥ = (j) jes be a frames for#, 7, with index
set J, and synthesis maps[¢;], W = [(;]. Then the following are equivalent

. @ andW¥ are complements.

. @@ and Y@ gre complements.

. Gram(@°@") 4 Gram @) =|.

2(3) =ran(Pp) @ ran(Py).

.dim(s4) +dim(%) = |3] and VW = 0.
.®@Wisabasisand® e W)= oo .

W =Q(l — Gram @), where Q is 1-1 oman(l — Gram(®a")).
W=YUs - dY, k= |J—dim(s4), where¥ lifts e &-- & ¥_1.

CO~NO U WNPE

5.5 Sums

Thesumof frames requires that at least one of therhatanced

Definition 5.4. Let @ = (¢;)[%; and ¥ = ()2, be frames for#4 and .3, at
least one of which is balanced, i.e., has vectors which surero. Then theisum
is

oly= ( (5.8)

1 1
— @+ — k) <o
VAN A

This is a frame ohyny elements for# & 7%, which is tight if the summands
are tight with the same frame bound.

Theorem 5.3.The sum® + ¥ defined by (5.8) is a frame ofm, vectors for 4 @
7%, which is balanced if and only if boti#® and ¥ are balanced, with

Spiw(f+09)=Sof+Spg,  VfesA, Vge i,
or, equivalently, dual frame given by
(PIYy=0p 1.
The frame bounds are

In particular, a sum of normalised tight frames is a normetigight frame.
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Proof. Let Sbe the frame operator fd¢o ¢; + Byx), with a, 8 scalars, then
ST+ =3 3 (1+0.a0,+Buu) (g +Bik)
]
= lafnaSof+ap(1.3 @) 3 b+ aPla y o 3 o+ I nsug
] ]

If ® or ¥ is balanced, and we chooge= then this reduces to

8=
S(f+9)=Sef+Sp0
By Exer. 5.4,0 + W is a frame for73 @ #, with the asserted properties. O
The sumt also satisfies the following rules
(O1F D) FO3=D1 F (D1 B3),  a(P1F D) = (ady) +(ady).

Example 5.10Three equally spaced vecto#s in R? are a balanced tight frame.
Taking the sum ofp with itself gives the following tight frame of 9 vectors f&*

cos% |

Example 5.11(Roots of unity) Then-th roots of unity sum to zero, and so form
a balanced tight frame fof. Let w := €¥/™, = = e¥/™ heny,ny > 2 roots of
unity. Then® := (\ﬁwl) and¥ := (\ﬁu )¢z, are balanced normalised tight

frames, and so their sum

~ 1 wl
O+¥ = ( [ ]) “n
Vg (K] e
is an equal-norm balanced normalised tight frameyof vectors forC2.

Example 5.12Taking d summands of® = (-3
cubeinRY, i.e.,

, %) gives thevertices of the

S\

o (-Dh
O+..-+P= (i [(_.i.)id])lﬂl ..... ]d<2

Example 5.13(Equal-norm tight frames) Clearly the sum of equal-norméais
an equal-norm frame, and by (5.9), the sum of equal-norm altsed tight frames
(one of them balanced) is an equal-norm normalised tightdra
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5.6 Tensor products

The tensor product of vector spadésandW is the (abstract) vector spavex W
with the property that any bilinear map frovinx W factors uniquely througd @ W.
There is an associated bilinear map

®:VxW-=VW: (f,g)— feg

whose imaged @ g are calledrreducible tensorsand spatv @ W.

If {vi,...,vm} @and{w; ..., wy} are bases for andw, thenV @ W can be realised
as themn-dimensional vector space with a basis given by (the formalb®ls)
Vi @W, 1< j <m, 1<k < n, which satisfy the distributive law

(Za,-v,-)®(Zﬁkwk)=ZZaij(vj®wk)7 vaj, B €F.
] ]

For Hilbert spaces’# and %3, the tensor productHilbert spacesA4 ® 75 is
obtained by taking the inner product 6 ® 7% given by

(f®g.00W)nem = (1,00 W) n  Vieeci, VoYe it
Definition 5.5. Thetensor product of frames® andW for 71 and.7 is
POV = (9@ Y)peco,yew C AR H>.
The tensor product of frames is a frame.

Theorem 5.4.1f ® andW are frames for774 and.7%, then® @ W is a frame for the
tensor product Hilbert space?i ® .73, with frame operator

Sosw = So @ Sy, (5.10)
frame bounds
Avgy = ApAy, Bogww = BoBy, (5.11)
and dual frame given by L
(peyy=0aY. (5.12)

Proof. For irreducible tensor§ ® g € 74 ® 5, we have

Socw(f®g) =) Zy<f®g,<p®w><p®w= > Z/(<f,¢>¢)®(<g,w>W)

QED Y QED Yic

~ (3 t@9) (T @u)y) =(Soh) e (Sh0)

PP yey

and so we obtaibysw = Se ® Sy by linearity. Since the eigenvalues of a tensor
product of operators are the products of eigenvalues ofpleeators, we obtain the
asserted frame bounds.
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Finally, the dual frame i§, , (9® ) = (Sp'0) @ (S,'Y) = e . O
Tensor products of frames with various properties inhbadse properties.

Corollary 5.1. . Let® and¥ be frames. Then

1. ® W is atight frame if and only its factors are.

2. d® W is an equal-norm tight frame if and only its factors are.
3. WY is an orthonormal basis if and only its factors are.

4. ®® W is an orthogonal basis if and only its factors are.

5. ®® WY is areal frame if and only if its factors are.

Proof. Let @ = () and¥ = (yx).
1. Use (5.11) anA < B.

2. Usel|g @ il = [l [l -
3., 4. Use<(p11 @ Yy, @, ® WK2> = <(le’ q)J'2><¢’|<17 QUk2>-
5.1f @@ ¥ is real (and¥ has a nonzero vector), then

<§0j1,(Pj2>H4’k||2: <¢j1®¢kv¢j2®¢k> ER = <(p]17(pj2> eR,
and similarly(y, , Yi,) € R. If @ and¥ are real, then clearlp @ Wisreal. 0O

Example 5.14(Equally spaced vectors) L&) ; and(wi),_, be the tight frames
of mandn equally spaced unit vectors ®?, given by
2]

l W '—coszlk Jrsinzlk
m e2) k'_ n el n e27

Vi = cosz—lTj +sin
j= m oL

where{e; } is the standard basis. By taking their tensor product

2mj 27K 21]

. 27K
Vj ® W := COS—— COS— COS—- Sin—
j & Wik m e®ert m G eL®e

+sin2—njcoszlk ® aninz—msinzlk ®
m n X6 m n e Xey,

we obtain the tight frame = (@) of mnunit vectors foiR*, given by

cos%cosz%k
o cos sin 2K j=1
k=~

) sinZ cos2k | * k
ﬁsin%

m n

S...,m,
1,...,n

sin

Example 5.15(Orthogonal polynomials) Tensor products of orthogondyipomi-
als are orthogonal polynomials for the tensor product weighis can be used to
construct frames of orthogonal polynomials in severalaldgs (see [DX01]).
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5.7 Decompositions

In general, there is not a unique way to decompose a frame.

Example 5.16(Nonuniqueness) The tight frame of four equally spacedvegtors
in R? (the vertices of the square) can be written as a disjointrymlvect sum (lift),
sum and tensor product, e.g.,

=) (30 (5)
(1,-1,0,0)+(0,0,1,—1) = ((é) , (ol) ,

cLoiein=((3)(3).

(-Ll) @ (e, &)= (e1,62,—€1,—€2).

This tight frame is also divisible, e.g., it can be partigdninto two prime tight
frames

{en, &} U{—er, —&}.

Notes

The direct sum and the associated notions ofifh and complementan be found
throughout the frame literature. There can be some vani@tioerminology (when
named), e.g., the teriift is used for thesimple liftin [BF03].

Exercises

5.1.Show that a fram¢f;) is a disjoint union of tight frames if and only if eadh
is an eigenvector of the frame opera8isuch a frame is said to lemicritical).

5.2.Unions.Let @ = (¢;) and¥ = (yx) be frames for7q and.773.
(a) Show thatd U W, as a sequence i#¥7 @ 7%, has frame operat@, with

S(f+9) =Se(f)+Sp(9), VfeuA, Vge 7.

(b) Show that the dual frame U ¥, by using Exer. 5.4.
(c) Show the Gramian is block diagonal, i.e.,
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Gram @) 0
GrarT(CDul.U):< 0 Gran(l.U))'

5.3.Direct sumsLet @ = (¢) jes and¥ = ({);) jc3 be finite frames for#q and./#,
withV = [¢], W = [;]. Show that(g; + ;) is a frame for7#1 @ 72 if and only if

ranV*) NnranW*) =0,
in which case
ran([g; + ;]") =ranV*) +ranW*) (algebraic direct sum)

5.4.Supposes is a sequence 7] & 7% for which S= S= can be decomposed

S(f+9)=So(f)+Sp(9), VfesA, vge 2, (5.13)
where® and¥ are frames for#, and.J#3, e.g., the sequences

PUY, Py, oiy. (5.14)
(a) Show that is a frame fors#1 & 7%, with frame bounds
A=min{Agp,Ayp}, B =max{Be,By}.

In particular, this implies thatinions direct sumsand sumsof normalised tight
frames are again normalised tight frames.
(b) Show that (5.13) is equivalent to

SHf+9) =S (f)+S,(9), Vi+ge=. (5.15)
For the choices (5.14), this gives
(PUYr=dUP, (Payy=daP, (PIY =01y,
5.5. Show that a finite framéfj) < is a simple lift if and only if

SH£0 (Y ff)=C, vk
] J






Chapter 6
Variational characterisations of tight frames

If (fj)jes is afinite tight frame forZ’, then (see Proposition 2.1)

556 wE=g(5 ) d=damon. @

For a general finite frame, this becomes an inequality, eghalityif and only if
the frame igight. Thus (6.1) characterises finite tight frames.

Important instances (for unit vectors) include Welch boeqdality sequences,
minimisers of the frame potential, spherical half—desigherder 2, and spherical
(1,1)—designs.

6.1 Welch bound equality sequences

Let f1,..., f, ben > d unit vectors inCY (signals of unit energy). Then

N

f,, fo2> T (6.2)

n
F(f1,..., z =

HM:

which is known as th&Velch bound, after [Wel74], which used (6.2) to prove

n/d—n_ n-—d

n—-n dn-1) ©3)

2

max](f;, 1) >

Each gives a lower bound on how small tbress—correlationof a set of signals
of unit energy can be, i.e., how “spread out” the signals ldrét vectorsfy,..., fy
which give equality in (6.2) are called/BE sequenceqWelch bound equality
sequencey see, e.g., [MM93] where they are used for CDMA (code doniginul-

tiple access) systems. Equality in the Welch bound is thesenthe equality (6.1).

113
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6.2 The variational characterisation

The following extends the Welch bound and frame potent&llits (se€6.3) to the
case where the vectors may have arbitrary lengths (alsoxaretzl).

Theorem 6.1.Let fi,..., f, be vectors insZ, not all zero, and &= dim(#’). Then

n n n 2
PPAURIE (zlnfjnz), (6.4)
j=1k=1 =

with equality if and only if(fj)’j‘:l is a tight frame for7.
Proof. LetV = [fj]. We recall from (2.7) that the frame opera®# VV* satisfies

wacdS) = F 1% wace) =3 3 |y, P
J

SinceS= VV* is positive definite, it is unitarily diagonalisable withgenvalues
A1,...,Aq > 0. By the Cauchy—Schwarz inequality

wacd S = (3 Ayl = (1) (A)? < IWIPIAIP = ¢ 3 A7 = dtrace ),
J

which is (6.4), with equality if and only ik; = A, Vj, A>Oi.e.,
S=Al, <+ (fj)isatightframe forZ.
Note above, since one of the vectdfs) is nonzeroS# 0, and scA # 0. O

Example 6.11f all the vectorsf; have unit norm, then (6.1) reduces to the Welch

bound (6.2), i.e., ,
2
zz\f,,fuz (212) -5

j=1k=
Example 6.2The corresponding generalisation of the Welch bound (8.3) i

22 /4 4
max|(fj, fi) |2 > (Sellfell )2/d 5ol fell o
k -

The tightness of a finite frame can be determined from thelatesealues of the
entries of its Gramian:

The vectorg fj)|_, are a tight frame for#’, d = dim( "), if and only if

3 106, W= 53 16E)° >0 65

j=1k=1

n
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6.3 The frame potential
LetS = {f € 5 : || f|| = 1} be the unit sphere it?’, d = dim(s¢). The function

n
FP:S" = [0,00) : (f)]_y =+ F(f1,.. Z f,,fk (6.6)

HM:

of (6.2) was called thérame potential by Fickus (see [Fic01]) who derived it from
aframe force(see$6.14). We recall that unit norm tight frames exist (Exampi® 2
Since a tight frame fog?’ is a spanning set (which must have at leahslements),
Theorem 6.1 implies that for > d the minimum of the frame force |%; which is
attained precisely for unit norm tight frames Fot d the minimum ofn is attained
when(fj) is a (nonspanning) orthonormal sequence (see Exer. 6.8)nmary:

Theorem 6.2.([BF03]). Let @ = (fj)’j‘:1 be n unit vectors in7?, d = dim(J7).
Then the frame potential is bounded below by

2
FR(®) > max{%,n}
with equality (a minimum) if and only if either

(@) @ is aunit norm tight frame (and hence>nd), or
(b) @ is anonspanning orthonormal sequence (and henced.

A careful analysis of the Lagrange multiplier equation®&15) shows that all
local minimisers of the frame potential give the global miaoim. This is in contrast
with many other well known potentials, e.g., the Coulomlxtestatic potential,
which do not have this property.

In view of (6.4), anormalised frame potential FP :.#"\ {0} — [0, ) can be
defined (see Exer. 6.6) on sequences of vectors which ardl zeta by

ST SR [(F, o2
("4 1Ii112)°

This leads to the following extension of Theorem 6.2.

<FP(fy,..., f) = (6.7)

[o RN

Theorem 6.3.([Wal03]). For n > d = dim(#’) the normalised frame potential
FP(fq,..., fy) attains its minimum 0% if and only if (fj)"_, is a tight frame for
2, and its maximum df if and only ifsparfj)|_, is 1-dimensional.

Thus the distance of the normalised frame potential fﬁ)gives a scaling inde-
pendent way of measuring how far from being tight it is (alee the discussion of
§3.8). In particular, sequences of vectors which do not §ffhare far from tight,
since

- 1
FP(fy,...,fa) > — .
AUl o) dim(span<j<n{fj})
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6.4 Sphericalt-designs and the Waring formula

We now outline some of the basic results about cubature ospihere iriR9, and its
relationship to tight frames. These are proved, togeth#r thie analogous results
for the complex sphere, it6.8. Let Hom (RY) be the homogeneous polynomials of
total degred in d real variables.

Definition 6.1. A finite subset® of the unit spheré in RY is a (eal) spherical
t—designif the normalised surface integral satisfies

/fdo f(g), VfeHom(RY), 0<j<t,
\‘D|¢em

and it is a teal) spherical half—desigr of ordert if

/fda f(@),  vfeHom(RY).
\‘D| o

Spherical designs have been studied since the 1970’s (&8 and [BB09]).
Their existence for every(andd > 2) was proved by [SZ84] (see Theorem 6.5).

Example 6.3The 12 vertices of theegular icosahedromgive a spherical 5—design.

Example 6.4Then equally spaced vectors R? are a sphericgin — 1)—design, and
then =t + 1 equally spaced lines iR? give a spherical half design of ordet. 2

The following simple observations are very useful (anchilinating).

e If f € Hom;(RY), theng= | - ||2f € Homj,2, and the restriction of andg to
the spheré& are equal. Thus ifp is a spherical half—design of ordgrthen it is
also a spherical half—-design of order 2,t — 4, . ...

e Forj odd, everyf € Hom; (RY) is an odd function, and so has zero integral. Thus
if @ is centrally symmetric, i.e, ® = —@, then it is a spherical half-design of
order13)5,....

Fort even, asetb = {@,..., @} of unit vectors inkY is a spherical half-design
of ordert if and only if it satisfies the so called/aring formula

/2 - 4(8+2)- (d+t— )1
’ n

n
T3 Z x, @) vxeRY, (6.8)

or, equivalently (see [Sid74], [GS79], [Sei01])

1:3-5---(t—1)

n n 2
]Z Z P4 = d(d+2)...(d_|_t_2)‘ (6.9)

1 There is some variation of terminology in the literature, éSgidel [Sei01] refers to a spherical
half-design of ordet as a “sphericat—design”. Spherical—designs whose number of vectors
satisfy the lower bounds of [DGS77] are said tatigit (see [BBHS10] for a classification).
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Fort = 2, these become

n

d n
HXHZZEZ (%, @)%, vxeRY, Z

_n
aw =3 (6.10)
j=1

HM:

i.e., @ is a tight frame by definition, and by equality in (6.4), resipesly.

A spherical half—design of order 2 is precisely a tight fraofelistinct unit
vectors inRY (equivalently, a WBE sequence of distinct vectors).

We now consider the relationship between tight frames ahdrigal 2—designs.

Proposition 6.1.Aset® :={@, ...} of unit vectors irRY is a sphericaP—design
if and only if it is a balanced tight frame, i.e.,

n n n n
Zl(Pj =0, Z Z @, @)= (6.11)
= J=1k=1

Moreover, such ap is also a3—design if it is centrally symmetric.

Proof. The second condition in (6.11) ensures thais spherical half-design of
order 2 (and hence 0). It therefore remains to add to this ditton which ensures
@ is is spherical half-design of order 1. Since the homoges@alynomials of
degree 1 have zero integral, and are spanneg|, by (-,y),y € RRY, the condition is

n ( } n }< n ' > V eRd
lepy nz (p]’ n ]Zl(pjvy7 y )

i.e., Yj@ = 0. We already observed thatd® is centrally symmetric, then it is a
spherical half design of ordér=1,3,5,.... O

6.5 Other characterisations of sphericat—designs

The description of homogeneous polynomials on the sphacktteeir integrals) is
intimately related to the harmonic polynomials ($d6.5 for details). From this
connection come various characterisations of spherchsigns, which we briefly
consider. Each homogeneous polynonfiad Hom (RY) = 12 (RY) can be written
uniquely

f0="5 X7 fizi(x), iz €Harm p(RY), (6.12)

0<j<

where Harm(RY) = J#(RY) are the harmonic polynomials of degrieeSince the
harmonic polynomials of different degrees are orthogoriti vespect to the inner
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product given by the normalised surface measumn S, integratingf gives
/fda— /ft Jydo = { . tisodd;
S fo, tiseven

Therefore® = {¢;} is sphericat—design if and only if

0<J<t

yif(g)=0,  VfeHam(RY), 1<e<t, (6.13)
and is a spherical half-design of ordef and only if

yif(@g)=0 VfeHam(RY), (=tt-2...(¢(>1). (6.14)

A set® satisfying (6.14) forfo =t,i.e.,3; f(¢) =0, f € Harm(RY), is called
aspherical design of harmonic indexXdee [BOT15])

By using basic properties of reproducing kernels (&E&3,5§16.4 for details),
[SWO09] have converted the condition (6.13) into a variatiarieracterisation of
sphericat—designs similar to that of Theorem 6.2.

Theorem 6.4.([SW09]) For eacly, let K[ ) be a positive scalar multiple of
the reproducing kernel fodarmy(RY), @ {(pJ |1, and define A: S" — R by

; Z Z (@, %)) (6.15)

Then A(®) > 0and @ is a spherical t—design if and only i &b) = 0

Proof. Let( ) be an orthonormal basis fo#; (RY). Then Proposition 16.3 gives
KOy =a Ty,  a>0,
S

and we compute
t

A(®) = iﬁq (@ (@) = ﬂz<iémq0<§@mm>

=1j=1k=1 =

Clearly, there is equality above if and only if

Il
™M ~
! I—‘

s @) =0, vs  1<e<t,
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i.e., by (6.13),® is a spherical—design. ad

d—2
Example 6.5By (16.22),K,§d> is a multiple of theGegenbauer ponnomiaIéC2 ),

By (16.40), we may takKid)(z) = zandKéd) (z) = dZ — 1, which gives

A(®)=3 Y BB+ (d(e, 9% 1)
J J

= 1% 4-d , 2_”2>.
II;%H + <ZZ<¢ BTy

This is clearly minimised, i.e., gives a spherical 2—desifggnd only if (6.11) holds.

Example 6.6Restricting the sumin (6.15) to=t,t —2,... (¢ > 1) and to/ =t gives
a nonnegative function& (@) for which B;(®) = 0 if and only if @ is a spherical
half—design of order and a spherical design of harmonic inderespectively.

6.6 The existence of cubature formulas

Sphericat—designsp = { ¢ }?:1 and their variants are examplesaofbature rules
Their existence (without any estimatergfis guaranteed by the following result:

Theorem 6.5.([SZ84]) Let X be a path—connected topological space, antie
a finite (positive) measure on X, defined on the open sets,fuliteupport, i.e.,
¢ (U) > O for every nonempty open setdJX. For a continuous integrable function
f: X — R™ there exists a finite set of samples-AX for which

1 1
u(X)/xfd“:IAIae f(a).

Here|A|, the size of A, can be any number with a finite number of exarepti
This is a generalisation of the integral form of the meanedheorem.

Example 6.7Let f = (fq,..., fy)). For u = o the normalised surface area 8n
choosing{f1,..., fm} to be a spanning set for He(iRY) gives the existence of a
spherical half-design of orde(equal weight cubature rule féi¢ (RY)).

Similarly, by choosing a spanning set for the space of famstintegrated by the
cubature rule, one has

Sphericat—designs, spherical half-designs of ordand spherical designs of
harmonic index exist, for all values of.

The construction of such designs (cubature rules) with lsmehbers of points
(and estimates the smallest number of points) is a subjemgding interest.
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6.7 Tight frames of symmetric tensors

Here we extend (6.4) to an inequality, for which equalityegiva tight frame for
the symmetric tensors in'. 7 .= # ® --- @ # (t times), and a cubature rule for
integration of certain homogeneous polynomials on the repfse€56.8).

For simplicity, we follow the development 6.2 as closely as possible. Thus
we define thesymmetric tensorsof rankt to be the subspace of 7 given by

Symt(#) :=sparfv*':ve #}, V':=v®.--@v (ttimes)
This Hilbert space has dimension

t+d-1

dim(Synt (7)) = ( .

), d = dim(2), (6.16)

and we recall (seg5.6) that its inner product satisfies
VW = (vw)t,  YWwe 7. (6.17)

The dual spac&Synt (#))* = Symt(#*) contains(-,v)®', ve 22, and its inner
product is given by

(W Cow) &Y = (w vy, YW,we . (6.18)

There is a vector space isomorphism between'Sy#f) and the space? (7, F)
of symmetric t—linear maps from #* — [F which is given by

AN L, A e) L(ve,.. ) = A(Ve) A ().
We define the space bbmogeneous polynomialen J# of degred to be
net) ={L:Le Z(x.F)}, Lio#—>F Lv)=L\...,v).

The mapL — L above gives a vector space isomorphisft.#,F) — ¢ ().
The inner product ol (#) induced from that oiSynt (#’))* via the above
isomorphisms is thapolar (or Bombieri or Fisher) inner product, which is given
by
<<'3V>t7 <'7W>t>0 = <<'7V>®tv <'7W>®t> - <\va>t' (619)

It follows from (6.19) that the apolar inner product satisfie

<pa <'3W>t>0 = p(W)v vp € nto(‘%&)v Yw e %7 (620)
i.e., (-,w)t is the Riesz representer of point evaluatiomawith §(z) := g(z), the
apolar inner product is given by (see Exer. 6.17)
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(1.9, = 5 (100 =+ 5 X1 Vpegq;

laf=t

Dag(0), Vf,ge M (FY). (6.21)
In particular, the monomial§z” } 4 are orthogonal wit{z®,z%), = %

Theorem 6.6.Fixt € {1,2,...}. Let fi,..., fn be vectors in7#, not all zero. Then

n n n 2
JZ RURY )= (twll)(]zlumz) , (6.22)
2, 4 -1y \ 2

with equality precisely when any of the equivalent condgibolds

(@ (f®t)J 1 is a tight frame for the symmetric tens@gnt (7).
() ((, f,>®t)J 1 is a tight frame for(Synt(#))* = Synt (7).
© (. f)t )T:l is a tight frame for1? (#) with the apolar inner produc6.19)

Proof. Firstly, we observe thaif m) _, isa sequence of vectors in SY¢”’) which

are not all zero, since®! is zero if and only ifv= 0.
Thus we may apply Theorem 6.1, using (6.16), to obtain

n n 1 n 2
3 5 I RO 2 Gy (31671
j=1k=1 t =

with equality if and only if (a) holds. By (6.17), the equatiabove equals (6.22).
A similar argument, using (6.18) and (6.19) in place of (§.3ives (b) and (c),
respectively. O

A simple calculation (Exer. 6.15) shows that equality ir2@.is also equivalent
to the followinggeneralised Planchere@indBessel identitieglso see Theorem 6.7)

(d+t 1 n
(xy)'t = S 1er||2‘ z x, ), X,y € (6.23)
o (d+t—1) n o
X% = m Zl\@(a fi)l*, xe A (6.24)
= 4 =

Example 6.8Fort = 1, Theorem 6.22 says th(atj)’j‘:l is a tight frame for 7 if
and only if ({-, fj>)?:1 is a tight frame for its duabZ*, or, equivalently, for the
homogeneous linear polynomidiy (s¢) (with the apolar inner product), and that
each of these are equivalent to the variational conditios) (6

Fort > 1, the existence vecto(d;j) giving equality in (6.22) is not immediately
obvious (the frames given Theorem 6.6 have a special formre)n@W investigate
this question by showing that (6.22) is equivalent to cartaibature rules.
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6.8 Cubature on the real and complex spheres

Here we will show that equality in (6.22) is closely relatecctibature formulas for
the integrals of certain homogeneous polynomials overdngptex sphere. Further,
if 27 is areal Hilbert space and > 1, then it turns out that equality in (6.22) can
never be attained. In this case, there is a sharper ineg(tieorem 6.7) for which
equality corresponds to cubature formulas for the realrgphe

For simplicity, we suppose tha# = F9, and use standard multi-index notation,
e.g.,(X)s denotes the multivariate Pochhammer symbol. &cdie the normalised
surface area measure on the real or complex unit sghé&er.# = C the integrals
of the monomials it = (z,...,z4) andz= (7, ...,Z) over the unit sphere are

/Sz"zﬁda(z)zo, a 4B, /|z"|2d — Of 1+)|g|) (6.25)
For.## = RY the integrals of the monomials in= (X1,...,Xg) are
/x“da(x) =0, a¢((2z)Y, /xza do(x) = (d%)a (6.26)
S S (3)|al
Of interest here is the space of polynomiafs— F
Mg (F9) = Hom(t,t) := spar{z+— 22 : |a| = |B| =t}, (6.27)

which are homogeneous of degtda zand inz. Equivalently (see Exer. 6.17)
Mg (FY) = spar{z+— |(z,v)[* : v e F}. (6.28)

We noteflg, (RY) = 15 (RY). Recall that a homogeneous polynomiiaf degree 2
is uniquely determined by its values Brby f (x) = ||x||2 f (x/||x||), X # O.

Definition 6.2. A sequencé fj)|'_; of vectors in#’ is acubature rule for a space
P of homogeneous polynomials of degraetich adly; (), if

1 T
d = )
JiPwdot) = 5 B Z SRRy TPeR

A cubature rule for which the vecto($;) have equal norms gives anweighted
cubature rule for the integration & overS. By Theorem 6.5, these exist (take the
coordinates of to be the real and imaginary parts of a basisHpr

Letc = ¢ (d,F) denote the integral of the monomial || = (z77)! oversS.
From (6.25) and (6.26), we have

1 1.3-5..- (24— 1)

@y @R = gar 2 @dr2i-1)

&(d,C) =
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The invariance of surface area measure under unitary mgggesn
L1y o) = [XZa(@.F),  vxe s, (6:29)

Denote the restriction of a polynomial spa#o the unit sphere b(S).

Theorem 6.7.Fixt € {1,2,...}. Let f,..., f, be vectors insZ = F9, not all zero.

Then -
Y 3 It 80 > ald.F) (/z 162)” (6.30)
]: k=1

with equality when any of the following equivalent conditdnold

(a) The generalised Bessel identity
c(d,F)||x||* = (x, fj) Vxe . (6.31)
(. F) | _1”fH2tz|
(b) The generalised Plancherel identity
¢ (d,F)(x,y)t = x O, Iy e FY (6.32)
(R = Sy > > 1
(c) The cubature rule fofl (.7¢)
p(x)do(x p(f Vp e M (7)), (6.33)
o9 = oy 2 )

or, equivalently, for7; +(S)

S TG
Pe9dax ; Vp e Mg(S). (6.34)
/ Zl py e ||fjH) (1 (S)

(d) The tensor product integration formula

1

Xt oxtdo(X) = o= » 1 @f] 7 6.35
Joxtextaot) = o nmnaZ | 639
(e) The integration formula
1
XN do(x O U T 6.36
/S< ) %= Y- 1Hf/||2t Z (6.38)

(f) For all univariate polynomials & I (R), we have
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H";IIZ‘III‘kII2t i f

2 2
|, 8(1x ) doty)dot = Z? LR

J#o i #0

(6.37)

Proof. LetC:=5}_, || f,||*. Define a tensof € Synt(.#) @ Synt(#) and a self
adjoint operatof on Sym(.#) by

n
& ::/Sx®‘®x®tdo Z Lo T,

1

Q::/S<~,x®t>x®td0(x)76 (- EEFEL

||M:

Equip Sym(#) @ Synt () with the apolar inner product, and the space of linear
operators on Syhis#’) with the Frobenius inner product. Then (see Exer. 6.16) a
simple calculation using (6.17) and (6.29) shows that

<Evé> a CZZZ| vafk - ) O

which is (6.30). Moreover, equality in (6.30) is equival¢ént(d) or to (e). By the
polarisation identity and (6.18), (a) and (b) are equivalen
We now complete the proof by showing
(d) = (c) = (a), (f) = equiality in (6.30).

(d)y==(c): Expandx®' @ X*! in terms of the coordinates &f Since
d d
= Z X8y @+ @ Z X B¢ = z Pk (X) Mic;
k=1 k=1

P (X) = X Xiey ** * Xigg 5 Nk =8g D8, D,

we obtain
Xt ot = g Pk (X) Pe(X) Nk © N

Thus (d) can be written as

n
/gpk Pe(X) k@ nedo(x) zg fi)n@n,.

Since the tensorgy ® ny are linearly independent, equating their coefficients gjive
the cubature rule for all the polynomiats— p(x) p¢(X), and hence fof17; (7).
(c)=>(a): Letp=[(x,-}|* € Mg, (FY) in (6.33) and use (6.29) to obtain

0 \
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ald P = [ |xyFdoy) = 2 3 Ixf
C J

(©=(0: Let p= |- [2-9|(x, )| € M1, 0< S<tin (6.34) to get

g < I f o
[ 10ey)PEdoy) = ¥ el

Forxes, (X, >|23 [IXIP (x, g kH>|25 and so using (6.34) again gives

1% < Il

//'Xy'zsd“ o =3 e 1 i)™

]

Thus (6.37) holds for the monomialg?®, 0 < s<t, and hence fofl;(R).
(a)= equality in (6.30): Takex= fy in (a) then sum ovek to obtain the required
equality

<dIF||fk||2‘:z| fe £3) %,

¢ (d,F)C = c(d, F) Z Ifll® =5 Z > (i, £
J

()= equality in (6.30): Takg = (-)! in (f) to obtain the desired equality

TG
a(d,F) = // x,y)[2do(y)do(x If; 2
)l EZ EE ||fJ|| T

1
== (fj, fi) |2
CZZZ Ik

O

Example 6.9Forunit vectors(fj) in RRY, (c) reduces to the definition for a spherical
half-design of ordert2 The condition (a) is the Waring formula (6.8), and equality
in (6.30) is the condition (6.9).

Sincec;(d,R) > c;(d,C), with strict inequality fort,d > 1 (Exer. 6.9), we have:

Let fy,..., f, be vectors in#” = RY, not all zero. Then
nn 1.-3-5---(2t
[{fj, fi) f 6.38
3 3 WP 2 g g gy (2 I017) s 39

which is a sharper bound than (6.22) wheth> 1. A sequence of unit vectors
giving equality in (6.38) is precisely a spherical half-idesof order 2.
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6.9 Spherical(t,t)—designs

We now give examples of sequences giving equality in Thedénhfalso se€6.13
and the numerical study §6.16).

Definition 6.3. A nonzero sequendd;) in 9 giving equality in Theorem 6.7, i.e.,

3 2 (15 0" = (dF) (2 1%17)

is called a ¢pherical) (t,t)—desigrf for F.

2
, (6.39)

Theorem 6.5 implies the (unweighted) cubature rules in Tdmadb.7 exist, i.e.,

For eacht > 1, unit-norm sphericdt, t)—designs foitd always exist.
The art is in constructing those withsanallnumber of vectors.

Example 6.10By Theorem 6.6, a unit—norit, t)—design(v;) for €9 (which always
exists) gives a unit-norm tight frante,") for Synt(C).

Example 6.11Ford > 2 andt > 1, there is no tight fram(avj@‘) for Syt (RY). If
there was, then Theorem 6.1 gives

1

> TG IE= 33w = (”i“)@ Ivil?)

which violates the sharpened Welch bound (6.38).

2
)

Example 6.12The unit-normt,t)—designs foRY are the spherical half-designs of
order 2 (see§6.4 and Example 6.9).

Example 6.13In view of (6.31), a(1,1)—design is precisely a tight frame fBF.

Example 6.14Three equally spaced unit vectorsi? are a(1, 1)—design forlF2,
Further, they are &, 2)—design forR?, but not forC?, since

27 2
>yl folf =3 et =g, (FIf) =¥ =e.
J /
1.3 3 1 1
CZ(Z’R):ﬁ:Q CZ(Zvc):m:@
2

Example 6.15There is a(3,3)—design of 40 unit vectors fat* given by a highly
symmetric tight frame (see Exer. 6.12). It has the propdvay €ach given vector is
orthogonal to 12 others, and makes an an%ewith 27 others.

2 For ¢ = CY, these are also known asmplext—designs
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Example 6.16A SIC (see§2.11,514.1), i.e., a set af® unit vectors(fj) in €9 with

1
: 2_ i
|<fJafk>| _d+17 J#ka
is a(2,2)—design ofd? unit vectors forCY.

Example 6.17A set ofd + 1 MUBs (mutually unbiased bases) f6f (see§2.11),
i.e., orthogonal bases with

|(f,0)| = f andg in different bases

t
\/av
gives a(2, 2)—design ofd(d + 1) unit vectors forC? [KROA4].

Example 6.18Three MUBs forC? give a(3,3)—design of six vectors foE?, e.g.,

R R Rl e il

For a given(t,t)—design(f;), the cubature rule (6.34) can be written

| po9do(x Zw,p vpe Mg(s), (6.40)
1*0

e G= 1w Il (6.41)
STk ik

Since| - |[2t"q € Mg (FY), for g € M7, (F9), 1< r <t, we have

M15:(S) C ME(S), 0<r <t. (6.42)

Combining these observations gives:

Proposition 6.2.Fix t > 1. If (f;)"_, is a (t,t)—design forf™, then(| f;|'/"~f;) is
an (r,r)—design forf4, 1 <r <t, i.e.,

n n
3 3 40 80 1127120 = (e (; I02). ©43)
j=1k=1

Proof. Letgj := || fj||'/"1f;, g € M7, (S). Sincep:= || - |2 q € Mg, (S), we have

I 1%

SO (/1 S R o /pda /qda
ZZ“H@MI2r ol ZZ/ 1[I fell® IIfJH

and so, by (6.34),g;) is an(r,r)—design. Substituting into (6.39) gives (6.43)0
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In particular, we have:

A unit norm (t,t)—design forf® is an(r,r)—design, 1< r <t.

If (f;)is a(t,t)-designt > 1, then(|| f;||*~1f;) is tight frame.

If the norms of{( f;) are not all equal, then the properties (6.43) fot L <t of a
(t,t)—design and the corresponding equivalent conditions diyefheorem 6.7 are
most naturally described in termsweighted(t,t)-designs.

6.10 Weighted(t,t)—designs

Definition 6.4. Suppose tha® = (¢;)]_; are unit vectors ifd, andw = (wj)j_q
satisfyw; > 0, 3 ;wj = 1. Then(®,w) is aweighted (spherical) (t,t)—desigr? if

=}

n
S Y wiwkl(gy, @0 =c(d,F). (6.44)
j=1k=1

There is a 1-1 correspondence between the)—designs(fj) and the
weighted(t,t)—designg @, w) given by (6.41).

In this terminology, Theorem 6.7 becomes:

Corollary 6.1. (Weighted version) Lep = ((pj)?:1 be a sequence of unit vectors in
F9, and w= (wj)j_, be nonnegative weights, i.e.jw 0, 3 ;wj = 1. Then

i i wiwi| (@1, @) |2 > ¢ (d,TF), (6.45)
==
with equality if and only if @, w) is a weighted,t)—design, or, equivalently,
/ p(x)da(x Z wip(@),  VpeMi(S). (6.46)
If (&, w) is a weightedt,t)—design, then it is a weightdd r)—design0 <r <t.

Proof. Make the substitution (6.41) in Theorem 6.7, and observe (t)acan be
written as (6.46). The last assertion follows from this a®.d 2). O

3 These are also known agighted spherical half-design$ ordert whenF = R (see [KP11]).



6.11 Complex projective-designs 129

Example 6.19A weighted(t,t)—design(®, w) satisfies
n n
2 2 Vivkl(@: & @)F =c(dF), 1<r<t,
j=1k=1

which is the weighted version of (6.43).

Substituting (6.41) into Theorem 6.7 gives a weighted wergif each of the
equivalent conditions (see Exer. 6.18), e.g., conditidbézomes

n
a(dF)X* =y Wil @), wxer,
=1

or, equivalently
wil(x, @)* =ci(d,F),  VxeS. (6.47)

-

6.11 Complex projectivet—designs

The equality (6.39) definingt,t)—designs is invariant under multiplying the vectors
by unit scalars, and s, t)—designs can be extended to a projective setting.

This has been done not only f& and C, but also the quaterniari§ and the
octoniansD (see [Hog82]). Theomplex projective sphereCP4~ can be viewed
variously as

e The complex spherg(CY) with pointsz andaz, |a| = 1 identified.
e The 1-dimensional subspaces®f (the complex lines through 0).
e The rank 1 orthogonal projections @f'.

The polynomials OIS(Cd) which carry over to this space, i.e., those with
p(z)=p(az, Vz VacF,|a|=1

are precisely those ifl§ o(F9) @ 17 (F9) @ 15 ,(F9) - - -. There is no notion of odd
polynomials on this space (see Exer. 6.25 for details).

We will take the elements @@P9~ to be rank one orthogonal projections. There
is a unique unitarily invariant probability measyneon FP9—1 induced from the
area measure on the spher&(F%), via

/dilf(P)du(P)z/ _f(R)do(x). (6.48)
FP F(CY)

whereP; = (-, x)x denotes the rank one orthogonal projection onto §pjn|x|| =
The Frobenius inner product between rank one orthogonggirons is

(P, By) = tracePR) = |(x,y)|? € R. (6.49)
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Definition 6.5. Let &7 = (P,)J , be rank one orthogonal projections &H, and
w= (w,) _, satisfyw; >0, 3;wj = 1. We say(#,w) is a (veighted) projective
(t,t)—de5|gri1 if

n n
> wiwi(Py, R "' =ci(d,F).
j=1k=1

The (t,t)—designs® = (f;) (up to multiplication by unit scalars) are in 1-1
correspondence with the projectiitet)—designg &7, w), via
1 I3l

<~, fj>fj, Wj = Zg”feHZt. (6.50)

This gives the projective version of Theorem 6.7 (see [RS&f7TCorollary 6.1).

Corollary 6.2. (Projective version) Let” = (Pj)’j‘=l be a sequence of rank one
orthogonal projections iff9, and w= (wj)j_, satisfy w >0, y;wj = 1. Then

n
Z iWic(Py, B t> ¢ (d,F), (6.51)

||M:

with equality if and only i &2, w) is a projective(t,t)—design.
A projective(t,t)—design is a projectivér, r)—designl <r <t.

Proof. With P; andw; given by (6.50), (6.49) gives

t
(512 il ( |<f17fk>2> _ Rl
(Ze lEel2)2 N 1511201 il 12 (Zellfell®)?

Thus, making the substitution (6.50) in Theorem 6.7 giveS1(§ with equality for
projective(t,t)—designs. The last part follows from Corollary 6.1 and (§.50 O

wjwi (P}, R =

Other conditions equivalent to being a projectit/¢)—design can be obtained by
substituting (6.50) into Theorem 6.7, e.g., by using (6.48hdition (a) becomes

a(d,F) = i wi(Q,P),  vQeFpPI L (6.52)
=1

The condition (e) gives Levenshtein’s definition [Lev98Jeokeighted t—design

/F,M/Pdl (P.Q))du(P)du(Q ZZ wig((Pi,R)),  Vge M(R).
(6.53)

4 Other terms such aseighted or quantum t—designare also commonly used.
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The condition (d) becomes
. n
Pdu(P) =S w; PP 6.54
Jon 1P )= 5 i, (654

ForF = C, Schur's lemma implies that the left—hand side of (6.54) is

1
/cPdfl P=du(P) = W”svm,

wherel‘lé{)m is the orthogonal projection of the tensar$CY onto the symmetric
tensors Syf{C).

A naive numerical search (see [Brall]) fort)-designs inCY suggests that in
some cases, e.d.—= 4,d =4 andt = 3, d = 3, those with the minimal number of
vectors do not have constant weights. There are few knowstartions of such

weighted(t,t)—designs. A very general construction is giver§énl3.

6.12 Isometric embeddings

The generalised Bessel identity (6.31) says that the limegr

H = 0(FY) = L (F") 1 x> (X, )]y

is anisometric embedding i.e., there is a consta@t> 0 with
1% )l =ClXllep, VX E Lo(F9). (6.55)

Conversely, any such embedding corresponds (via the Réggsegentation) to a
sequence of vecto(d; )?:1 giving equality in (6.55). Further, isometric embeddings
£o(FY) — £5(F™) can exist only wherp = 2t (see [LS04] which consideis= R, C
and also the quaterniaiif. Collecting these observations gives:

There is an isometric embeddirig(F9) — ¢,(F") if and only if p= 2t and
there is a weightect,t)—design for.

We give a little more detail. Suppose thg (g1, ..., 0n) : l2(F9) — £x(F") is
an isometric embedding, i.e., a linear map wjtix)||,, = C||x|, ¥x € ¢2(F9). By
the Riesz representation, the linear maps g;(x) have the formg;(x) = (x, fj),
wheref; € F9. We compute

n

Z|<X, I = 9|17, = (ClIx|)? = cllx|.

J:
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Integrating the above overe S, using (6.29), gives:(d,F) s, ||f/||% = c, and so
(f;) is a(t,t)—design by virtue of satisfying the generalised Besseltitje(6.31).

Example 6.20The three equally spaced unit vect¢iso), (—3, @), (-3, @) are
a (2,2)—design (4-design) faR? and a(1,1)—design (tight frame) fof*2, which
gives the isometric embeddings

V3 1. V3
y-txo By,

1
0: 2(R?) —» a(B?),  glxy) = (X —5x+ U=y

2" 2
1. V3. 1. V3
. 2 3 _ 4 ve_ o L Vo
g: 0(F%) = 6(F°), 9(z,2) = (21, SAT 525U Zz>.
The corresponding generalised Bessel identities are

ot (oo D) (e D) = 208t Do),

1 V3 2 1 V3 |2
2 |1 V3 _1 V3
2] +‘ 24T 22‘ +‘ 2473 22‘

Example 6.21The E. Lucas identity (1876)

3 3
=5(nf+zf),  5=3alF)

4

2
6(2 x12> = zk (%) 4+ %)%+ zk (X — %),
1<{<k<4 1<{<k<4

=1
is the generalised Bessel identity for {t&2)—design of 12 vectors fdk* given by
{gjte:1<j<k<4).

Equivalently, it provides an isometric embeddifagR?*) — £4(R*?).

6.13 Weighted(2, 2)—designs of orthonormal bases

We now give a very general construction of weight@®?)—designs (Theorem 6.8).
A special case is a constructiona# 1 MUBs inC¢ for d a prime power.
Let f : G — H be a function between finite abelian groups with < [H|. The
equation
f(x+a)—f(x)=b (6.56)

has|G| solutions for(a,b) = (0,0). If f islinear, i.e., f(X) = mx me Z, then it has
|G| solutions forb = f(a). In view of this, we have the following notion of a highly
nonlinear function.
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Definition 6.6. We say a functionf : G — H between finite abelian groups with
|G| < |H| is (differentially ) 1-uniform® if

f(x+a)—f(x)=b

has at most one solution for ea@ b) # (0, 0).

Example 6.22The functionsf : Zs — Zg, g Zs — Zs : X — X2 given by
f(0)=0, f(1)=1, f(2)=0, f(3)=2, f(4) =
9(0)=0,9(1) =1,9(2) =4, 9(3) =4 94 =

are 1-uniform.

We require some basic facts about the character gﬁispe§11). These include:

G is the group homomorphisn@ — C \ {0} under pointwise multiplication.
Different characters are orthogonal (as vector€ ).

G is isomorphic taG. .

The Pontryagin duality mag11.7) gives a canonical isomorphigen— G.

Theorem 6.8.([RS07]) Let f: G — H be 1-uniform,|G| = d. Then there exists a
weighted(2, 2)—design forC? = C€ given by thgH | + 1 orthonormal bases

1

Ko = (&g)gec, Wo = m,

1 -

%w:(egl)ge& szwlzma yeH

where g— Xg is an isomorphism G+ G, and

Z XolK
keG
Proof. We verify that (6.44) holds far= 2. Forgj, g € %o, we have

d 1

w3\ (e
Lo = = @ ~ @i o7
and forg; € Ao, @ € Ay and vice versa, we have
2|H| 1 2
)4 =
23 Wous 3 3 I{ent )" = i+ 1 [Hld< D) szz d(d+ 12

Weh

5 The termsperfect nonlineaandmaximally nonlineagre also used whed = G.
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We now consider the last cagge By, & € Hs. Expanding(e;”, eé) gives

33 KB R)a 5 XOEFO)R) = § 5 xaolKWE (),

since = £-1 (inverse in the character group). Thus

(el = 5 Xan(wx-y-2WEHTW + 10— 1)~ 12)

wW,X,y,zeG

and sy b Y gcn | (eF, 65)|* equals

1

& > Xwx=y=2) 3 @(f(w)+f(x)—fy) - ().

wxYy,2€G yeG YeH

By Pontryagin duality, and the orthogonality of characténe two inner sums are
nonzero if and only ifv+x—y—zandf (w) + f (x) — f(y) — f(z) = 0, which occurs
d(2d — 1) times (see Exer. 6.27), givir@jH| each time. Thus

d(2d—1)dH|  2d—1

Z%%;Wﬂe&]’ d4 %Z \H|2 d+1)2 d(d+1)2

Finally, adding the three contributions gives

as claimed. a

Example 6.23(Maximal MUBSs) LetG = H = F the finite field of orded = p", p
odd, e.g.Fp = Zp. The following functionsf : G — G are 1-uniform (see [YCDOG])

1. f(x) = X2,

2. f(x) = xP+1, wheren/ged(n,K) is odd,

3. f(x) = x@+41/2 wherep = 3, kis odd, gcdn, k) = 1,

4. f(x) = x10—ud —u?x?, wherep = 3, nis odd,u # 0.
These givel+ 1 MUBs (mutually unbiased bases) fof'. The first (which is special
case of the second) gives the- 1 MUBs for CY discussed it§12.19.

Example 6.24Letd + 1 be a prime power, angbe a generator fdf; , (the multi-
plicative group for the field of ordet+ 1). Then the functiorf : Zq — Z4, 1 defined
by _

(i) =y,
is 1-uniform (see Exer. 6.26), and we obtain a weigh&@)—design forCY that
consists ofl + 2 orthonormal bases, i.e., has- d(d + 2) elements.
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6.14 The frame force

Motivated by well distributed points on the sphere, e.gnthqually spaced vectors
in R? and the vertices of the Platonic solidsRA, Fickus [Fic01] gave a central force
for which the equilibrium configurations are tight frames Hefined thdrame
force betweerunit vectors inRY to be

FFab):=(ab)(a—b), abeR? |a|=|b|=1
Since(a,b) = 1— w for [la]| = [[b]| =1,

2

FR@b) = f(la-bl)@a-b),  f(x):=1-=, (6.57)
which gives a so calledentral forceonRY . The frame force between equal vectors
is zero, whereas many physical forces are only defined ftindissectors, e.g., the
Coulomb force between unit charges at£ b, given by

Fc(a, b) . (a_b)

— d
.—W7 a,beR.

For a central force oY such as (6.57), theotential betweera andb is
P(a,b) := p(lla—bl]), where p'(x)=—xf(x),
so that
(OP(-,b))(a) = —f([la—b]|)(a—b),
and thetotal potential for a sequence of vecto(s:,-)?:1 inRYis
Z Z P(Xj, X)- (6.58)
] k#]

For the frame force, the choig#x) = % - X—ZZ gives the potential

_Ja=b|* _Jla—b]?
8 2

((@b)?~1)  (for [|al| = [|b] = 1),

P(a,b):

NI -

and hence the total potential for unit vectags. . ., X, in R4
1 n

P(x; =z X% — =

zk; b ZZZWM 2

In this way, Fickus arrived at thieame potential (6.6) for unit vectors irf9.
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6.15 Local and global minimisers of the frame potential

The local minimisers of the frame potential (6.6) give a $etrot vectors which are
at equilibrium with respect to the frame force (see Exer8B.®oreover, it turns
out these local minimisers are in fact global minimisers.

For f : C9 — R with f(x¢+iy1,...,Xq4+iyq) a differentiable function of the real
variablesxy, y1,...X4,Yq € R, define a gradierflf = 2(d1f,...,d4f): CY — C9 by

Of i= (5 - f(atiys,. ... Xa+iya) +is - FOa+iys, ... Xa+iya))]_;. (6.59)

o 0
X ayj
Then for bothRY andC4, we have

Ol 1% @ =2a,  O(I(-,b)I*)(a) = 2(a,b)b. (6.60)

The minimisation of the frame potential for unit vectorshf = RY or C% can be
viewed as a constrained optimisation problem:

minimise ) Z |(vj,w)|? subjectto [jvi||=---=]a|| = 1.
]
If (a,...,an) is alocal minimiser, then each is a local minimiser of
V) == ; |(v,a)|>  subjectto g(ve) = ||v||* =
KZt

The critical points of this constrained optimisatiomadr 2n real variables are given
by Lagrange multipliersdf (a;) = A0g(ay), which by (6.60) becomes

;<ae7ak>ak=Aaf,7 A=MNeR.
=]
Thus, eaclay is an eigenvector of the frame operaBfor (a;), i.e.,
n
Z =M+ lalPa,  £=1,...n. (6.61)

Using this, we now show that local minimisers are global misers.

Theorem 6.9.([BFO03]). LetS = S(s#°) be the unit sphere i, d = dim(s¢). The
local minimisers of the frame potential

vJ,vk , Vi,...,Vn ES

||M:

n
FP(V]_,.. s Z

are global minimisers, which in turn are tight frames f&f (n > d), or nonspanning
orthonormal sequences &nd). In particular, there exist equal norm tight frames of
n vectors inRY andCY, for all values of n> d.
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Proof. Let (a;) be a local minimiser of the frame potential BpandSbe its frame
operator. We have seen, (6.61), that the Lagrange muttiptjgations imply each
a; is an eigenvector db. Moreover, the eigenvalukis > 1, since

Sg=2Aa = A=A(aj,a))=(Sg,a)) >|(aj,a))|°=1

Let Amax be the largest eigenvalue 6f If Amax =1, i.e., it is the only nonzero
eigenvalue, thes= | on spaffa;), and(a;) is an orthonormal basis for sp@g)
(see Exer. 2.4). IRmax is the only eigenvalue, i.eS= Amad , then(a;) is a tight
frame. Thus it reduces to showing ttf#&tannot have a second nonzero eigenvalue
A2 < Amax. We suppose that it does, and show tfeg) can be perturbed to obtain
(af) with a smaller frame potential, thereby giving a contraditt

Let J be the subset of indicesfor which a; is a Amax—eigenvector, and be a
Ax—eigenvector. Fog € R sufficiently small, define

o e V1-¢€?|Bj|%aj+eBju, je;
: aj, j¢Jd

where theBj € C are to be chosen later. Then (F(Bf)) is aC*™—function ofe for
le] < 1/max(|B;|). Thus, we consider the asymptotic expansion given by the firs
few terms of the Taylor series. By definition,

(af.a0)” = [(aj.all®,  j¢dkgd. (6.62)
SinceSis Hermitian, its eigenspaces are orthogonal to each atbéhat
(@j,a) =0, jeJ k¢, (@j,u)=0, jed
and we obtain

(a8, af)|° = |(ay, a)[*+ €%IBi Pl (ua) >,  jed, kgl (6.63)

(@) = \/1- 2B\ [1- 2B (a0 + BB jed kel

Using the Taylor expansion

1
V1-e2BiP=1-3e*Bi+0(eh).  £—0.

we expand the expression fpe J, k € J, to obtain

(a6, 36) = (1~ 2216y -+ B) @y,8) + €26, B+ Ofe?),

which gives
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(@, 80)1> = (1— (1B I+ 1B/?)) | (ay, &) |*+ 260 ((aj, ) Bi )
+0(e%), -0, jed kel (6.64)

Adding (6.62), (6.63) and (6.64) gives
FP((af)) = FP((a))) — & ZJZJ 1Bi[?+ 1B1%)) (., a)
+2¢2 ZJkEJ (@, & BJBk)+2€ glﬁjlluak>\2+0( )-

Since the eigenspaces®#are orthogonal, we have

Z| aj,a | =(Sg,aj) = Amax, | €, ;| U,a)|“ = (Suu) = Az,
ked

and so obtain

FP((&)) = FP((a))) — 232(2J 1BiI?) Amax—A2) + 26| 3 Biayl*+O(e").
IE

IE
SinceS= Amax on theAmax—eigenspac& = spar{a; : j € J}, the vectorga)jc;
are a unit—-norm tight frame fd with frame boundinax, and so

Amax | (E) > )\2 1

Hence the vectorga,)jc; are linearly dependent, and there(f;);jcj # 0 with
YicaBjaj =0, i.e.,(aj)jes and(B;)jes are mutually orthogonal. Thus

FP((af)) =FP((aj)) —ce?+0(e*), &0,

wherec = 2(5 ; [ 1) (Amax— A2) > 0, which gives the desired contradiction. O

In the motivating case?Z = RY, these minimisers are at equilibrium with respect
to the frame force. Indeed, define thffective frame force of b on a to be the
component of the frame force F&b) of b onawhich is orthogonal ta, i.e.,

EFF(a7 b) = <aa b> (a<a7 b> - b>7
and so the total effective frame force on each pajns zero (see Exer. 6.28), i.e.,

ZEFF(aj,ak) =0.

Example 6.25A sequence(a;) of points on the sphere is said B&—critical
(frame force critical) if eacha; is an eigenvector of the frame operator(af).
The minimisers of the frame force are FF—critical. A seqeesd-F—critical if and
only if it is a union of equal-norm tight frames for orthogbrabspaces.
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6.16 The numerical construction of sphericalt,t)—designs

LetV = [vgg] = [V1,...,Vn], andp,g: F9%N _; R be the homogeneous polynomials

given by ” ”
pV) = Vi, Vi |7, giV) = Vi< (6.65)
(V) 2;“] 8 V) ;H al

The sphericalt,t)-designs foi® are the nontrivial zeros of the nonnegative
homogeneous polynomial

f(V) = p(V) o (d, Fg(V)? (6.66)
of degree #in the real (and imaginary) parts of entries\f= [v,g] € Faxn,

The minimisers op(V) > 0 with g(V) fixed, e.g.V = [v;] a unit norm sequence,
satisfy the Lagrange equationsp(V) = AOg(V). Moreover, the ones that give
sphericalt,t)—designs are minima df, and so satisf{f (V) =0, i.e.,

Op(V) = 26(d, F)g(V)Og(V). (6.67)

Thus we obtain the following condition for the existence pifierical(t,t)—designs.

Theorem 6.10.Lett> 1 and f: F9*" — R be the nonnegative function given by
n n o ( n 2t)2
F(lva,... vn]) = (Vi i)™ = (d, F) (Y [[vell )"
,Zlk; /,Zl

Then the critical points of f satisfy

3 1vi,vg) [P (vg, vj)vj = cx(d, ) (; Ivell) Ivp 2P, 1< B <n.
J 4

In particular, for t = 1 the nonzero critical points of f are the tight frames fet,
which are all global minima.

Proof. The critical point off are given by (6.67), wherElf is the gradient off
viewed as a function of real variables, as in (6.59). A catiah (see Exer. 6.29)
show that thg8B—columns ofdp(V) andOg(V) are

4y (v, vp) PV g vy, 2t X .
]

Substituting this into (6.67) gives the desired condition.
Fort = 1, theV = 0 which are critical points of (V) satisfy

Y59 = (3 IP)us. 1B <n
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and so, by linearity(v;) is tight frame for.#” := spaf{vg }1<p<n C F9, with frame
boundA = %24 [[v¢||2. The trace condition (2.9) gives dip#’) = d, so that(v;) is
a tight frame forF9. Thus the nonzero critical points 6fV) are precisely the tight
frames ford. i

Spherical(t,t)—designs can be foundumerically by minimising f(V), with
g(V) fixed. This can be done by an iterative algorithm which startandomVp,
and choose¥ 1 = Vk + W, whereW is such thatf (V1) = f(Vk+Wk) < f(W).
The directionM can be random (of an appropriate size) [Brall], or in thectiva
of maximal decrease [Hug16] (which is more effective clasa minimum).

The maximal decrease dfatV is in the directionV = —[0f(V), where

(TFV))ap =40 310 ) .4 Ve e ) (3 ) 19 e
J

A summary of these numerical results (which have motivataibus analytic
constructions) is given in Tables 6.1 and 6.2.

Table 6.1: The minimum numbeng, andn of vectors in a weighted and in a unit—-norm spherical
(t,t)—design forRY (spherical half-design of ordet)2as calculated by Daniel Hughes [Hug16].

t diny ne Comments

1d|d d |orthonormal bases iR®

t 2|t+1 t+1|equally spaced lines iR?

2 3|6 6 | equiangular lines ifR3

2 4|11 12 |no structure repeated angles
2 5|16 20 |group structure no structure

2 6|22 24 |group structure work in progress
2 7|28 28 |equiangular lines iR’

2 8|45 >45]no structure

3 3|11 16 |no structure possible group structdre
3 4|23 >23]|group structure

3 5|41 >41| group structure

4 3{16 25 |group structure no structure

4 4143 >43|workin progress

5 3|24 35 |no structure no structure
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Table 6.2: The minimum numbeng, andn of vectors in a weighted and in a unit—-norm spherical
(t,t)—design forCY as calculated by Jennifer Bramwell [Bra11].

t diny ne | Comments

1d|d d | orthonormal bases iR¢

2 d|{d®> d® |[SICs

3 2|6 6 |three MUBs forC?

3 3|22 27 | some structure

3 440 40 | highly symmetric tight frame (Example 6.15)
3 5|>100

4 2|10 12 |two orbits, se€9.8

4 3|47 >47

4 4|1>85 >85

5 2|12 12 | group frame, see Exer. 10.12
6 2|18 24 | some structure

7 2|22 24 | some structure

8 2|37 >37 | some structure

9 2|44 >44| some structure

Itis also possible to calculate (numerically) the Hessgatond derivative) of
andp atV to investigate the nature of the critical pointsfofsee Exer. 6.30).

For the real casé = X € R%", the formulas for the Hessian simplify to

9%p 2
—— T (V) =4t(2t — 1) {(Vp, V)2 VvypVag + 4t Bag (Vip, Vg )22
0Xabl9xag( ) = 4( )(Vb, Vg) abVag + 4t Saq (Vb, Vp)
+4t(2t - 1) 8 Z<Vj 7VB>2(t_l)VajVai,
]

0%(¢?)

m(v) = 29(V) (2t8aa Bop V5 XY + 4t (t — 1) 85 V5112 "2 VapVag)

+2(2t [V [ **PVab) (2t [ 2PV -
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Notes

Neil Sloane has a webpagemitatively optimaleal spherical—designs
http://neilsloane.com/sphdesigns/ (see [HS96])

and the author has a similar list for real and complex sphkfict )—designs.

There is recent interest icomplexspherical(t,t)—designs (weighted complex
projectivet—designs), see, e.g., [KR05], [RS07], [RS14]. Our unifiedtment of
real spherical half-designs of order&d complext,t)—designs in Theorem 6.7
was adapted from [En99], [Wal16] (also see [DHC12], [BH15]). There are other
equivalences. Those involving the evaluation of Gegenbpal/nomials can be
used to estimate the minimum number of vectors ih,B)—design (see [DGS77],
[Hog89] for sphericak—designs). Somét,t)—designs meeting these bounds (for
spherical 2-designs) are termdayht (this is not related to being a tight frame).

Thanks to Aidan Roy, Andreas Klappenecker and Wei—Hsuaro¥insightful
discussions about this chapter.
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Exercises

6.1.Let A€ C™" be Hermitian A # 0. Show that rantd) > g:ﬁég with equality

if and only if A= cUU*, U = [ug,...,u] € C™", with orthonormal columns.
Hint. If A1,..., A, are the nonzero eigenvaluesAfthen Cauchy—Schwarz gives

(tracgA)> = (S A))2<r i AZ =rtracedA?).
=1 =1

6.2. Use the generalised Welch bound (6.4) to prove Example .@.2that

2 (lIfDZ/d =3l fll”
> 2 n > 0.

max|{f;, f
nax| (1}, 1|

6.3™ Do a numerical investigation of the variational inequal(iéy4). Does one get
close to equality for large numbers of random (unit or othse)wectors?

6.4.We may write the variational characterisation (6.4) fohtifames(v;)jcj as

v+ il *Y 1 v [[* 4 [vie*
2 <2<Vj’Vk>|2+Jn_l ] Z 2||Vj||2||VkH2+Jnf1 .
{jk}cd {i.ktcd

We say that a framév; )?:1 for CY is perfectly tight if equality holds for all pairs.
(a) Show that fod = 1, every tight frame is perfectly tight.

(b) Show that fod > 2, every perfectly tight frame has nonzero vectors.

(c) Describe the equal-norm perfectly tight frames.

(d) Do there exist perfectly tight frames fdr> 2 which do not have equal norms?

6.5.Let (f;) be a sequence of< d unit vectors in a7, where din{.7’) = d. Show
that
Fammﬁm:zgumwﬁ
]

has a minimum value af, which is attained if and only iff;) is orthogonal.

6.6. Show the normalised frame potential satisfies (6.7), i.e.,

é <FP(fy,..., f)) <1,

and that

(@) FP(fq,..., fn) equalsé if and only if (f;) is a tight frame.

(b) FP(fy,..., fn) equals 1 if and only if spaif;) is 1-dimensional.

Remark:For unit norm vectors FR- n?FP|sn, and so this extends Theorem 6.2.

6.7. Real sphericaP—designsLet ® = {@,..., @} be unit vectors irRY.
(a) Suppose tha® is a real spherical 2—design. Fpe RY, let py € M15(RY) be
given by
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py(X) = [y, %) 12 = ((%,%))%.

Show that the integral g, over the unit spher8 is c||y||2, with ¢ > 0 independent
of y, and hence conclude thétis a tight frame.

(b) Now suppose thap is a tight frame. By considering the integralgfabove, or
otherwise, show that it is a real spherical 2—design.

Remark:This is a special case of the key argument§68.

6.8.Let d > 2. Show that there exists a real spherical 2—desigm mdints forRY
unlessn < d orn=d+ 2 andn is odd (the existence part requires a construction).
In particular, there is no real spherical 2—design of fivenfsofor R3.

Hint; For the construction use harmonic frames (see Chapter 11).

6.9. Real spherical designs and Waring type formulas

Here we consider the case of equality in Theorem 6. 7Z#6r= RY.

(a) Show that;(d,R) > ¢;(d,C), with strict inequality wher > 1,d > 1.

(b) A sequencéf;) of unit vectors inRY satisfying (6.33) is, by definition, a real
spherical half—design of ordet.By substituting for 2t, write down the equivalent
conditions for being a real spherical half—design of ord€ior t even) given by
equality in (6.30), and (6.31), (6.35).

(c) Show that if(f;) is centrally symmetric, i.e., of the forrtttfj)Tfl, then the
cubature rule (6.33) holds for all odd polynomials, i My & M3 M@ ---.

6.10. Then equally spaced (unit) vectors Rf are

@ =(vj) = {(cos%nj,sin%nj) 1j=0,...,n—1},

and then equally spaced lines iR? are
W= (wj) = {(cosgj,sin%rj) 1j=0,...,n—1}.

(a) Show that the equally spaced vectors ik® are a sphericaln — 1)—design.

(b) Show that they =t + 1 equally spaced lines iR? are a spherical half-design of
order 2, i.e., a(t,t)—design.

Hint; Use the integrals of (6.25) and (6.26).

6.11.A SIC consists ofd? equiangular unit vectors ifi, with a common angle

[(fj, fi) |2 = \/ﬁ j # k, andm MUBs arem orthonormal bases fo£9, with the

property that(f,g)| = % for f andg from different bases (s€g.11).

(a) Show that a SIC is €, 2)—design.

(b) Show tham MUBs in CY form a(2,2)—design if and only iin=d + 1.
(c) Show thatd + 1 MUBs inC¢ form a(3,3)-design if and only itl = 2.

6.12.There is a highly symmetric tight frame of 240 vectors@drgiven as an orbit
of the Shephard Todd group 32 (s§E8.8), which gives 40 lines, since the group
contains scalar multiplication by the 6-th roots of unitgk& a vector from each
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line. This set® of 40 vectors has the property that each is orthogonal to i@rst
and makes an angl% with 27 others. Show thap is a(3,3)—design forC*.

6.13.Show that an equiangular tight frande= (v,) of n unit vectors forRY is a
spherical(2, 2)—design foiRY if and only if n = 2d(d +1).
Remark:Such equiangular lines are known to existdor 2,3,7,23 (see12.1).

6.14.Let @ be the set of 240 vectorsc R8 of with ||v||? = 2, and the form

type 1: Vj € {j:%} andv has an even number of positive entries
type2:  v; €{0,£1} (suchvhave two nonzero entries)

Since® is centrally symmetric, it can be writteh = ®yU — @y

(a) Show thai®y is a spherical(3, 3)—design of 120 vectors fd®.

(b) Show that is a spherical 7—design of 240 vect®3.

Remark:This @ (minimal vectors of the Korkin—Zolotarev lattice) is dugikd?11].

6.15.Show that equality in (6.22) is equivalent to
(a) Thegeneralised Plancherel identity

("D s
e S LY, Yy e
STl 2,0 ()

(b) Thegeneralised Bessel identity

<X’ y>t =

d+t-1
||x||2‘—7( G (%, )2 vxe A
~ Sl & |

6.16.Defineé € Symt(#) @ Synt(#) andQ: Synt (#) — Synt () b

]

1 _
§= [xXtextdo - g Y e
s C;
1

@t £t

HM: ,l

Q:= /(-,x®t>x®‘da(x)
Js
whereC := 5, || f¢||. Show that

<Ev€> 7 szg fJ,fk dF)

where the apolar and Frobenius inner products are usedatbsy.

6.17.We consider the vector spac#’, (C?) of polynomialsC* — C which are
homogeneous of degréén zand of degree in z, i.e.,

Mg, (CY) := spar(z— 222 : |a| =t,|B| =r1}. (6.68)
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This absolutely irreducibléz —invariant space is denoted by(t,r) in §16.7. There
is a natural identification Syrv#*) @ Sy (77°) — I1¢, () given by

(PR = CWIEXT = V)X
For polynomialsp: C? — C, we define an associated differential operata?) by

)= 00,50"53, wherep(z) = % CapZ'?, (6.69)
(a.B) (a,B)

whered andd are the Wirtinger complex differential operators given by

s 0 (0 0N 5 9 _1(0 .0
170z 2\ax ay; )’ 7oz 2\ax ' ay;)’

(a) Show that the monomiais— 2%7® in (6.68) are linearly independent, and so

am(ri, 7)) = () (). 6.70)
(b) By taking the apolar inner product on S\o#”*) @ SynT (7"), show that
<<'ﬂV>t <X7 .>r7 <'7W>t <y7 '>r>0 = <W7V>t<x7y>r (6-71)

defines an inner product dTh[fr((Cd).
(c) Show the Riesz representer of point evaluatiow &t (-, w) (w, )", i.e.,

(p. (W) (W)Yo = p(w),  Vpe g (CY), wwec
(d) Use this to conclude thﬂ{jr((cd) is spanned by ridge functions, i.e.,
Mg, (C%) = P:=spafz+ (zv)'(v,2)" :ve C}. (6.72)
In particular,l'l{jt(ccd) is spanned by ridge functions (plane waves), i.e.,
M5 (Q) =spa{z— |(zv)[* :ve Q}, whereQ =CY orSc.

(e) With p(d) given by (6.69) and|(2) := q(z), show that

(.0 = o PO)AO),  Vp.a e M (CY)

In particular, the monomials— 277 in (6.68) form an orthogonal basis.
Remarkit follows from (6.25), that for 77, (C?) andr1g, (C%) one has

pa-=("Y) [, peaEde.



6.16 The numerical construction of spheri@iat)—designs 147

Cubature rules which integrat@{’,((cd), (t,r) € .7 for some set of indices” are
studied in [RS14], where they are callspherical.7—designs

6.18.Make the substitution (6.41) in Theorem 6.7 to obtain theghsd versions
of the conditions (a)—(e).

6.19.Let A be the Laplacian for functior&® — F, i.e., forF equalR andC

d /9

é(ax,)z’ §<0x,)2 Z(aw)z—4éldjdj.

1
(a) Take the Laplacian with respectta R to get
A(IXI*) =2t(d+2t=2)[Ix|* 2, A((xv)*) =22 = 1) (x,v)* V]2
(b) Take the Laplacian with respectze RY to get
A(l|lZ?) =4d+t=1)lIZ* 72 Az =432

(c) Using (a) and (b), apply the Laplacian to the Bessel itie(8.31).
6.20.Show that if(vj) and(w) are sphericalt,t)—designs foifd, with

2t 2t
> il =3
J

then their unior{v;) U (w) is a sphericalt,t)—design ford.

6.21.Use the generalised Bessel identity (6.31) to show that themal numbem
of vectors in a weighte¢t,t)—design satisfies

(Y% F=C _

(3, F=r

n < dim(7¢, (FY)) :{ 0(d%), d—w.

6.22.Use the generalised Plancherel identity (6.32) to showtttehumbem of
vectors in a weighted, t)—design forf¥ satisfies

n > dim(r¢(FY)) = (tzdf) =0(d"), t—ow

6.23.Suppose thatf;) is a tight frame forF, i.e., is a(1,1)-design. Show the
condition which ensures it comes frongtat)—design, as per Propaosition 6.2, is that

n f],fk>|

T s = C(d,F) f
3,2 T =@ R(3 10P)

1

6.24.The lines{Fx: x # 0} in # = FY are in 1-1 correspondence with the rank
one orthogonal projections, i.e., points in the projectpacefPY-1, via
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<’7X>

FX+— PR = )

X.

(a) Show that the Frobenius inner product between orthdgwogections given by
unit vectors is

(PR = () [> = (R, Ry).
(b) Show that the metric ofiP9~1 given by the Frobenius inner product is
p(RQ =Vv2y/1-(P.Q), PRQeFP'™
(c) Show that in terms of lines this metric is
X ¥y |2
P(Fx,Fy) = v2, [1—[(—, )| .
( el

(d) Show that the set of lines can also be embedded into the/eetor space of
traceless Hermitian matrices (with the Frobenius norna, vi

FX+— Px—%l.

6.25. Polynomials on projective spaces.
Determine the vector space of polynomiglsF¢ — F whose value at each+£ 0
depends only on the 1-dimensional subspace giver by,

p(z) =p(@az, VzeFY vacF, |a=1

6.26.LetFqy, 1 be the field of orded + 1, whered + 1 is a prime power. Suppose that
yis a generator for the multiplicative grot, ,. Show thatf : Zg — Zg1:y+— Y
is a 1-uniform function.

6.27.Let f : G — H be a map between finite abelian groups, wWith = d. Show
that if f is 1—uniform, then

W+X—y—z=0, fw)+f(x)—f(y)—f(zy=0
has exactlyd(2d + 1) solutions in(w,x,y, z) € G*,

6.28.Equilibrium with respect to the frame force Rf' and CY.
For unit vectors, b € CY, the frame force ob ona can be extended

FF(a,b) := (a,b)(a—Db),

though this is no longer a central force. The frame force betworthogonal vectors
and between coincident vectors is zero. HEffective frame forceEFFa,b) of b
onais the component of the frame forge= FF(a, b) which is orthogonal t@.

(a) Calculate EFfa,b) fora,b € S.
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(b) Show that if(a; )?:1 is a minimiser of the frame potential, then the total effexti
frame force on each; is zero, i.e.,

Z EFFaj,a) = k;j EFFaj,a) = 0.

6.29.LetV = [Vgp] = [Va,..., V], andp,g: F*" — R be given by
p(V) = vl a(v) = vl
221 2

With Of given by (6.59) wherF = C, show thef—columns ofZp(V) andOg(V)
are
4 z |<Vj,Vﬁ>|2(t_l)<VB,Vj>Vj, 2t||vﬁ||2(t_1)vﬁ'
]

6.30.Here we calculate the Hessian matrix of f of the functionsp,g: F9" — R
given by (6.65). LeX be the real variables with some ordering, i.e.,

X ={Xap} U{Yap} for F=C, X={Xqp} for F=R.
ThenH; (V) is theX x X real symmetric matrix witlr, s)—entry given by

0% f
=—(V).
drds( )
Find the Hessian matrix g, g, and hence the functiohgiven by (6.66).

Hf(V)rs

6.31.A sequencéfj)'j‘:1 is a finite tight frame foi#d if and only if

gX)i=——> X, fi)|—5 =1, Vx # 0.
0= Sl & 0 e

(a) Show for a general frame thgtcan take values which are 1 and< 1. Thus
the obvious generalisation of Bessel's inequality doeshodd. There are various
generalisations in the literature. We now develop a few.

(b) By Cauchy—Schwarzy  j(x, fj)| = |(x, ¥ ¢; fj)|> < [|x/|?]| g ¢j fj||%. Use the
triangle and Cauchy-Schwarz inequalities to stiataric’s inequality

n ‘2 9 n " n

St )| < X S leil” S [(Fj, fiol-
le le kzl
(c) From this deduc8&elberg’s inequality

0 )2
oAl <.
2050 (T )]

(d) From Selberg’s inequality, deduB@mbieri’'s inequality
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n

3 1 P < I maxz| fo. 1)

(e) Vary the argument of of (b) to show the inequality.

3 e < (ﬁ S I(65.50)

1k=1

=]
Nl



Chapter 7
The algebraic variety of tight frames

LetV = [vi,...,Vn] be the synthesis operator of a normalised tight frameFfor

i.e., ad x n matrix withVV* = | (Proposition 2.1). SincéV* = |, the collection of
normalised tight frames afvectors for a space of dimensidrtan be viewed as an
algebraic variety(in F9%"), as can other classes of frames, such as the equal-norm
tight frames. Here we consider some geometry of this algeleaiety, including:

e What norms the vectorg can have.

e The dimension of the variety, and how to describe points.on it

e The fact the rational points are dense on the variety, Meryenormalised tight
frame can be arbitrarily well approximated by a normalisghittframe consisting
of vectors with rational entries.

Our treatment is based on the following simple observatitfri$ is unitary, then
VU)(VU)* =V(UU" )V =VV* =],

so thatW =V U is (the synthesis operator of) a normalised tight frame VErsely,
if V andW are normalised tight frames ofvectors forF9, then we may choose
complementary normalised tight framésandW;. Since the matrix with rows given
by the rows of a normalised tight frame and a complement igoniwe have

w W \% \% w \% \ w
ThusW =VU, whereU = V*W + VW is ann x n unitary matrix. In other words:

LetV = [v1,...,Vy] be a normalised tight frame fo#°. Then all normalised
tight frames ofn vectors for.7# have the formiWW =V U, whereU is ann x n
unitary matrix.

151
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7.1 The real algebraic variety of normalised tight frames

Two useful descriptions of the normalised tight frarves: [v1,...,vy] € F9N are
theorthogonality of rowfV and thevariational characterisatiorfsees6), i.e., the
systems of equations

VV* =1,

n

n n 1 n
3 3wl =55 v 3 vl =d (7.2)
j=1k=1 i=

=1

Since these involve the entries\dfand their complex conjugates, it follows that:

The normalised tight frames of vectors inF? are areal algebraic variety
denoted by 4 ga. ForF =R it is in dnvariables (the entries af), and for
F = C itis in 2dnvariables (the real and imaginary parts of the entrieg)of

Since the action of right multiplication by the real Lie gpou(F") on {
is transitive, it follows that 4}, za is irreducible andsmooth Since the stabiliser of
V = [1,0] under this action is alh x n unitary matrices of the form

1 0
( ) U e UF"™9),
ou

the dimension of this variety is difo (F")) — dim(U (F"9)), which gives

dim(c/l/n’Rd):%d(Zn—d—l), dim(A} ca) =d(2n—d).

We have observed that the normalised tight frames wéctors forF9 can be
indexed by then x n unitary matrices (fon > d this is not 1-1). In particular, by
choosingv to be the normalised tight frame given by the standard odhoal basis
(and zero vectors), we see (Exer. 7.1) that all normaliggd frames have the form

W= [Wi,....wy] = [1,00U =U;, U= (31> € U(E), (7.2)
2

i.e., are thal x n submatrices of the x n unitary matrices. Ih=d, i.e.,U, =0, then
the normalised tight frames are given by the unitary madricethonormal bases),
i.e., Ajpd = U(FY). Forn > d, a row of the submatrixJ, can be multiplied by a
scalar, so thdt has determinant 1. Hence, for> d the normalised tight frames/
can be indexed by elements of the special unitary gUF"). SinceSU(F") and
U(C") are path—connected, aSdJ)(R") is not, it follows that:

The set of normalised tight frames;, x4 is path—connectedexcept for when
n=dandF = R.
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7.2 The algebraic variety of equal—-norm tight frames

We can define the subvarietf, za of .47z consisting of all equal-norm tight
frames ofn vectors inFY by replacing the norm equation in (7.1), by thequations

d

2 .

Vi||c=— =1...,n

|| ] H n? J ) )

For n = d (equal-norm orthogonal bases) these spaces are the sairfer an- d

the dimension reduces by 1 (see [CMS13]), i.e.,

dim(#, ga) = (n— g -1)(d-1), dim(#,ca)=d(n—d)+n(d-1)+1, n>d.

Example 7.1The dimensions of the algebraic varieties of equal-norr tight
frames ofn vectors forR? andRR? are

dim(F,p2) =1, dim(#,g2) =n—-2, n>2
dim(F5gs) =3, dim(#,gs) =2n—5 n>3.

ForR? the points on the algebraic variety are determined by therfirs2 diagram
vectors (see Exer. 2.9), since these are equal-norm complebers(w;) with
{Wn_1,Wn} determined bywn 1 +Wp = —(Wg + --- +Wq_2). For C? andC3, we
have

dim(F,g2) = 4, dim(.#,g2) =3n—-3, n>2,

dim(F5gs) =9, dim(#,gs) =5n—8, n>3.

The variety.7, s has been studied extensively (see [DS06], [Str11], [CMB13]
Classical results of [Whi57] imply tha@n,Fd is a union of finitely many manifolds,
and forn andd relatively prime.%, zq is @ manifold [DS06]. We now consider its
connectivity (therame homotopy problem

For aV € .7, pa its GramianP = V*V is ann x n orthogonal projection matrix
with diagonal entriesl/n (and hence ran). Let¥, s be the set of such orthogonal
projections (theGrassmann manifoldf d—planes inFf"). Since evenyP G pa IS

the Gramian of some equal-norm tight frame[éy it follows that:

e The map#,za — %, pa 1V — V*V is onto and preserves path—connectivity.
e Ford > 2, the map¥, o — 4 o : P— | — P (taking the Gramian to the
Gramian of the complementary equal—-norm tight frame) isradmmorphism.

Since tight frames are defined up to unitary equivalence kyr tGramians
(Corollary 2.1),%, za can also be described as the orbit Spa&gqa/ U(FY) for
the action ofU(F%) on Fnra given by right multiplication. In [DS06] it is shown
that¥, r> is homeomorphic to a graph with 12 vertices and 24 edgesyapel is
the the orientable surface of genus 25. '
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Example 7.2Forn=d, the space/; y« has a single point (the identity matrix) and
Fgpa = U(F?). Thus.Z cq is path—connected and g is not.

Example 7.3Forn=d+1 (andd = 1), we can calculat&/y, ;o =1 — Gy, 1 p1.
The variety.7, y1 consists of alV of the form

l .
V:(V11V12"'V1,n)v Vij| =5, Vi

Therefore.Z, 1 consists of 2 isolated points, and so is not path—connected. The

space¥, g1 has ?-1isolated points (and so is not path—connectedhferd + 1).
Hence#y, ; ga and.7, g1 are not path—connected.
ForV,W € .7, c1, an explicit path fronV toW in .7, -1 is given by

. . t t
y:[0,1] = Fcrit (Vll(%) cevidia (32) )
Thus#, c1 and#y ,; ca (Dy taking complements) are path—connected.
It turns out, that the only examples of path—disconnectesiaee those above.

Theorem 7.1.([CMS13]) The variety of equal-norm tight frames satisfies:

1. ﬁan is path—connected if and only itaAd +2 and d> 2.
2. F, o is path—connected.

We will only give an indication of the proof given in [CMS13yhich is involved.
ForaV = [vi,...,vn) € Fnra let /\1(") << )\ék) be the eigenvalues of tHe-th
partial sum of the frame operateiv; + - - - +vv;. These satisfy

M A% =0,vj.

(i) AM=1,vj.
iy Al <A <Al al <Al <Al 1<j<d-2,1<k<n-1.
) 30 A+ =50 A 1<ck<n—1.

The sequences = (/\j<k) 77777
eigenstep$or .7, pa. The set\, 4 of all eigensteps is a convex polytope, and hence

it and its interior infA, 4) are path—connected. It is shown

e The map#,pa — Ang:V — A = Ay of a frame to its eigensteps is onto.

e Forany frame/ € .7, ya With eigenstepg\ (V) € int(Ang), there is a continuous
map6 = 6y : int(ArLd)’ — Fnpa With (A (V)) =V andA B =1 on int(Anq).

e Forn>d, %, is path—connected if and only i, mna is, and this extends to
the subsets afonorthodecomposibleames (those that can’t be partitioned into

two orthogonal subsets).

These results are usedlifd paths inA, g to paths inZ, p4. The casé = C exploits

the fact thatu(CY) is connected. The cag= R is more technical and is proved
using induction om andd, and some special cases.
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7.3 The density of rational tight frames

We have seen that the normalised tight fravies. /], za of n vectors forCY can be
indexed by then x n unitary matrices, e.qg., (7.2) gives

V=[g,0U, Ueu®, (7.3)

where the indeXJ is not unique fom > d. Here we use (7.3) to describe points on
the variety. 4 za. There are various parametrisations of the unitary groGg"),
e.g., factorising its elements into Givens rotations or $éholder transformations.
We now consider the description in terms of the Cayley tranmsf This allows us to
show that the rational points are dense on tfjg. (but noton%, 4). LetAec C™"
be askew Hermitiarmatrix, i.e.,A* = —A. ThenA+1 is invertible, and
_1=A
TI+A
is a unitary matrix, called th€ayley transform of A. If U is unitary, and does not
have—1 as an eigenvalue (so that U is invertible), then
_I=u
BNV
is a skew Hermitian matrix. These maps are the inverses df@her, and so

(7.4)

(7.5)

The unitary matrices (without eigenvalud.) can be parametrised by the skew
Hermitian matrices.

Cayley’s original presentation (1846) was in the real cagieere the Cayley
transform (restricted to real matrices) maps iB@RY).
A complex numbek+ iy is a (Gaussian) rational ¥y € Q. We now show:

The rational points are dense in the variety z« of normalised tight frames.

Theorem 7.2.([CFW15]) Every tight frame V= [vy,..., vy for CY or RY can be
approximated arbitrary closely by one with vectorg@+iQ)¢ or Q9, respectively.

Proof. Suppose, without loss of generality, thats normalised. Fon > d, we can
choose an indeld € U(F") in (7.3) for whichU does not have eigenvaluel (by
multiplying the last row otJ by a suitable scalar ifi). Thus, fom > d, thetruncated
Cayley transform

I—A
I+A
maps the skew Hermitian matrices ontg, p«. Thus the normalised tight frames
V € A, pa Can be parametrised by the entries which determine the skamestric
matricesA, i.e., the%n(n— 1) strictly upper triangular entries amgurely imaginary
diagonal entries (for real matrices this reduce%m(nf 1) real parameters).

V =[lg,0] (7.6)
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Taking the truncated Cayley transform of such a parameitrisatrix A gives a
V € A, pa With entries in the same field as the parameters. Thus we gaoxmate
the parameters as closely as desired by elemeri@s#iQ (which is dense irC)
or Q9, and the truncated Cayley transform of the skew Hermitiatrimgiven by
these approximate parameters will approximaias closely as desired.

Forn = d, scale the last row o to obtain aJ € U(F9) which does not have
—1 as an eigenvalue, approximate as above, and then unseai@xthThis can be
done since the rational points on the unit circle are deise ¢tassical result is the
special cased = 1 andn = 1, incidently). O

Example 7.4(Three vectors iiR?) The 3x 3 skew symmetric matriceshave three
real parameters

0 ab
A=|-ao0c]l, ab,ceR.
—b—-cO
The Cayley transform is the orthogonal matrix
1-a’-b?4+c? _—2(athc) 2(ac—b)
[_A 1+a2+b2+c2 1+a2+b?+c? 1+a2+h2+c?
U= 2 2(a—bc)  1-a?+b2-c2 —2(ctab)
I +A 1+a2+b2+c?2 1+a2+b?+c? 1+a2+b?+c?
2(act+b) —2(ab—c) 1+a?2-b%2-c?

1+a2+b?+c? 1+a2+b?+c? 1+a24+b2+c?

The truncated Cayley transform gives the following indexfiV € .43 pa
1-a2—p?2+c?2  —2(atbc) 2(ac—b)
_ | 1+a2+b?+c? 1+a2+b?+c? 1+a?+b?+c?
V= 2(a—bc)  1-a24p2-c2 —2(ctab) |’ abceR.
1+a2+b?+c? 1+a2+bh?+c? 1+a2+b?+c?

The normalised tight frame of three equally spaced equatrivectors is given by

V\F 1-3 -3 a=-2-V3+v2/3+V2
R

)
03 3 b=v3-v2 c=v2-1
We can approximate these parameters to 5 decimal placesitnyaia
5~ 13165 b~ 31784 &~ AL421
"~ 100000 ~~ 700000 "~ 700000

The corresponding truncated Cayley transform

5266079680 _ 2633025064 _ 263309253
\7 _ 6449619561 6449619561 6449619561

__ 25064 4560603095 _ 4560536360
6449619561 6449619561 644961956

)

gives anormalised tight framevhich approximates the equally spaced vectorg of
to 5 decimal places. It isotan equal—-norm frame. Theorem 7.2 does not imply that
there is a dense set of rational points# ya (there are none ot g2).
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7.4 The existence of tight frames with given norms

If [va,...,vn] is @ normalised tight frame fo#” = 9, then its norms must satisfy
Vall, [Valls- o VRl <30 NallP N2l P+ vl P =d, - (7.7)

since it is the projection of an orthonormal basis (Theore2) &nd by (2.9).

Itis natural to ask whether there exists a normalised tigimhé with some given
norms which satisfy this condition, e.g., an equal-norrm&aWe will show there is
always such a frame. First we show the existence of such &ftaghe follows from
the Schur—Horn majorisation theorem, and then give a sicmistructive proof.

A vector 3 € R" is said tomajorise a vectora € R" if after reordering so that
their entries are increasing, one has

o102+ +a<Pr+Be++B, 1<k<n,  ar+-+0n=Pi++Bn

Theorem 7.3.(Schur-Horn) Let & R" be a vector which majorisek € R", then
there is positive semidefinite reakm matrix A with diagonal a and eigenvalugs

Example 7.5Leta € R" be a vector with
0<aj,a,...,an <1, artax+---+ap=d,

andA =g, _41+--+e =(0,...,0,1,...,1) (n—d zeros andd ones). Thera
majorisesiA, by the calculation

k
aj >
lejf

M~

Aj=0, 1< k<n-d,
1

J

n

k K
D> a=d- Z aj>d—(n—kj=d—n+k= % Aj, n—d+l<k<n
=1 j=k+1 =1

Thus there exists a semidefinite matAxwith eigenvaluesi, i.e., an orthogonal
projection of rankd, and diagonah. This matrix is the Gramian of a normalised
tight frameV = [vy,..., vy for R% with |jvj||> =aj, 1< j<n.

Thus, we have:
Corollary 7.1. (Existence) There is a normalised tight frame=\|vy,...,v,] for
# =T with norms|vj||2 = aj, 1 < j < n, if and only if

0<a,a,...,an<l, ayt+a+--+a=d (7.8)

Example 7.6(Equal-norm tight frames). By takiray = %, 1< j <n,we conclude
that an equal-norm tight frame of> d vectors forF? exists (for everyn andd),
i.e.,.#,pd is @ nontrivial variety. Explicit constructions are givey Bxample 2.4,
or, more generally, group frames (Sg®).
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7.5 The construction of tight frames with given norms

All normalised tight frames are the orbit of any given ahe= [vi,...,Vn| € A}, pd
under the action right multiplication by thex n unitary matrices. It is therefore
natural to try and move along the varietyf, ra by using unitary matriceld that only
make small (hence controlled) changes. Here we considéthe formU,g = d,,

a,B¢{j,k} ie., 1

Ujj U ]
U= (7.9)

Ugj  Ukk «k

1

These have the effect of fixing all vectors[ef, ..., vn] except forv; andv, which
transform to

Vi=avj+bv,  vi=—€%bv;—au), (7.10)
whereVU = [v;,...,Vv,] and
ujj Uj a—d%
Ulge= | "~ ™ =(" |, laP+b?+1 6eR  (7.11)
' Ukj Ukk b d%

Since(VU)*(VU) =V*(U*U)V =V*V, we have th&J conservation of norms
VLI 4 NG - VA2 = vl [[val 2 -+ [val 12,
which for matrices of the form (7.9) gives
VG2 Vi1 = [y 1+ il (7.12)
We now investigate precisely what norms théand hence,) of (7.10) can take.

Lemma 7.1.Let yw € FY. Then for ab € F with |a? + |b|? = 1, we have

1 1
Jav-+bw2 — S(IVI2+ (W) < 5/ (VI2— w22+ 4 uw2, (7.13)

where the maximum and minimum|jaf/+ bw|| over|a|? + |b|2 = 1 give equality.

Proof. Without loss of generality, we suppose that
a=t, b=ov1-t2 0<t<1 o€F, |o/=1
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It therefore suffices to find the maxima and minimafef f, : [0,1] — R given by
f(t):=|[tv+ov1—t2w|? = t?||v]|2 + (1 —t2) |w]® + 2tv/1—t2a,

wherea = a4 := 0(0(v,w)), and then to optimise these values o@Er= 1. These
calculations (see Exer. 7.2) give the result. O

Example 7.7The interval (7.13) for the normjgav+bwi|, [a|>+|b|? = 1, is smallest
whenv andw are orthogonal, i.e{v,w) = 0, which gives

min{{|v][, ]|} < [[av+bwi| < max{|[vi], [jw[[}, (7.14)
and largest whemandw are linearly dependent, i.&(v,w)| = ||v||||w]||, which gives
0< [Jav-+bwi* < [[v][?+jw]?. (7.15)

Without any knowledge ofv,w), it is only possible to construct vectors in the
interval (7.14). This is sufficient for our purposes.

Lemma 7.2.1fV = |vy,...,Vy] is a normalised tight frame fdf®, and
min{|[v; |, [Ivil} < v < max{[|vjl], [[wl[}, (7.16)

then there exists a realxn unitary matrix U of the form (7.9) with

Vll=r IV = /Il + a2 = r2
where[V},...,v] :=VU.
Proof. By Lemma 7.1 there arg b € F with |lav-+bwi| =r, |a|>+ |b|? = 1. Since
g(t) := [tv; £ V1—t2v|

is a continuous function df with g(0) = ||v||, g(1) = ||vj||, we can choose such
a,b € R, and determine them by solving(t) = r. A unitary matrixU with the
desired properties is then given by (7.11). ad

Example 7.80ne can take theg above to be &ivens rotationby the choice
a=cosy, b=—siny, €%=-1

or to be aHouseholder transformation+ 2ww', by the choice

b )
1- - ) a%-l’ .
W=/ 5 a’ Wy = 2(1-3) wy=0, (#].k
1, a=1
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We now use Lemma 7.2 to give a constructive proof of Corollady; i.e., to
construct a normalised tight framé= [vi,...,vy] with given normsjjvj||? = a,
1< j <n, wherea € R" satisfies (7.8). Sincgvj|| is an average ofv;|| and||v]|,
one must take some care.

We now describe the algorithm of [FWWO06], which starts with amalised tight
frame with large intervals (7.16), and moves it closer towith the desired norms.
Another algorithm based on the factorisation of elementg) 8Y) into Givens
rotations was given earlier by [Cas04], [CLO6].

Algorithm (for constructing a tight frame with given norms): Suppdsa t
1>a>a>-->a, >0, a+a+---+ap=d.
Starting withV (), we construct iterateg®) = [Vi,... . vi] € 4,z with
0 IMP=a,1<j<k
(i) V{2 > ac s or V9| =0,k+2<j<n.
In view of (7.12),V("~1) has normg|v;||? = aj, V], and so gives the desired frame.

o LetV(® =B, 0] with Bunitary, e.9.V© = [ey,...,&,0,...,0].

e Suppose that ¥ 0< k < n—2, has been constructed. There are three cases:
L. 1f VY112 = ay. 1, then we can take (k2 —v(®),
2. If HV|((|21||2 < a1, thenag g < ||v}?||2, for somek+2 < jo<n.
3. If \|V|(<521||2 > a1, thenay 1 > ||V§|;) 1% or ||v§';) |> =0, for somek+2 < jo < n.

(see Exer. 7.3) Interchange the vecmff%z andvﬁ';) in the cases 2 and 3.

e Sinceay,; is in the interval (7.16) given byl(('fz1 and vfﬁz, there is a unitary
matrixU of the form (7.9) for whichv 1) := VWU satisfies

K1) (k) kel
W=V 2k k2, P12 = aa.
Sincea;1 > a2, it follows thatV 1) € 1} .4 satisfies properties (i) and ().

Example 7.9Here we construct an equal-norm tight frame of three vedtorg2.
We start withv(©) = [e1,e2,0]. Since the first two columns are orthonormal, every

vectorav(lo) + bv(o), a?+b? = 1, has norm 1 (the interval of Lemma 7.1 is a single
point). Thus we take a linear combination of the first anddtieiblumns given by a
Givens rotation

_ cosf 0 sin@
0 100 cosfO 0 sin6
vy = ., U= 0 1 0
010 0 10 )
—sinB 0 cosH
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Clearly the first column can take any norm between 0 and 1. Wit i@ be/2/3,
and so take cd$ = /2/3, sinf = ,/1/3, to obtain

D:(ﬁ%).

010

Applying a rotation with fixes the first column (which has thested norm) gives

(\[ fs.nw[mw) I

0 cosy siny
cosy siny 0 —siny cosy

The squared norm of the second column above can take anyhﬂiweer% and 1.
Choosing cog/ = —1//2, sing = 1/+/2 gives the equal-norm tight frame

The algorithm presented moves between certain elementeofariety. /;, g,
i.e., those satisfying (i) and (ii), by using Lemma 7.2. Thextnexample indicates
how one can move on the variety by using the more general Lefhina

Example 7.10Consider the tight frame of three equally spaced unit vector

1-
V= [Vl,Vz,V3] = (0 ) .

We will transform this to a tight frame with a two orthogonactors and the zero
vector, by right multiplication by unitary matrices. Slnthe vectorsvj have unit
norm, Lemma 7.2 cannot be applied. Singg, vi)| = 2, j #k, by Lemma 7.1 we
can choose? + b? = 1 so that|av; + bw||? is as small ag; and as large a. The

choice
1
L 1 0 -1
vh.=vU = V21 u=1]o
0-¥3 o
V2 0—

gives squared norms 3,1 and| (", vi")| = \1[ Thus 0< ||a
we obtain

o
Wl NI
I\J‘a Nl

ﬁ.;%\" o
“v N [l =)

+bvV 2 < 3,
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V2 gL

VY3 0 o V3 T V3

V(Z)ZV(]-)U: N U= 0 10
0 2o/

V2 1 9gV2

V3 V3

Since every unitary matrix is a product of matrices of therfdi7.9), it is not
difficult to imagine that one could move from any element&fza to any other by
right multiplying by a finite sequence of such matrices.

Notes

The existence of equal-norm tight frames was not widely knawmtil recently.
This question was raised at Bommerholz in September 2009 [R€03]), and
was “settled” in various ways: retrospectively [GVT98], byplicit constructions
[2im01],[RWO02] and by minimisation of the frame potentialfB3]. The connec-
tion with results such as the Schur—Horn majorisation theoare now well known
and there are sophisticated algorithms [Str12],[CFM1CEM*13],[FMP16] for
moving over the varieties);, ra and.7, ya . The corresponding algebraic varieties
of spherical(t,t)-designs fot # 1 (see§6 9) are far less studied.
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Exercises

7.1.Let U(FF"), the real Lie group ofi x n unitary matrices oveF, act on./4, ya

(the normalised tight frames afvectors forF9) via right multiplication.
(a) Show that the stabiliser ¥ = [I,0] € .4}, pa is

StalfV) = { ((')8) U e U(F"9}.

(b) Since the action is irreducible, it follows thaf, z4 is isomorphic taJ (F") / Stal{V).
Use this to calculate its dimension.
Hint: dim(U(C")) = n?, dim(U(R")) = In(n—1).

7.2.Forvwc Fdando €T, |o| = 1, definef = f5:[0,1] — R by

f(t) = |[tv+ov1—t2w|? = t2||v]|2 + (1 —t2) |w]® + 2t/ 1 —12a,

wherea = ag := 0(T(v,w)).

(a) For afixedo, find a possible local maximum and minimumfof f; over[0, 1].
(b) Optimise the possible local maximum and minimum fromdiegr all|o| = 1.
(c) By considering the end points= 0, 1 find the maximum and minimum df;(t)
overt ando.

7.3.Supposethat ay >a,>--->a,>0,a1+ax+---+a,=d, and thereis a
normalised tight framg' ) = [v<1k)7 RV IRS p.pa With
M V12 =a, 1< j <k
(i) V912> acia or v =0,k+2< j<n.
Show that
(a) If |\v|(<k+)1||2 < ay, 1, thenag, g < va';) |2, for somek+2 < jo < n.
(B) 1F (Vi) 112 > @ys1, thenay 1 > V¥ [| or |Vi¥|12 = 0, for somek+2 < jo < n.






Chapter 8
Projective unitary equivalence and fusion frames

Two finite sequences of vecto# = (vj) and¥ = (w;) in inner product spaces are
unitarily equivalent if and only if their respective innaopucts (Gramian matrices)
are equal (Corollary 2.83.4). Forprojective unitary equivalencee.,

Vj ZGjUWj, Vj,

where|aj| =1, Vj, andU is unitary, the inner products are not projective unitary
invariants, since

(Vj, W) = (ajUwj, aUwi) = o ai(Wj, W).
Obvious projective invariants are
(vi,vi) = [Ivi1?,
(Vi Vi) (Vi Vi) = [(vj, i) 12,

but these don’t characterise projective unitary equivadennlesgv; ) is orthogonal.
A projective unitary invariant is given by

<Vj 7Vk> <VkaV€> <V£,Vj>.

These “triple products” do characterise projective ugitgquivalence when none of
the inner productsv;, vi) are zero, e.g., for equiangular frames, but not in general.
Here we show that finite sequences of vectors (lines) in ipreduct spaces are
projectively unitarily equivalent if and only if certain gjective unitary invariants
(calledm-products) are equal (Theorem 8.1). This is proved by gigimglgorithm
to recover a sequence of vectors (up to projective unitamywatence) from a small
subset of these projective invariants, which are deterthinea spanning tree for
the “frame graph”. We also extend our results to the projectimilarity of vectors

in F—vector spaces (whefe=F).

165
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8.1 Projective unitary equivalence

As in §2.3 and§3.4, finite sequences of vecto#s= (v;) and¥ = (wj;) in (real or
complex) inner product space# and.# areprojectively unitarily equivalent if
there is a unitary map : & — % and unit scalars(j, such that

Wi :GjUVj, v, (8.1)

or, equivalently,

WjV\fjk:U(Vj\ij)U*, Vj.

The study of lines ifRY andCY, in particular, equiangular lines (Chapter 12),
is effectively the study of configurations of unit vectors tapprojective unitary
equivalence. Many applications, such as signal analysjzed only on frames up
to projective unitary equivalence. For example, if the gextare multiplied by unit
modulus scalars, say; = ajvj, then the frame operator is unchanged, and so the
frame expansion is essentially unchanged, i.e.,

f=Z<f7WJ‘>Wj:Z“,CIJ‘VJ‘)C{J'VJ':;<f,\7]>vj', Vf.

The condition (8.1), can be written &g = U (ajvj), i.e., (wj) and(a;v;) are
unitarily equivalent, which by the Gramian condition ($§8&4) is equivalent to

(Wi, Wj) = a0 (Vi,Vj), Y,k (8.2)

Equivalently, in terms of the Gramian:

Frames® and¥ are projectively unitarily equivalent if and only if
Gram¥) = C* Gram @®)C, (8.3)

whereC is the diagonal matrix with diagonal entries.

This is a practicable method for determining projectiveanyi equivalence only
when the inner product space is real. In this cage= +1, and so there are only
finitely many possible matrices.

In view of (8.2), the inner products between vectors @moeprojective unitary
invariants (in general). However, some products of themertg,

<Wj,Wk><Wk,Wg><Wg,Wj> = (a,—Uvj,akka><akka,ang4><ang(g,aijj>
= a0k (UVj,Uvi) aa (U vk, Uve) ae@j (U v, Uvj)
= (Vj, Vio) (Wi, Vi) (Ve Vi) - (8.4)

This projective unitary invariant generalises in the olbgiovay.
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8.2 Them—products

Definition 8.1. Let @ = (vj) be a sequence afvectors (in a Hilbert space). Then
them—products (or them—vertex Bargmann invariants) of ¢ are

A(Vi,Vig, -3 Vim) = Vi1, Vis) ViosVig) - (Vim>Vis)s 1< 1, jm <. (8.5)
The 3—products will also be calledple products.

We observe that there are orilgitely manym-products, and by the argument of
(8.4), we have

The m—products of® are projective unitary invariants, i.e., # and% are
projectively unitarily equivalent, then they have the sam@roducts.

The main result of this chapter (Theorem 8.1) is the convefskis, i.e., that if
@ andW have the samm—products then they are projectively unitarily equivalent

Example 8.1The 1-products, 2—products, and 3—product®et (v;) are
A(vy) = (vj,vj) = |Ivil%,

A(Vjﬂvk) <Vjvvk> <ViaVk> = |<Vjvvk>|2,
AV}, Vi, Vi) = (Vj, Vi) (Vk, Ve) (Ve, Vj )

The 1-products and 2—products can be deduced from the 3iqispdince
AW}, Vi, Vi) = (Vivi)S, AWV Vi) = (Vi) (v, ) (8.6)

Example 8.2(Conjugation) Then—products are closed under complex conjugation,
ie.,

AV, Vs, Vim) = AVjm, -+ -, Vjy, Vijp)- (8.7)
Example 8.3(Decompositions) We observe that in some casegroducts can be
decomposed into products of smaller ones, e.g.,

A(V1,V2,...,Vn_1)A(V1,Vn_1,Vn)

A(V1,V2,...,Vn) = A(V1,Vn-1)

: (88)

providedA (vq,Vn—1) # 0 andn > 2.
We now define the notion of a “generating set” for theproducts.

Definition 8.2. A subset of then—products ofP (or the corresponding indices/cycles)
is adetermining setif all the m—products can be determined from them.

Example 8.4If all the inner products between the vectorsdnare nonzero, then
(8.8) implies that the triple products are determining eetliem-products of®.
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8.3 The frame graph

Here we give examples which show that orthogonality (zemetiproducts) between
vectors in a framév;) affect whichm-products determine it up to projective unitary
equivalence. This motivates the following definition (s8&11], [AN13]).

Definition 8.3. Theframe graph (or correlation network) of a sequence of vectors
(vj) is the graph with vertice$v; } (or the indices themselves) and

an edge betweewy andvy, j #k <<= (vj,w) #0.

Clearly, the frame graph is determined by the 2—productd, sanprojectively
unitarily equivalent frames have the same frame graph.

e Edges in the frame graph correspond to inner products whehanzero.

e m-cycles in the frame graph correspondrieproducts which are nonzero.

Example 8.5(Empty graph) The frame graph @f;) is empty (edgeless) if and only
if all the inner products between different vectors are zieeo, the nonzero vectors
are orthogonal. In this case, the Gramian is diagonal, atg $8.3) all projectively
unitarily equivalent frames have the same Gramian, i.e frdime(v; ) is determined
up to projective unitary equivalence by its 2—products.

Example 8.6(Complete graph) We will see (Example 8.11) that if a frams &a
complete frame graph, then it is determined up to projectivitary equivalence by
its triple products.

Example 8.7(n—cycle) Let(e;) be the standard basis vectorsdh Fix |zl = 1, and
let
v JeTes, 1sj<n,
" lentze, j=n

Then the frame graph dfv;) is then—cycle (vy,...,vn), and so the only nonzero
m—products for distinct vectors are

A(v)) =|vj|P=2  1<j<n, (8.9)
A(Vj,Vjs1) = [(vj,viz) P =1, 1<j<n, (8.10)
A(V1,Vo,...,Vp) = Z, (8.11)

and their complex conjugates. Therefore, different ctefoe z give projectively
unitarily inequivalent frames. Thus, far> 3, the vectorgv;) are not defined up to
projective unitary equivalence by their triple products.

Example 8.8(Connected components) The vectors in a connected compafitee
frame graph are orthogonal to all the other vectors of theézand hence a frame
is union (segb.1) of the frames given by the vertices of each connectegooent.
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8.4 Characterisation of projective unitary equivalence

We now show that a sequencerof/ectors is determined up to projective unitary
equivalence by iten—products for I< m < n (or a determining set).

This is done by using thenproducts of® = (v;) to construct all the possible
GramiansG = [(W, Wj)] given by sequences of vectdss;) which are projectively
unitarily equivalent top (and so have the same-products asp).

We motivate the proof with an example. L@t= (v;) be the frame foRR® given

1\ (-3 -3 0
o=([o].| 2 |.|-2]|.[o]:
0 0 0 1

i.e., three equally spaced unit vectors in a 2—dimensianadgace together with a
unit vector orthogonal to them all. The frame graphdohas an edge between each
pair of the pointsvy, v, v3, andv, as an isolated point. By (8.3), all the possible
Gramians of frame$’ = (w;) which are projectively equivalent @ are given by

1 —%01072 —%01
S L
G = [(w,wj)] = CGram @)C* =
—%0{3071 —%0372 1
0 0 0
Here we assume that only the-products of® are known, so above we only know
the modulus of the inner products between vector®ifthis happens to bé for
vectors which are not orthogonal). Clearly, any of the noma@ner products (which
correspond to edges) is a free variable of the fany wi) = |(vj,vi)|a, |a] = 1. We
suppose thatwi,wy) = %a, |a) = 1 (we could choose any edge). Effectively, we
have fixeda; and az (without knowing (v1,Vv2)). We now consider an edge from
one of the pointsi, v» (which have already been scaled) to an unscaled point, say
vy t0 v3. Sincevs has not been scaled, we can choageso that(w,, ws) = %b,
|b| =1, is a second free variable. We now have a spanning tree docdhnected
component of the frame graph which involves the vertiges,, v3. The remaining
edge (fromvs to v;) no longer corresponds to a free variahig, (@2, az have been
fixed). This edge is in a cyclévn, vz, v3), where the inner products corresponding
to the other edges of the cycle are free variables (i.e. higefo the spanning tree),
and so the inner produivs, w; ) given by this edge is determined by timeproduct
given by the cycle

A(Wr,Wo,W3) = A(V1,V2,V3) = (%a) (%b> <<W3’W1>) - (_%)3
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This example illustrates the main points of the proof below:

The edges in a spanning tree for a connected component ofaime fgraph
of @ correspond to inner products which can be taken as freeblesiaOnce
these are chosen (with the appropriate moduli), then tlseaeunique choice
for the others (determined by tine-products of®) which gives the Gramian
of a frame which is projectively unitarily equivalent .

We recall the following facts:

e Every finite graph™ has a spanning tree (forest).
e Foreachedgee\ .7, thereis a unique cycle iU 7 called thefundamental
cycle(corresponding te).

Theorem 8.1.(Characterisation) Sequenc& = (vj) and ¥ = (w;) of n vectors
are projectively unitarily equivalent if and only if their-+products are equal, i.e.,

A(Vj1Vig, -3 Vim) = A(Wj, Wiy, ..., Wjp), 1<j,...,jm<n, 1<m<n.

Proof. We have already observed that projectively unitarily egl@mut sequences
have the samen-products. We therefore suppose tldatand ¥ have the same
m—products, and will show that we can choasg. .., a, so that (8.2) holds. The
Gramians of® and¥ are block diagonal (with entries having the same moduli),
with blocks given by the vertices of the connected companefthe common frame
graph. We therefore assume without loss of generality tiexetis a single block,
i.e., the frame graph is connected.

Spanning tree argumenkind a spanning tree” of " with root vertexr. By
working outwards from the roat, we can multiply the verticege I" \ {r} by unit
scalarsay so that for an edgévj, v} € 7, (8.2) holds, i.e.,

(Wi, W) = o (Vk, Vi)

In this way, we can choose, ..., an so that (8.2) holds for all edgds;, w} € .

Completing cycleslt remains only to show that (8.2) also holds for all edges
e={vj,w} e\ 7. Let(vj,w,Vy,...,V,) be the fundamental cycle given by the
edgee = {vj,V}. Since them-products are equal, and the other edges in this cycle
belong to.7, we obtain

A(WJ'7W|<7W(/»1’ e ,W[;r) = <WJ"Wk><Wk’Wl'1><W/31>W€2> T <W(fr7Wj>
= (W, Wie) Oty (Vic, Viey ) Oy Ot (Vg , Vi) -+ Al O (Vi Vi)
= (o] (W, Wie) ) (Vic, Vi ) (Vg s Vi) -+ (Vi , Vi)
= (Vj, Vi) {Vik, Ve ) (Vg , Vi) -+ (Vi , Vi)
= AV}, Vi, Veg s, Ve, ),

and cancellation gives (8.2) for the edpg,w} € "\ 7. O
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Above we associated the (directed}cycle(v;,,...,Vj,) in the frame graph with
the nonzeran-productA (vj,, ..., Vj,). Form> 3, allm-products can be calculated
from those corresponding to simple cycles, since if a cydeses ah, we have

A(ve,... Vs, 8, W1, ..., W, @) = A(V1,...,Vs,Q)A(Wy,...,W,a). (8.12)

The cycle spaceof a finite graph™ is the set of itEulerian subgraphs (those
with vertices of even degree). This can be viewed &s-avector space, where the
addition is the symmetric difference of sets. From thiglitivs that the cycle space
is spanned by the simple cycles (and its elements are disjoions of cycles). If the
sum of two simple cycles is a simple cycle (in the frame grafif®n corresponding
m—product can be determined from those of the summands

A(V]_,...,Vs,e]_,...,Q)A(Wl,...,VV[,Qf,...,el)
=A(e, &) --Ale_1,6)A(V1,...,Vs,€1,W1, ..., W, &).

Combining these observations, we have:

A determining set for then-products of® is given by the 2—products and the
m—products corresponding to a basis for the cycle space dfahee graph.

The fundamental cycles corresponding to a spanning treesfioof a finite graph
form a basis for the cycle space, callefuadamental cycle basis We therefore
have the following strengthening of Theorem 8.1.

Corollary 8.1. A finite frame®, with frame graph™, is determined up to projective
unitary equivalence by a determining set for the m—produets,

1. The2—products.
2. The m—products3 < m < n, corresponding to a fundamental cycle basis (for
the cycle space df) formed from a spanning tree (fores¥) for I".

In particular, if M is the number of edges bf\ .7, then it is sufficient to know all
of the2—products, and M of the m—producg&< m<n.

Proof. It suffices to verify the condition of Theorem 8.1 for a detanimg set. O

Example 8.9Let @ = (vj) be four equiangular vectors with> 0. The frame graph
of @ is complete, andl = 6 — 3 = 3. Spanning trees (see Figure 8.1) include

Tp := the pathvy,va, v3, s,
s .= the star graph with internal vertex and leavess, v3, V.

For .7, the fundamental cycles given by the edges va}, {v1,vs}, {v2,v4} are

(VlaVZaV3aV4)7 (V17V27V3)3 (V27V37V4)'
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Fig. 8.1: The spanning treeg, and.7; (and cycle completions) of Example 8.9.

For 7, the fundamental cycles given by the eddes vs}, {vo,va}, {v3,va} are
(V1,V2,V3),  (V1,V2,V4), (V1,V3,V4).

Thus @ is determined up to projective unitary equivalence by itpraducts, and
the either of the following sets ofi-products

A(Vl,VZ,V3,V4), A(V17V27V3)7 A(V27V37V4)7

A(V]_,Vz,Vg), A(V13V23V4)3 A(V17V37V4)‘

8.5 Reconstruction from them—products

We now state the characterisation in way which summarisesailoprojectively
unitarily frames can be constructed from a small deterngisiet ofm-products.

Theorem 8.2.(Reconstruction) Suppose = (v;) is a frame of n vectors. Lét be
the frame graph ofp, .7 be a spanning tree (forest) fér, and

N = the number of edges ifr,
M = the number of edges in\ 7.

Then the collection of all Gramians & [(wi,w;)] of frames¥ = (w;) which are
unitarily projectively equivalent tap can be parameterised by N free variables.
More precisely, for each of the N edgps, v} € .77 (choose an order) we have a
free variable

(Wi, wi) = [(vi:vidag . (&gl =1,

and for the remaining M edgese{vj, v} € ' \ .7, (wj, W) is uniquely determined
by equality of the m—products gf and ¥ for the fundamental cycle given by e.
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Example 8.10Let @ = (v;) be the “two mutually unbiased bases” ($8%5) forC2
given by

1 1
10 % %
1\ (o) (& < o 1 i1 -1
(D:( ) ) ﬁ I ﬁ )7 Gran((p): ﬁ ﬁ
o/ \1 L -1 L 1 1 0

V2 V2 V2 V2
L Lo 1

V2 V2

The frame grapli of @ is the 4—cyclgvi,vs,v2,v4). A spanning tree7 is given
by the pathvy,vs, V2, vs. Corresponding to the three edges®f we have three free
variables

a b °

V2' V2’ V2

The remaining inner productv,, w;) = %2 is determined the fundamental cycle
given by{vi,vs4}, i.e., by completing the 4—cycle

(W1, W3) = (W3, Wo) = (W2, Wg) =

(W1, W3) (W3, Wa) (W2, Wa) (Wa, W1) = (V1,V3)(V3,V2)(V2,Va)(Va, V1),

which gives 3
abz= -1

Thus all the Gramians d¥ which are projectively unitarily equivalent t® are
given by

)
2]

a
1 0%
0o 1 b <
G= V2 vz g =bl=]c =1
a b 9
V2 V2
abc ¢
~nvp 01

This particular® is in fact determined up to projective unitary equivalence
by just its 2—products. This is because Sylvester's catefor G (as function of
a, b, c,2) to be positive semidefinite gives

bz 2

bz ac
—+1
ac

>0 = —+4+1=0 = z=——.
ac b

_ 1(bzt+ac? 1
4l =7 bz~ 2

In contrast, thév;) of Example 8.7 fon = 4 also has frame graph a 4—cycle, but it
is not determined up to projective unitary equivalence byiproducts (and triple
products).

We now consider those frames which are determined up to girnggeunitary
equivalence by their 2—products and triple products.



174 8 Projective unitary equivalence and fusion frames

8.6 Triple products, equiangular lines, SICs and MUBs

The following special case of Corollary 8.1 is often useful.

Corollary 8.2. (Triple products) A finite frameb is determined up to projective
unitary equivalence by its triple product3{products) if the cycle space of its frame
graph is spanned b$-cycles (and so the cycle space has a bas&-ofcles).

Proof. The 2—products can be deduced from the triple products BY.(8. O

Example 8.11(Chordal graphs) A graph is said to bleordal (or triangulated) if
each of its cycles of four or more vertices has a chord, andeaycle space is
spanned by the 3—cycles. Hence a frame is determined bygls products if its
frame graph is chordal. The extreme cases are the empty (pethlbgonal bases)
where there are no cycles, and the complete graph wherebaktiof three vectors
lie on a 3-cycle (equiangular lines).

A set of equiangular lines given by a franteis determined up to projective
unitary equivalence by the triple products®df

We now give an example (Corollary 8.3) where the cycle spdabeframe
graph has a basis of 3—cycles, but the frame graph is not ahord

Definition 8.4. A family of orthonormal bases;, %., ..., % for CY is said to be
mutually unbiased if for r # |

1
\(\/,w>\2:a, VEB;, wgB;.

We call %1, ..., %k a sequence & MUBs (mutually unbiased bases.

The maximal number of MUBs is a question of considerabla@st(se¢2.11).
The frame graph of two or more MUBSI (> 1) is not chordal, because there is a
4—cycle(vi, Wi, Vo, Wo), V1,V2 € B, W1, W2 € HBs Not containing a chord.

We now show for three or more MUBSs the cycle space of the framaplyis
spanned by the 3—cycles. This is not case for two MUBs (seegha8.10).

Corollary 8.3. (MUBs) A frame® consisting of three or more MUBs & , d > 2,
is determined up to projective unitary equivalence by ifgérproducts.

Proof. It suffices to show that the cycle space of the frame graphf @ has a
basis of 3—cycles. To this end, &}, j = 1,...,k, be the MUBs forCY, so that"”

is a completek—partite graph (with partite set®;). Fix vy € %1 andvs € %>. A
spanning tree” for I is given by taking an edge frowy to each vertex of%;,

j # 1, and an edge from, to each vertex of4; \ v1. Each of the remaining edges
of I\ 7 gives a fundamental cycle. These have two types (see Fig2ye 8



8.6 Triple products, equiangular lines, SICs and MUBs 175

1. %dz(k— 1)(k— 2) edges between vertices i, and %s, r,s # 1, which give
fundamental 3—cycles (involving).

2. (d—1)((k—1)d—1) edges between verticess %1\ v andw € Uj1.%5j \ v,
which give fundamental 4—cyclési, w,v1,v»). These can be written as a sum
(symmetric difference) of the 3—cyclés, w,v») and(vy, Vo, w).

Thus the cycle space is spanned by 3—cycles. O

O &0 M Ofe

Fig. 8.2: Details from the proof of Corollary 8.3 for MUBE;, %,, %3 in C3. The frame graplf,
the spanning tre¢”, and fundamental cycles of type 1 and 2.

There exist graphs which are not chordal, with every edge3®#cgcle (as is the
case for the frame graph of three or more MUBS), but for whighdycle space is
not spanned by 3—cycles (see Figure 8.3).

=
Cp

Fig. 8.3: A nonchordal graph for which each edge is on a 3-ecycl
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8.7 Projective similarity and canonicalm—products for vector
spaces

We now use the previous results to charactguisgective similarity

Let @ = (vj)jes and ¥ = (wj)je3 be finite sequences of vectors which span
vector spaceX andY over a subfieldf of C. We say that® andW¥ aresimilar if
there is an invertible linear map: X — Y with

Wi =Qvj,  Vj,
and areprojectively similar if there unit scalarsrj andQ invertible, with
wj = ajQv;, vj.

Assume thaff = F. Then the canonical Gramid® € F* is defined (se§),
and
Lo : X — ran(Po) : vj — Pe
is an invertible linear map. NoWPyej) and (Pye;j) are projectively similar if and
only if (ajPpe;) and(Pyej) are similar (fora; as above). ButajPee;) and(Pyej)
are normalised tight frames, and so are similar if and ortlyg§ are unitarily equiv-
alent (see Exer. 2.5). Combining these observations gives:

@ = (vj) and¥ = (w;) are projectively similiar
< (Pogj) and(Pye;) are projectively similiar (8.13)
< (Pogj) and(Pyej) are projectively unitarily equivalent

This motivates the definition:

Definition 8.5. Let @ = (v;) be a finite sequence of vectors in Bavector space,
with F = F. Then thecanonical m-products of @ are them-products of(Po€;),
which we denote by

Ac(Vjy, - Vi) = A(Po€jy - .., Po€jr) = Pi1joPisis " Pimir» (8.14)
wherePy = [py;]-.

These depend o as well asvj,,...,Vj,, (unlike the usuam-products), and
one could use notation such Ag = Ac the emphasize this. In this way, we may
apply Theorem 8.1.

Theorem 8.3.(Characterisation) Leth = (vj) and¥ = (w;) be finite sequences of
vectors in vector spaces over a subfiBldf C with F = F. Then

1. @ and¥ are similar if and only if B = Py (the canonical Gramians are equal).
2. @ and¥ are projectively similar if and only if their canonical m-gafucts (for
a determining set) are equal.
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Proof. The first follows from Proposition 4.1, and second from theeglation
(8.13) and Theorem 8.1. O

For projective similarity, one can calculate thgandQ in wj = a;Qv; explicitly:

Corollary 8.4. (Construction) Suppose thdt= (v;) and¥ = (w;) are projectively
similar, i.e., w = a;Qvj, Vj, and I is the frame graph ofP»e;j). Then the unit
scalarsaj are unique up to multiplication of those corresponding tooanponent
of I' by a unit scalar. All possible choices foar;) can be constructed as follows

1. Fix thea; corresponding to the root(s) of a spanning tree (forest)for
2. Determine the remaining; by the applying the spanning tree argument to

Py = C*PyC, C =diagaj).
The invertible linear map Q is then defined byoQv;) = wj, V.
We illustrate this with a simple example (also §8¢€7).

Example 8.12Suppose that? = (vj) and ¥ = (w;) span 2—dimensional spaces,
say, for simplicity,

avi+ava+agvs=0,  |a|?+ e’ +as? =1,

S s (8.15)
biw1 + bows + baws = 0, b1 | + || + [bg|* = 1.

For a general field, it may not be possible to normalise the vedes (a1, a,a3)",
which spans degpb), in which case one can modify the argument below. We have
1-|a? —a@m —ads
~@as  —dpag 1 [agl?
The canonical 2—products are uniquely determined bya}jesince
Ac(vi,vi) = (1—[aj)?%  Ac(vi,vi) = | —ajal® = [aj ?laf?, ] # k.
as are the canonical 3—products corresponding to a 3—cycle
Ac (Vi) Vi Vo) = (—ajak) (—adr) (—avay) = —|aj[*lax|*|ar|.
Thus

1. @ and¥ are similar if and only ifaja, = bij(, Vi, k.
2. @ and¥ are projectively similar if and only ifaj| = |bj], V.

We now suppose thak and¥ are projectively similar, i.ew; = a;jQv;, Vj, and
calculate(a;) andQ from
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1- |2 orop(—ad) a103(—a133)
Py =C'PoC= | mpon(—a1a) 1—|a? ooos(—axd) |- (8.17)
U301 (—aag) Ta02(—Fag)  1—|agl?
and the frame graph of (Ppg;). In view of (8.15) are (8.16), there only are three
possibilities forl™ (up to graph isomorphism).
I is completei.e., a;,ap,a3 # 0. A spanning tree fof is given by the path

Poe1, Poer, Ppes. Fix oz (corresponding to to the root), then, as are determined
by the entries of (8.17) corresponding to the edges, i.e.,

oiax(—ay@) = —biby,  Opa3(—azag) = —bobs.
Solving these gives

bib> bobs bobs bibs b1bs
ay = 120{17 s = 230{2: 203 120{1: 103
a1ap agas apaz ajay a1as

1.

Thus, witha; fixed, saya1 = 1, Q is given by
_ bibp N\ _
Q(v1) = w, Q(EVZ) = Wa.

Supposd™ is not complete, sayayaz = 0 with az = 0, then (8.17) reduces to

1-|a?2 orop(—ay@m) O
Py =C'PoC = | mpay(—aap) 1-—|ag)? 0 ;
0 0 1- |ag|?
where one ofy,a, must be nonzero, sayf # 0. This gives the remaining two cases.

" has one edge.e.,a;,a; # 0,a3 = 0. The edgépe1, Ppe together withPdes
is a spanning forest. Fist1, a3 (corresponding to the roots). Then is given by

_ _ - b1by
01(12(—6.1&2) = —b1b2 =4 ap = 177201.
aiaz
Thus, withay, a3 fixed, sayay, a3 = 1, Q is given by

Q(v1) = wn, Q(v3) = ws.

I has no edgesi.e., a; # 0, az,ag = 0. The verticesPpe;,Pper, Ppes are a
spanning forest. We can make any choicederas, az, and thenQ is determined
by Q(ajvj) = w;. Herea;vy = 0, sovy = 0, and so thg = 1 equation is vacuous.
Thus, fora, = a3 =1, Qis given by

Q(v2) = wa, Q(v3) = ws.
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8.8 Fusion frames

As observed in (2.6), the frame expansion for a finite tigatrfe( f;) for 7 can be
written

1
f=a2(Lifi=YcRyf, Vie,
] J

wherecj = %H fjl|2 >0, andRy; is the orthogonal projection onW; := spar f;}.
This expansion iprojectively invarianti.e., it only depends on the vectors up to
multiplication by unit modulus scalars. It can be geneealiby letting thew; be
subspaces with any possible dimension, to obtdigtd fusion frame

Let (W)jcs be subspaces o and(c;)jcy be nonnegative weights. Then the
collection of pairs{(Wj,c;j)} is atight fusion frame for /7 if for someA > 0

1
f==ScRyf, Ve (8.18)
A 2P

Many (projectively invariant) results for tight frames erd to tight fusion frames,
e.g., taking the trace of the linear operators in (8.18) gizes (2.9) to

ch dim(W;) = dA d:=dim(s?). (8.19)
]
A tight fusion frame(W;), (c;) for 7 isnormalisedif A=1, i.e.,y  ¢; = dim(J7).

The finite normalised tight framéed ) for .7 (up to projective equivalence)
are equivalent to the tight fusion frame/; ), (c;) for J# with

dmW) =1, ¢;#0, 3 c¢j=dim(%),
]
viacj = |j[|2, W, = spar{ f;}.
Example 8.13A trivial tight fusion frame is given by taking a single subsp, i.e.,

Wy =27,c1=1.

Example 8.14lf {(Wj,c;)} is a normalised tight fusion frame fo#’, then (8.18)
and (8.19) give

dCRy=l=lr = Jc(-Ry)=d-1 = > —=Ry =1
] ] ]

Thus{(VVjL, %)} is a normalised tight fusion frame fo#’, d = dim(¢) > 1.
When {(Wj,cj)} is a tight frame, this fusion frame expresses the identity as
weighted sum of orthogonal projections onto hyperplanes.
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Example 8.15There is no tight fusion frame fdt® consisting two 2—dimensional
subspaces. If there were, then the construction of Examf#\8ould give a tight
frame of two vectors fo€3.

The study of nontight fusion frames (frames of subspaces) wiiated by
[AKO5], [CKLO08]. It parallels theory of frames. We now givefaw of the salient
definitions and details. THesion frame operator of the subspace and nonnegative
weight pairs{(W;,c;) }jej is the positive semidefinite operatr & — ¢ given

by
Sf:i=3 cjRy f, vieor.
]

The collection{(W;,c;)} is afusion frame for .7 if Sis boundedly invertible, i.e.,
Alyy <S<Bly (Loewner order)
which is equivalent to

Allf|[* < (st ) ZCJ||R/VfH2<B||fH2 Vie .

To calculate the orthogonal projectioRg; in the fusion frame operatd one can
introduce docal frame.7j = (fjx)kek; for eachWj, so that (see Exer. 3.12)

Ryf=S (f.fiof= S (F.fiofi.  viesr,
: k;j k;j

where fj = § ik- The collection of triples((Wj,cj,.%;)} is known as dusion

frame system and eachZ; as alocal frame (for W;). The calculation o5 f can
bedistributedby using a fusion frame system, which is natural for senstwarks

(see [CKLOS8]). Let(fjclf‘")keKj, ffka”:: S,;%/ijk be the canonical tight frame for a
local frame.7; for W;. Then the fusion frame operator can be written as

Sf= i can (f, /G f5 can Vfe 2,
;CJ ; fic) ik Zk; AV TEVE T =

keK;

so that the fusion frame operator can be viewed as the frameatmp of the frame
(fﬁf‘")j@,ke,(j for .2, which has frame bound& andB as above. Thu§ 1f can
be calculated using thigeame algorithm(see§3.9) and the distributed calculation
(parallel processing) db f outlined above. Thé&usion frame expansios

f=5 1Sf—ZcJS RNf_ZCJ fﬂk>§lfjk, viesr.
ke

The frame operator of a frame can similarly be calculated pgrallel algorithm.
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8.9 Signed frames

The tight frame expansion (8.8) can be generalised by ¢gthia scalars; > 0 take
(possibly negative) real values. We call such a configunatio

f:ZO'J'“,]C])]CJ':ZC]R/\/J.]‘7 Ve, (8.20)

o e{+l}, fien, c¢:=0|fj|?, W :=sparfj}, (8.21)

atight signed frame for .2 with signature o = (gj). By the polarisation identity,
the condition (8.20) is equivalent to

112 =5 ajl(f. £, viesr (8.22)
J

Using this presentation, one can develop a theorsigried frameslong the lines
of that for frames (see [PWO02], Exercises 8.1, 8.2).

Example 8.16The tight signed frames with positive signatare- (1) are precisely
the normalised tight frames.

Example 8.17Take any three unit vectors R? none of which are multiples of each
other. Then there are uniqegthat give a tight signed frame, which are given by

cogB—a)

%= Sina sing’
where—11/2 < o < B < 11/2 are the (acute) angles from the subspace spanned by
this vector to those spanned by the other two. This is negdftie < O, § > O,
B—a < m/2,ie., the subspace generated by the vector lies in therrdgitween
the acute angle made by the other two.

+ +

Fig. 8.4: Tight signed frames of three vectorsifiwith the signature indicated.

Example 8.18There exist tight signed frames ofvectors forF® for any signature
which takes the value-1 at least times (see Exer. 8.3).
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8.10 Scaling the vectors of a frame to obtain a tight frame

We say a finite framéf;) of (nonzero) vectors fog# can bescaled to a tight frame
if there are scalars; > 0, such that

fi
I =l,=3ciP,  where Pfi=(f.upu;, uj= 1 (8.23)
J

P

i.e., (/Cjfj) is a normalised tight frame fo#. Similarly, we say thatf;) can be
scaled to a tight signed frami&(8.23) holds for some choice af < R.
We now use tight signed frames to consider the question:

When can a finite frame af vectors for.# = F9 be scaled to a tight frame?

It turns out (Corollary 8.5), that for thgarticular valueof n

1 .
n:{zd(d+1), A real; (8.24)

d?, A complex

almost all sequences afvectors have a unique scaling to a tight signed frame for
# =T, In the generic situation, there is no scaling for less thamctors, and
infinitely many for more tham vectors.

We first consider the geometry of the set of best possibléngrsal

Proposition 8.1.(Best approximation)Let w, ..., U, be unit vectors insZ. Then
the coefficients e- (cj){_; € F" which minimise the Frobenius (matrix) norm

n
|||—ZCJ'P|'|||:, P f = (f,uj)uj, (8.25)
=1

are the solutions of the x n linear system
Ac=[1, A= [|{uup) )]s (8.26)

In particular, (uj) can be scaled to a tight frame if and only if this minimum i®zer
and there is a solution with;c> 0.

Proof. We first recall (see Exer. 3.1), thé®, R)r = |(uj,u) |2, (I,R)r = 1. The
minimum (least squares solution) of (8.25) occurs when éiier) | — ¥ ¢;P; is
orthogonal to all théy, i.e.,Vk

l-3iciP LR < 3P, RE=(,R)E <= 3l{uju)*=1

O

1 The termscalableis used in [KOPT13].
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We now seek a condition on the vectgus) which ensures theormal equations
(8.26) have a unique solution, i.e., there is a unique sgatira tight signed frame.
Let o be the Hadamard (pointwise) product of matrige&s: T ) j := Siktjk. Then the
matrix A in the normal equations is the Hadamard product

A= [|(ug, ;)] = BoB, B:= [(uk,uj)], (8.27)

whereB is the Gramian ofu;j). We will use the Schur product theorem (cf [HJ91]).

Theorem 8.4.(Schur product) If A and B are positive semidefinite, therssioiB.
If, in addition, B is positive definite and A has no diagonargrqual to zero, then
Ao B is positive definite.

The following Lemma gives a condition which ensures th(ajlk,ud-ﬂz] (and
other matrices) is invertible. It uses Lebesgue measurB%n--- x F9, and the
fact that the zero set of a nonzero polynomial has measuece zer

Lemma 8.1.For almost every y,. .., v, € F9

rank([(Vk, V;)']) = min{n, (d+:_1)}, r>0.

For almost everyy,...,v, € C4

d+s-—-1
[

rank([(vii,V;) (i, vj) ]) = min{n, <d+:_l>( )}, rs>0.

Proof. Let B =V*V be the Gramian of = [v4,...,vy]. The matrices above are
Hadamard products & andB, i.e., respectively

A:=[(w,Vj)'] =BoBo---0B,
r times
—S.

A= [<Vk,Vj>r<Vk,Vj> ]=BoBo---0oBoBoBo---0B.

r times stimes

SinceB (and henceB) is positive semidefinite, it follows from the Schur product
theorem thaf is also. Almost every choice uéf/j)’j‘:l is in general position, and so
we may assume without loss of generality that they are chimske so.

First suppose that < d. Then the(v;) are linearly independent, so thatis
positive definite, and by the Schur product theor&ns positive definite, giving
rank(/A) = n, as asserted.

Hence it suffices to suppose thmat- d. Clearly, rankA) < n. SinceB andV have
the same kernel, and raf\k) = d, the positive semidefinite matri® = V*V has
rankd. ThusB can be written
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where{uj,...,u;} is an orthogonal basis for the rangeBf
We now consider only the second case (the first is similaloiahg from the
algebra fors= 0). Expanding (see Exer. 8.4) gives

A= [(Vi,V}) (Vo Vj) ] =BoBo---0BoBoBo-- 0B

r times stimes

d d d d
= Z...z Z”'z(uklo."oukrOThO..'OTE)(uklo"'OuhOWO."OTE)*7

K=1 K=1ji=1 je=1
d+r—1

: )(df’l) rank one matricess(is commutative), giving

rank(A) < (d+r—1) <d+s—1).

r S

a sum of at mos

Thus, it suffices to show that rafk) = n, where

ne d+r—1\/d+s-1
B r s )

for some choice of nonzero vectai ). Since detA) is a polynomial invy, ..., vy
andvy,. .., Vy, this then implies that déA) will be nonzero for almost every choice
of (vj), which gives the result.

The existence of vectol/;) for which A is invertible follows from the fact that

I'I,‘js(Cd) has a basis of ridge polynomiais— (z,v)" (z, v>s (see Exer. 8.5). O

Theorem 8.5.(Equivalence) Let4...,u, be unit vectors in a Hilbert spacg” of
dimension d, where

1d(d+1), 4 real,
n=
d?, ¢ complex

Let A:= [|(uk, u;)|?]. Then the following are equivalent

(a) The nx n positive semidefinite matrix A is invertible.

(b) The vectors u...,u, have a unigue scaling which gives a tight signed frame,
with the c of (8.23) given bye A"1[1].

(c) The Hermitian forms o’ have a basis given by

(f,9) — (f,uj)(u;j,0), i=1....n

(d) The Hermitian operators o## have a basis given by the rarikorthogonal
projections
P . f— (f,ujuj, j=1...,n

Proof. (a)<=-(b) As discussed in Proposition 8Ajs the matrix giving the normal
equations for finding a best scaling.Afis invertible, then the system; cjP; = |
has a unique solution given foy= (cj) = A1)
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We now consider the cas# = CY. The case#” = RY is similar, and easier. It
uses the indentification dfls(RY) with the symmetric bilinear forms oR¢ (real
Hermitian forms).

(a}=(c) By takingr = s= 1 in Exer. 8.5, the invertibility ofA is equivalent
to the polynomials — (z,u;j)(uj,z), 1 < j < n, being a basis foﬂfl((Cd). Using
the indentification oﬂ‘lfl((cd) with the Hermitian forms (seg6.7), we conclude
that the Hermitian form¢f . g) — (f,uj)(uj,0), 1< j < n, are a basis for the (real
vector space) of Hermitian forms @Iffjj .

(c)<=(d) We observe the Hermitian operator corresponding to tberitian
form (f,g) — (f,uj)(uj,9) is P =u;uj. O

Corollary 8.5. (Scaling to a tight signed frame). Le¥’ be a Hilbert space of di-
mension d, and
{%d(d+l), A real,
n=
d?, ¢ complex

Then for almost every choice of unit vectdts,...,un) in 5 there is a unique
scaling that gives a tight signed frame, with the constapis ¢8.23) given by

c=AY1,  A=[[(u,up)?. (8.28)

Proof. We observe that déA) is a polynomial inu,...,u, (andug,. .., U, for ¢
complex). By Lemma 8.1, this polynomial is nonzero for altn®gery choice for
Ui, ...,Un. When it is nonzero, i.eAis invertible, Theorem 8.5 implies that there is
unique scaling ofu;) to a tight signed frame given by (8.28). O

Since the set of scalingsof (uj) which give a tight signed frame is an affine
subspace (by Proposition 8.1), the numheabove is acut off Almost all
sequences of less thanvectors don'’t have a scaling to a tight signed frame,
and almost all sequences of more thawmectors have infinitely many such
scalings.

Example 8.19(2 dimensions). Almost every set of three vectorsRif can be
uniquely scaled to a tight signed frame. See Example 8.1d Fagure 8.4) for a
description on when this scaling is a tight frame. Two vesiorfR? can be scaled
to a tight signed frame if and only if they are orthogonal.sTéihows directly that
almost every set of two vectors ? cannot be scaled to a tight signed frame.

Almost every set of four vectors ii? can be uniquely scaled to a tight signed
frame for C2. The possible signatures ase++-+ (a tight frame),+-++—, and
++—— (see Exer. 8.3).
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Notes

The characterisation of SICs up to projective unitary egjeince by their triple
products was given by [AFF11]. This work was adapted to theeggd case (which
includes MUBSs) by [CW16] (see Theorems 8.1 and 8.2). The tesiithis chapter
allow projective objects such as spheri(tat)—designs and frames viewed as fusion
frames to be classified (up to projective unitary equivadgrand their projective
symmetries to be determined (Sge3).

There is ongoing interest in fusion frames, e.g., see [BEH&|Fusion frame
page of thderame Research Centrandwww.fusionframe.org

Tight signed frames were introduced in [PW02], where thdatienship to the
question of scaling to a tight frame (as presented here) waliesl. The scaling
question was also addressed in [KOPT13], who gave geondetsicriptions of when
a frame can be scaled to a tight frame.

Exercises

8.1.Let (¢)_; be a sequence of vectors.i#f, andc; € F be scalars.
(a) Show that there exists a representation of the form

f:ZCj<f,(0j>(pj, Ve, (8.29)
]

if and only if
112 =Y cl(f.@)%,  vies (8-30)
J

(b) Suppose that (8.29) holds. Show that there is a uniquielior (cj) which
minimisesy ; [c; |2, and that this satisfies; € R, Vj. Prove the analogue of (2.9),
ie.,

S ¢illgi |2 = dim(.7).

]

8.2.Let (fj)[_, be vectors in#’, ando = (0j), 0j € {£1}. We say thatf;) is a
signed framewith signature o for J# if there exist (signed frame bounds)B > 0
with
AIfI? <y oil(f. f) 2 < B| f|?,vf € 7. (8.31)
]

The signed frame operatorS,.#” — % of a vector, signature paiif;), (gj) is
given by
Sf::Zoj<f,fj>fj, vfes.
]

(a) Show that the frame operat8of a signed frame with boundsB is invertible,
with (1/B)l» < S71 < (1/A) 4.



8.10 Scaling the vectors of a frame to obtain a tight frame 187

(b) For a signed framéf;) with signatureo and frame operatds, define thedual
signed frameto be (fj) with signatured, where f; := S-1f;. Show that the dual
signed frame is a signed frame with frame oper&d¥, and one has the expansion

f:;oju,ﬂ»f,- :;Ujﬁ,fj)ﬂ-, Ve

Define thecanonical tight signed frameto be (f{2") with signatured, where
fean:= S %21}, and show that this is a tight signed frame.

8.3.Show that there is a tight signed framerofectors forF? with signatureo if
and only if o takes the value-1 at leasd times.

8.4. Show that the Hadamard product satisfies
(aa’) o (bb") = (aob)(ach)*,  VabeF9

8.5.Here we consider the spaEl{’s((Cd) of Exer. 6.17, which has dimension

he d+r—1\ /d+s-1
N r s '
Letvi,...,vn € CY. Show that the following are equivalent
(a) The polynomial; : z+— (z,vj)" (vj,2)® are a basis foﬂ,f’s((Cd).
(b) The point evaluationg; : f — f(v;) are a basis for dual spat'efs((cd)’.

(c) Then x n positive semidefinite matriA = [(vj, Vi)' (v ,vk>s] is invertible.

Remark:SinceI'I;jS(Cd) has a basis of ridge polynomias- (z,v)"(v,2)3, it follows
thatA is invertible for some choices @¥;).







Chapter 9
Symmetries of tight frames

The angle preserving transformationsRst form thereal orthogonal group
0(2) == {AcR?>2: ATA=1},

which can be thought of as the symmetries of the inner prospate”” = R2.

One might reasonably hope that an expansion for this spac&dweflect this
structure as much as possible. To understand the issudgeadveere, consider an
orthonormal basis, and the tight frame of three equally spaectors.

The firstis invariant (mapped to itself) under a reflectiohi@h generates a group of
order 2), and the second is invariant under the dihedralmfoliorder 6) generated
by a rotation (througr%f) and a reflection. Thus the three equally spaced vectors
have more of the symmetry of the spa®than an orthonormal basis does. Further,
this “large” symmetry group is closely related to the vestof the frame being
equiangulay which is desirable. It is even possible to have an expangitinall of
the symmetry of the space, as in (1.3), but necessarily #gsires one to use an
(uncountably) infinite set of vectors.

We now make these (intuitively obvious) ideas precise bynitafithesymmetry
group and projective symmetry groupf a frame (which can be calculated from a
small set of invariants). For simplicity, we suppose that fitame is finite, though
the theory extends to infinite frames without any complmadi (see Chapter 16).

189
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9.1 The symmetries of a sequence of vectors

We define thesymmetry ground theprojective symmetry grougf a finite frame
in a very general setting (which includes versions allowangjlinear symmetries).
Each of these “symmetry groups” has the following key fesgur

e Itis defined forall finite frames as a group of permutations on the index set.

e Itis simple to calculate from a small set of invariants.

e The symmetry group of a frame and all similar frames are ednglarticular, a
frame, its dual frame and canonical tight frame have the sammemetry group.

e The symmetry group of various combinations of frames, sgdeasor products
and direct sums, are related to those of the constituenesama natural way.

e The symmetry group of a frame and its complementary frameguel.

Frames with a large symmetry group have a simple structuhécfwembodies
underlying symmetries of the space). Often the symmetrygoan be very useful
in constructing the frame itself. A special case is when ttt®a of the symmetry
group is transitive, which gives group frame(see Chapter 10). If the symmetry
group is abelian, then the group frames arehlthemonic framegsee Chapter 11),
all of which can be constructed from tladstractabelian groups. All the known
maximal sets of complex equiangular lines come as the offtiegprojective action
of an abelian group (see Chapter 14). Another example isivatitite orthogonal
polynomials, where tight frames sharing the symmetrief@fteight function can
be constructed (see Chapter 15).

Let S; denote thesymmetric group on the set), i.e., the group of all bijections
J — J (called permutations) under composition.

Throughout, let?Z be a finite dimensional vector space ofrwhereF = F.
Any finite sequenc& = (fj);jcy in 7 can be thought of as normalised tight frame
for an appropriate inner product o’ (see§4.5). Thus, one can suppose tldais
a tight frame (and thereby bypass Chapter 4).

LetC: v — Vv be thecomplex conjugation mafsees2.3). A product ofC and a
linear (unitary) map is called amtilinear (antiunitary map). In this way, we can
extend the linear and unitary maps:

EGL(s7) :={L,LC:Le GL(s#)} (Extended general linear group),
EU(s7):={U,UC:LeU(s)} (Extended unitary group).

Of course these are groups, Wit (77°) C EGL(.2¢), U(s¢) C EU(¢), where
there is strict inclusion if and only If ¢ R (i.e.,C #1).

It is very convenient to have the possibility of a symmetryfo= (f;);cs which
takesfj to fi where j # k, but fj = fy, i.e., nonidentity symmetries which map
repeated vectors to themselves. For this reason, we de@rg/thmetry groups to
be permutations of the indices (given by a possibly unfalta€tion).
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9.2 The symmetry group of a sequence of vectors

Definition 9.1. Let @ = (f;)jcy be a finite sequence of vectors which spa#$
Then thesymmetry group and theextended symmetry groupof @ are the groups

Sym®) :={o € §: 3Ly € GL(S2) with Ly fj = fgj, Vj € I},
Syme(®) = {0 € §: 3L, € EGL() with Lo fj = fgj, V] € J}.

In other wordsg € Sym(®) if (f;) and(fs;) are similar. If(f;) is a tight frame,
i.e., Sp = [fj][f;]* = Al, A> 0, then this similarity becomes unitary equivalence,
since

1 1 1

LoLs = 2Ll fl[fi1"Ls = 2lLofllLoTil" = 2lfofl[fol]” = (AD = 1.

It is easy to check that these symmetry groups are indeeggyratith
Sym(®) C Symeg(P) C .

Since linear and antilinear maps are determined by theioracin a spanning
set, it follows that ifo is a symmetry, then there is a unique linear or antilinear map
Lo : o — 2 with

Lo fj = foj, Vjed

and the linear map
My : Sym(®) - GL(#) : 0~ Lo 9.1)

is a group homomorphism, i.e., a linear representatio® ef Sym(®) on s#. We
will refer to botho andLy (the action ofo) as asymmetry of @ whenLg is linear,
and as amntisymmetry whenL is antilinear. With this understanding, we have:

If @ is tight frame, then its symmetry group consists of unitagps) i.e.,
the action of Syri®) is unitary (and its extended symmetry group consists of
unitary and antiunitary maps).

If the vectors in® are distinct, therry is injective, i.e., the representation is
faithful (see Exer. 9.2). In this case Sy#) can be identified with its image.
Proposition 9.1.(Similarity) If finite sequence® and¥ are similar, then

SymW¥) =Sym@®),  Symg(¥)=Symg(®).

In particular, if @ is a frame, then its dual and canonical tight frame have threesa
symmetry group, i.eSym(®) = Sym(®) = Sym(@can).

1 The group of linear mapay (Sym(®)) is sometimes defined to be the “symmetry groupof
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Proof. Suppose tha® = (f;) is similar to¥, say¥ = (Qfj) for some invertible
linear mapQ. If 0 € Sym(®), then

Lofj=foj, ¥j = (QLsQ 1)Qfj =Qfsj, V],

so thato € Sym(¥), and Synj®) C Sym(¥). The reverse inclusion follows since
W is similar to®. A similar argument shows that Sytt) = Syme(®). O

In other words:

The (extended) symmetry group @ depends only on its similarity class.

Example 9.1(Bases) If® = (f;)jc; is a basis, then for eaah € Sy, Lo fj := fg;j
defines a linear map, and hence ym = S;.

Example 9.2(Vertices of a simplex) Suppose th@t= (f;)c is the vertices of a
simplex, i.e., the vectors have a single linear dependgnde= 0. Fix an index,
then for eacto € §, L fj := fgj, | # k defines a linear map, with

Lo(fi) = La(—;kfj) = _;kfaj = fok,

and hence Sy() = S;.

Example 9.3(see Figure 9.1) Leb = (v1,V2, v3) be the tight frame of three equally
spaced unit vectors f@&?, and¥ = (vq,V, —V3). Then

Sym®) =S3=S;1,3 (order 6) SymW) ={1,(12)} (order 2)

Fig. 9.1: The frame®> and¥ of Example 9.3, which haviSym(®)| = 6 and| Sym(¥)| = 2.

Example 9.4The symmetry group of the tight franm@ = (vJ-)T:l consisting ofn
equally spaced unit vectors, say
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21
sin<l

Vj = 2n ] € RZ,
cos=1}

is thedihedral groupof order 2, i.e.,D, == (a,b:a"=1,b> = 1,b-lab=a1),
wherea = (12---n) acts as rotation througﬁl, andb as a reflection.

We now explain how the symmetry group @f can be calculated directly from
its canonical GramiaRy (see§4.1). There is a bijection between the permutations
o € § and the so called x J permutation matricegjiven byg — Py, where

Po'e] = ng.
LetV = [f;], andfsj = Lo fj, thenVR; = Vesj] = [foj] = [Lo fj] = LoV, so that
oeSym®) < VP;=LgsV, forsomelLy € GL(57). 9.2

Lemma 9.1.(Calculation) Suppose thap = (f;) is a finite sequence of vectors,
with canonical Gramian . For @ a frame, i = Gram(®°"). Then

oeSym®) <= P;PypP; =Po. (9.3)

Proof. By Propositions 4.1 and 9.1, we can supp@se (f;) is the normalised tight
frame given by the columns &% (an orthogonal projection), so thét= [f;] = Py.
(=) If o0 € Sym(®), thenLg is unitary, and we have

P;PoPs = (PoPs)*PoPs = (LoPo)*LoPo = Py (LyLg)Po = Po.
(«<=) If P;Py Py = Py, then by choosings := Py, and writingPey =V, we have
VPo' - P(DPU == Po'P(p == Lo'v7

and so, by (9.2), we have thate Sym(®). O

If @ is tight frame, therPy is a scalar multiple of Gra®), and hence we have:

0eSyme®) << P;Gram ®)P; =Gram @)
=t <f0‘],f0’k>:<f1,fk>, Vj,k.

The condition foro to be an extended symmetry (fér¢Z ) is that
P:PoPy = P, (9.4)

which for a tight frame becomes

(foj, foi) = (fj, fi) = (fi, fj),  Vik
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Example 9.5(Canonical coordinates) A sequence of vect@rand its canonical
coordinate$ = c? (see$4.2) have the same symmetries, i.e., $¢m= Sym(c®).
This follows sinceP.o = P, (Theorem 4.2) an@} = P; give
oeSym®) <<= PiPoP,=Pp <= PiPjP,=P]}
— PRyP;=Py <= oeSymV¥).
We now show that a frame and its complement have the same syyngneup.

Such a result is not possible if the symmetry group is defindmkta group of linear
transformations (as in [VWO05]).

Theorem 9.1.(Complements) Suppose thais a finite sequence of vectors, ad
is a complementary sequence, i.e, PPy =I. Then
Sym®) =SymY¥),  Syme(®)=Symg(¥).

Proof. By Lemma 9.1 and®;P; =1, we have

oeSym®) <= PPoPr=Pp < Py(l-Py)Ps=I1-Py
— PiPyPs =Py <<= o0eSymW¥).

For Syni (@) a similar argument using (9.4) gives the result. |

Example 9.6We consider the equal-norm tight frameésof four vectors forC3
with nontrivial symmetries, i.eSym(®)| > 1. A complementV consists of four
equal-norm vectors fo. The symmetries ot/ (and hence of®d) are given
by those permutations d¥ which can be realised by multiplication by a unit
modulus complex number, e.g., the permutatme= (12)(34) is a symmetry of
W =([1],[—1],[1],[—1]) corresponding to multiplication by 1. Therefore, the only
possibilities for these complementary frames (up to sintylpare

([, (2,11, [2), z# 1, ([2],[1],[2,[2), z7# +1,  ([1],[1], [, W), z#w, zw#1,
([, (2], (40,12, ([, (=2 [, (=2, ([, [, (=2, (=)

The corresponding symmetry groups are (up to group isonsrph
S, SX 9, &, D4 (dihedral group of order 8) Cy.
The Gramian matrices for the last three (which are harmaoaimés) are

3 -1-1-1 3 1-11 3 -1

1]1-13 -1-1 111 3 1-1 1]1i 3-i1
41113 -1 4111 3 1 4110 3 i
~1-1-1 3 1 -11 3 i1 3

This example can be generalised to give all possible synyrgedups for a tight
frame ofn vectors inC"* (see [VW10]).
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9.3 The projective symmetry group of a sequence of vectors

We now defingprojectivesymmetries of a sequence of vectdrs= (fj), and give a
parallel theory to that for (nonprojective) symmetriesréhepresentations become
projective representations, inner products are replagedHproducts, etc).

Definition 9.2. Let @ = (fj);<; be afinite sequence of vectors which spafisThe
projective symmetry group andextended projective symmetry groupof @ are

Symp(®@) :={0€S:3gs € GL(), |aj| = L withLsfj = ajfsj, Vj € I},
Symep(®) :={0 € S : 3y € EGL(Z), ‘GJ‘| =1withLsfj=ajfsj, Vje J}.

In other words, a permutatiom € Symp(@®) if (f;) and(fsj) are projectively
similar (equivalently, projectively unitarily equivalenvhen @ is a tight frame).
These projective symmetry groups are groups, which contencorresponding
symmetry groups, i.e.,

Sym(®@) C Symp(®),  Syme(®) C Symep(®).

Example 9.7Let @ = (v1,V2,v3) and¥ = (vi1,Vo, —V3) be the tight frames foR?2
of Example 9.3. These clearly have the same projective syriesgeso that

S = Sym(®) C Symp(®P) = Synp(¥) C Ss.
Hence Sym(W) = S3 (of order 6) properly contains Syi#) (of order 2).

Itis possible to associate withe Symp(®) the projective linear map induced by
Ly, thereby obtaining a projective linear representationvia’t labour this point,
but do observe that the representation gives a projectitaryraction of Sym(®)
(on the lines of77’) when @ is a tight frame.

We have the projective analogue of Proposition 9.1.

Proposition 9.2. (Projective similarity) If finite sequenc& and are projectively
similar, then

Symp(¥) = Symp(®),  Symep(¥) = Symep(@).

In particular, if @ is a frame, then its dual and canonical tight frame have thaesa
(extended) projective symmetry group.

In other words:

Symp(@®) and Syngp(®) depend only or up to projective similarity.

We now show how the projective symmetry groupiv€an be calculated directly
from its canonicaim-products (se&8.7).
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Lemma 9.2.(Calculation) Suppose thap = (f;) is a finite sequence of vectors,
with canonical m—productdc(fj,, ..., fj,). Theno € Symp(®) if and only if

Ac(fjy, .-, fjm) =Ac(fojyy -, fojm)s (9.5)
for a determining set of canonical m—products.

Proof. The conditiono € Symp(®) is that(f;) and(fs;) are projectively similar,
and so we can apply Theorem 8.3. O

For o € Symep(®) (an antisymmetry), the condition (9.5) is replaced by
Ac(fjl? ey me) = AC(ij17 ey fo’jm) = AC(ijm7 ey fo’jl). (96)

For @ a tight frame, the canonicatproducts are a nonzero scalar multiple of the
m—products, so that:

If @ = (f)) is tight frame, thero € Symp(®) if and only if
A(fjl""7fjm):A(fa'jj_)"'afo'jm)a (97)

for a determining set af+products ford.

A frame and its complement have the same projective symrgebuyp.

Theorem 9.2.(Complements) 1P = (vj);e; is a finite sequence of vectors, and
Y = (wj)jes is a complement up to projective similarity, i.e¢ R CR,C* =1,
where C= diag(aj) is a unitary diagonal matrix, then

Symp(¥) = Symp(®),  Symep(¥) = Symep(@).

Proof. Let Py = [pxj], Py = [0kj]. Then the canonical inner products, which are
given by (8.14), satisfy

A8 (Viy, - Vim) = PisizPiaia** Pimis
= (=0}, 03,0, j,) (— A}, Aj50lpj5) -+ (= Ay Ty Ajmiy )
= (=)™, j,jzjs *** Gimis
= (-2 (Wi, W),

The result then follows from Lemma 9.2 and (9.6). ad

Example 9.8Let @ = (v;) be an equal-norm tight frame df+ 1 vectors forCY,
e.g., the vertices of the regular simplex, &Hd= (w;) be the complementary tight
frame forC!. SincePy has a constant diagonal, the vectorstofire equal-norm,
sayw;j = (a;j), |aj| =r > 0. Therefore, then-products ot/ are
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N\ — 2
A(W117"'7Wim) = (ailaiz)(ajzajs) e (ajmajl) ="

Thus all equal-norm tight frame® = (v;) of d + 1 vectors inCY are projectively
similar (to the vertices of the simplex), with Sy(®) = S;.

9.4 Symmetries of combinations of frames

We now consider how the symmetry groups of a combinationahés® and ¥
(see Chapter 5) is related to their symmetry groups. In vielheorem 4.1, these
results also hold for spanning sequences of vectors.

Let @ = (¢)jes and¥ = (i )kek be finite frames for7q and.%. The inner
products on the orthogonal direct su#f @ 7% and tensor product ® 7% are
given by

((f1,01), (f2,02)) := (f1, f2) +(01,02),  V(f1,01),(f2,Q2) € JA D 5,

(fi@a, fo®@02) i=(f1, 2)(01,02), VHi®0, 200 € JA4® 7.

Foro € Sym(®), T € Sym¥), with correspondind.; € GL(54), L; € GL(5%),

f Lof
Lo.1) = , v e A, Vge . (9.8)
g Lg

We interpret(o, 1) as a permutation od UK in the obvious way. This induces
symmetry on theinionandsumof @ and¥, via

L G\ (Lo®) [ %o L oy (o) (o0
(o,1) - - ) (o,1) - - )
0 0 0 Wk LUk Wik

Lo \/%(p] = \/%Lafpj = ‘/%%j .
’ \%n—l W J%T Lt \%n—l Wrk
In this way, we have

Sym(@) x SymW¥) c Sym(@uUW¥),  Sym(®)x Sym¥) Cc Sym(® F ).

For thedirect sumwhered = K, we have
| Yoj
Lka

(] Lo
Lo =
(Wk) (Lr lﬂk)



198 9 Symmetries of tight frames

which is a permutation of the direct sum provided- 1. In this way, we have

Sym@)NSymW¥) Cc Sym@aW).

For thetensor productdefinel . ;) € GL(J ® #3) by L5 1) = Lo ® L. Then

Lio.)(@ @ Yi) = (Lo®) @ (Leli) = @) @ Yk
and so we obtain
Sym(@) x Sym¥) C Sym @ y).
In summary, we have:
Proposition 9.3. The symmetry group of a finite frame satisfies
Sym(®) x Sym¥) C Sym@uU W),
Sym(®) x SymW) C Sym(® T ¥),
Sym @) x Sym¥) Cc Symo e W),
Sym @) NSymW¥) C Sym e e W).
Moreover, these inclusions also hold for the other symnggtsyps.

Each of these inclusions can be strict (see Exer. 9.1).

9.5 Maximally symmetric tight frames

If @ is aframe oh vectors, then
Syme)cS = [Sym@)[nl = [Sym(®)|<nl

Thus, there arenaximally symmetrirames in any class of such frames.

Definition 9.3. Let ¥ be a class of frames of vectors, e.g., the tight frames or
equal-norm frames iR9. We say thatb € % is maximally symmetric if

| Sym(®)| = max| Sym(¥)].

This definition should be treated with a little caution foarfies with repeated
vectors. For example, the frame ofvectors forR? consistinge; repeatech — 1
times ande, has symmetry group of ordén — 1)!, whilst that of then equally
spaced unit vectors has order. 2

Example 9.9The only cases when a frange of n vectors forF¢ (d > 1) can have
maximal symmetry by virtue of Sy(®) = S, is whenn=d, i.e., @ is a basis, or
whenn=d+1, i.e.,® is the vertices of the simplex (see Example 9.8). This fallow
since the canonical 3—products (for distinct vectors) drecaial (see Exer. 9.4).
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Example 9.10The tight frame of equally spaced unit vectors R? is a maxi-
mally symmetric tight frame af distinct vectors foiR?. This is because the unitary
transformations oiR? are products of rotations and reflections.

Example 9.11The n equally spaced unit vectors IR? are not always maximally
symmetric tight frames af distinct vectors inC2. Forn even, the harmonic frame

1 w wZ w3 w4 wnfz wnfl . oni
{ 1) o) \?) \—a?) ) \w2) | ot }’ ©=*
has a symmetry group of ordgn?.

Example 9.12(Five vectors inC3). We consider the maximally symmetric tight
frames® of five vectors inC3, by considering the complementary tight franiés
(which have the same symmetry group). We ri@gm(®)| = | Sym(¥)| divides 5!

Since zero vectors are fixed by a symmetry, the most symmetiigth a zero
vector is given by thél, 4)—partition frame corresponding to

A e

which is the vertices of theetrahedronand a zero vector. If Syf@®) does not have
an element of order 5, then the next most symmetric is(#)8)—partition frame
given by

w:{(é>(ﬁ)(0)(o)(0>} |Sym(®)| = 2131 =12,
1 1 1
0 0 V3 V3 V3

which is the vertices of theigonal bipyramid followed by

G

which isfour equally spaced vectors and one orthogonal
If Sym(®) has an element of order 5, thBhmust be a harmonic frame with the
largest possible symmetry group (see Chapter 11), i.e.efually spaced vectors

27j
2 [cosM\
wz{ 5( 5):1:1,...,5} |Sym(®)| = |Ds| = 10,

s 2T
Sin—~

and @ is thelifted five equally spaced vectoM/e therefore conclude:
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The most symmetric tight frame of five (nonzero) vector§'ris the vertices
of the trigonal bipyramid (the solution of Tammes’ problem)

Fig. 9.2: The most symmetric tight frames of five distinct nonzerctorscin R3. The trigonal
bipyramid (12 symmetries), five equally spaced vectors lifted (X0rsgtries), and four equally
spaced vectors and one orthogonal (8 symmetries).

The known examples of maximally symmetric tight frames (sag those above)
suggest a close relationship with group frames (see Chapjer

Conjecture 9.1A maximally symmetric tight frame is a union of group frames.

9.6 Algorithms and examples

To calculate the symmetry groups of a finite frame= (v;) of n vectors, one must
determine which of tha! permutationso give a frame(vyj) which is (extended)
(projectively) unitarily equivalent t@. This can be checked (in theory) by applying
Theorem 8.3 To make this feasible (for lamgeaequires an algorithm which checks
the inner product om—product condition efficiently, i.e., for many permutatoat

a time. We mention two such algorithms.

The projective symmetry group of a frame can be viewed asttdgliser(under
the action of the symmetric group) of the frame graph withnitcycleslabelled
by the correspondingy-products. It is not necessary to fully label the frame graph
e.g., the triple products suffice when the cycle space oftivad graph is spanned by
the 3—cycles (Corollary 8.2). Algorithms are being develbpwith Markus Grassl)
which are efficient, and will be made publicly available.

We now give a simple algorithm, which is suited to hand caltiahs, and cases
where the symmetry group is small. For fram@s= (vj)jc; and¥ = (wj);ey of
n vectors, the algorithm determines the setof § for which @ and (wyj) are
projectively similar, i.e.,
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Ac(Vjy, -, Vjm) = Ac(Wajy, - -, Waijm)s (9.9)

for all cycles(j, ..., jm) from a determining set fo®. In particular, for¢ = @ it
calculates Sym( @), and if there is some then® and¥ are projectively similar.
There are two cases:

1. Symp(@) is large, i.e., then—products take few different values.
2. Symp(®) is small, i.e., than—products take many different values.

An extreme example of the first is the vertices aFsimplex (see Example 9.8),
where

_d_ i =k
(Pq,),-k{dﬂl’ =5 symp(o) = 5.

T d+1 J # k7
Here them—products are all equal (for fixed), and so it is easy to check that each
O € S is a projective symmetry.

Our algorithm is best suited to the second case: whensS%nis small, and the
m—products take many different values. This is the geneti@mson. Indeed, if the
diagonal entries oy (the 1—products) are distinct, theBymp(®)| = 1.

For an index sef of sizen, we define &-flag f to be an ordering of distinct
elements ofl

f= (jlv j2a"'7jk)‘
For a given fixedflag
fo=(j1,---»in),

we can represent the permutation j, — oj, (giving a projective similarity or
symmetry) by therflag
fo=(Oj1,...,0n).

Determining whethe = (vj) and¥ = (wgj) are projectively similar is equivalent
to determining which of tha! permutationgs, i.e.,n—flagsf, satisfy (9.9).

We think of each possible-flag f; = (0 j1,...,0]n) as being built up from the
0-flag() by successively adding entries

fg:()v fé:(ojl)> foz'z(o-jlao-jz)a fg:(o-jlao-jZV'wO-jn)'

We will call the operation of going from a sek_1 of (k— 1)—flags to a set of
k—flags agrowing. At the k-th stage there ame— k+ 1 choices for the next entry,
so that

| Zi] = (n—=K+1)[Fial.

If |[Sym(®)| < nl, then, at some stage, not & € .% will be extendable to an
n—flag satisfying (9.9). A necessary condition for such aemsion to exist is that
(9.9) hold for all cycles (of lengtke k) on the firstk indices of the fixed flag, =
(j1,--.,Jn) from a determining set fofvj,,...,vj,). Removing elements fron#
because they fail this condition (either in full or in part)ivibe called pruning.
When the full condition is imposed we havefdl pruning , otherwise gpartial
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pruning. In these terms, our algorithm for finding the s&} of n—flags fs giving
the permutations that® and(wgj) are projectively similar is:

Algorithm (to determine the—flags.#, giving a projective similarity).

Let %p:={()} consist of the empty flag
for k from 1 to n do
Grow %, to F
Prune %
end for
Fully prune Fn, If necessary.

The artis in balancing the cost of pruning, with that of gnogvihe set of possible
k—flags overly large. One can do this on a case by case basigusirty an adaptive
algorithm. The algorithm can easily be parallelised: symgartition.% in any way,
at any stagd, and apply the algorithm to each subset.

We now illustrate our algorithm with a couple of examplesgvdtV = @. As a
pruning rule we ask thatle-flag(j1,.. ., jx) match

Ac(Viy,- -, Vi) = Ac(Wojy ;- .., Warj )
Thus at each stage we check only one mevproduct, which is easily calculated.

Example 9.13(SICs) Consider the equiangular tight fradte= (v, Sv Qv, SQv) of
four vectors forC? (the second prototypical example), where

1 3+/3 (01 (1
e I L R

We have

1 L 1 i
V3 V3 V3
Pp == V3 V3 V3
211 i ¢ _1
V3 V3 V3
i1 1 9

V3 V3 V3

Take the base flag to &, 2, 3,4). The empty flag (0—flag¥o = {()} grows to the

set of 1-flags
Z1={(1).(2),(3),(4)}.

The pruning rule is thatvy,v1) = (Wg1,Wg, ), i.€., the norm is preserved, and so
there is no pruning. Growing gives

yz = {(17 2)7 (17 3)7 (174)7 (27 1)7 (27 3)7 (2’4)’ (3’ 1)’ (3’ 2)’ (3’4)’ (4’ 1)’ (4’ 2)’ (4’3)}7
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and pruning gives no reduction singeis equiangular. We now consider growing
the 2—flag 3, 2), the others being similar. This grows to the 3—fl&gi®, 1), (3,2,4).
Since

i

24y/3’

Ac(V1,V2,V3) = Ac (W3, Wo, Wy ) = Ac (W3, Wo, Wy) =

i i
24,/3’ 243
the 3—flag(3,2,1) is pruned. Continuing in this way gives

F3= {(15 2, 3)’ (1’ 3, 4)7 (17 4, 2)7 (27 174)7 (27 3, l)a (2543 3)3
(3,1,2),(3,2,4),(3,4,1),(4,1,3),(4,2,1),(4,3,2)}.

The final stagé = n, growing does not increase the size®f_1, and in this case
nothing gets pruned, by the rule used, or a full prune. Thubave

Syrn’((p) =Fy= {(L 2, 374)7 (1737472)7 (1’472a 3)a (Za 1,4, 3)7 (27 3, 174)7 (27473» 1)7
(37 1? 2? 4)’ (37 27 47 1)7 (37 47 l) 2)5 (4) 17 3? 2)’ (4? 27 17 3)7 (47 37 27 l)}'
This is the alternating groufy.

Example 9.14(Anti projective symmetries) Applying the full pruning algthm to
the previous example, with thre—productsic(vj,, ...,V;,) replaced by their con-
jugates, and base fldd, 2, 3,4) gives the following anti projective symmetries

Ty = {(172745 3)5 (1a 3, 2’4)’ (1’4737 2)7 (27 17374)1 (2, 3,4, 1)7 (2747 173)7
(3,1,4,2),(3,2,1,4),(3,4,2,1),(4,1,2,3),(4,2,3,1),(4,3,1,2) }.
Hence, we have
Symp(®) = A4 C Symep(®) = .

In general, since the product of two anti projective symrastis a projective
symmetry, Symp(®) is generated by Sypi®) together with any anti projective
symmetry (if they exist).

Example 9.15(MUBS) Let @ = (v;) be the following two MUBSs irC? (see§8.6)
1

1
Vi=e, W=6, WB=—(E+6&), wu=—(6—-6).
1=e 29232(elez)4\/i(elez)

Here

1 1
1 0% -7
1 1
poot| OtV
2 1 1 1 0
V2 V2
1 1
70 1

We arrive at the samg#, as in Example 9.13, without pruning. The pruning rule
says that modulus of the inner product betwegeandv, must be preserved. Since
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this is zero, the index pairs i&F> must correspond to pairs of orthogonal vectors,
which leads to the pruning

Fp= {(17 2)7 (27 1)7 (374)7 (473)}'
Growing this gives
F3=1{(1,2,3),(1,2,4),(2,1,3),(2,1,4),(3,4,1),(3,4,2),(4,3,1),(4,3,2) }.

All 3—products for distinct vectors are zero, and so ther@ipruning at this stage.
Growing, then full pruning leads to

Symp(®) = %4 ={(1,2,3,4),(1,2,4,3),(2,1,3,4),(2,1,4,3),
(3,4,1,2),(3,4,2,1),(4,3,1,2),(4,3,2,1)}.

This group is the dihedral group of order 8 (the only subgrofifsy of order 8),
which is generated by the following permutations

(1324 (rotation through 90 degrees) (34) (reflection in theaxis)

Ford a prime powerd + 1 MUBs for CY can be constructed from the columns of
elementsR'F from the Clifford group (see Theorem 12.24.7). The projective
symmetry groups, as calculated by our algorithm, for the few d are given in
Table 9.1.

Table 9.1: The projective symmetry groups Se) and Synzp(®) for @ the tight frame o
vectors given byl + 1 MUBs inCY, including the transitive subgroups of Sy().

d|n |Symp(®) Symep(®) transitive subgroups of Sys(®)

2|16 | <24,12> < 48,48 > <6,1>,<12,3>

3|12| < 216,153 > | < 432,734 > | < 72,41 >

4120|1920 3840 <20,3>,<60,5>,<80,49 >,< 120,34 >,
< 160,234 >, < 320,1635 >, < 960,11357 >

5(30| 3000 6000 < 600,150 >

The projective symmetry group of harmonic frames is considé §11.12.
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9.7 Case study:16 equiangular lines in R®

We consider the 16 equiangular linesiif as presented by Janet Tremain ([Tre08])

_1—1—1—1—1—11 1 111
1-11 11 1-1-1-1-11
11-11 1 1-11 1 1-1-1-1
111-1111-111-11 1-1

11711-1111-111-11-11-1
11111-1111-111-11-1-1

11111—

11111

111
-11

The projective symmetry group has order 115228 3.5, and is generated by the
two permutations

a=(1,2,6,11,16,9)(3,12,8)(4,14,7)(5,10),
b= (1,12,15,16,5,10)(2,11,4)(3,6,14,8,13,9).

We now seek a unitary matrlx;, o € {a,b}, with
LoVj = ajVgj, V.

By Corollary 8.4,Q =Ly is unique up to a scalat1, and can be calculated from its
action on a basis of thg, once a suitable choice of the scalafs= +1 is known.
We suppose that; = 1, so that

<V017Voj>

(vi,Vj) = (LoV1,LgVj) = (Q1Vo1,0jVej) = Oj= ~—, V].
<V17Vj>
In this way, we obtain
[0 0 00-10] (00001 0]
0-100 0 0 001000
000100 0 0000-1
L= . Lp= )
001000 100000
000001 0-1000 0
100000 000100

The groupG = (Lg,Ly) is irreducible and has order 23040 (it contains the scalar
matrix —I). Since the projective symmetry group is transitive, itdols (see;10.7)
that the 16 equiangular lingstv;} are an irreducibl&—frame.
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9.8 Case study: A spherical4,4)—design of12lines in C?

Several unit-norm sphericé#, 4)—designs of 12 vectors (lines) iB° were com-
puted numerically using the techniques&6f16. The projective symmetry group
for each was calculated (as describe@96) to be the dihedral group of order 10,
with the projective action giving two orbits: one of size Ztfwthe vectors orthog-
onal), and one of size 10. This suggests there(& 4)—design of the form

@ = (v,av,a’v,a’y, a’v, by, abv a’bv, a>bv, a*bv) U (ug, uz), (9.10)

wherev e C? is a unit vectora (a rotation) and (a reflection) are generators of the
dihedral group andus,uy} is an orthonormal basis. Taking

w0 o 01 1 0
a= , w.=e5, b= , U= , U= , (9.11)
0w 10 0 1

and optimising ovev to obtain a(4,4)—design numerically suggested that the ratio
of the components of a suitablavas thegolden ratio@, ie.,

1 [a+vEK B
v._\/m< , ) 1Z]=1. (9.12)

An elementary calculation (see Exer. 9.7) shows that (9(20)1), (9.12) define a
spherical(4,4)-design® of 12 unit vectors forC2.

The general method used here is knownpascision bumping(see §14.20,
§14.24).

Notes

The symmetry group of a finite tight frame (which is a naturafion) was first
studied in [VWO5], where it was considered as a group of upitaatrices. The
definition given here (a group of permutations acting on teenk) was introduced
in [VW10]. The projective symmetry group has been studiedSt€s [AFF11],
[Zhul2], and by [WC14] for a general finite frame. The caldolabf the projective
symmetry group as the stabiliser of a suitably labelled &amaph was initiated by
Markus Grassl.
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Exercises

9.1. Show that following inclusions can be strict

(@) Sym( @) x Sym¥) C Symou ).

(b) Sym @) x SymW) c Sym(® I ).

(c) Sym @) x Sym¥) c Sym @ @ W).

(d) Sym@)NSym¥) Cc Sym e ay).

9.2. Let @ be a frame of vectors fors#, dim(7¢) = d.

(a) Show that Sym(®)| dividesn!.

(b) Let iy be the representatian— Ly of (9.1). Show that it has distinct vectors,
thenmy is faithful, and

[T (Sym(®))| < m(m—1)---(m—d+1),
wherem s the number of distinct vectors .

9.3. Here we consider the mamy : Sym(®) — GL(57) : 0 — Ly given by (9.1).
(a) Show thatrty is a group homomorphism, i.e., is a linear representatiotiofa)
of the groupG = Sym(®) on 7.

(b) LetSp be the frame operator @b. Show that ifg € GL(5¢), then

So(gf) = (0) 'Sya(f), Vier

(c) Show that if® is tight, then the action of Syf®) on s# commutes withSe,
ie.,
So(0f)=0Se(f), Vo e Sym®), Ve

9.4.Let @ be a sequence ofvectors. Show that if Sy(®) = S, then either® is
a basis, or the vertices of the simplex (up to projectiveargiequivalence).
Remark:Therefore the symmetry group éFisogonal configuration af vectors
(see Example 3.9) iS,.

9.5. Describe the symmetry group of an-partition frame foiR? (see§2.9).

9.6. Find the symmetry groups and their action@hof the tight frames

THE QU

of Example 2.8.

=

9.7.Show that
@ = (v,av,a’v,av, a’v, by, abv a?bv, a>bv, a*bv) U (ug, uz),

as given by (9.11) and (9.12) is a spheri@al4)—design of 12 unit vectors fdz?.






Chapter 10
Group frames

Here we introduce an important example ofteuctured framei.e., one in which
the frame vectors can be obtained from the index set in a simpl. Prototypical
examples of such frames include Gabor and wavelet systems.

We consider the analogue of a Gabor system, where the intiexestinite group
G, and the vectors are an orbit under a unitary actiofs.of his is equivalent to a
frame whose symmetry group acts transitively on its vecfdreorem 10.4). A
useful example to keep in mind is theequally spaced unit vectors R?

or the vertices of a Platonic solid R>.
A group frame® for 27 will be, effectively, a frame of the form

® = (QV)geg, VE I, (10.1)

whereG C GL(4#) is a finite group of linear transformations, i.e., one whish i
the orbit of asinglevectorv under the linear action db. Many important frames
come in this way, e.g., the vertices of the Platonic solits tarmonic frames, many
equiangular tight frames (including all the known SICs)] ali the known MUBs.
By using representation theory, we will consider increglsimore general cases.
We start with the case when tle-orbit of all vectorss # 0 gives a frame fog#’, and
finish with a complete characterisation of Beinvariant frames (Theorem 10.9).

209
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10.1 Representations and-frames

Suppose thdk is a finite abstract group. fepresentationor linear action of G on
a (finite dimensional) vector space?” (over[F) is a group homomorphism

P G — GL(JZ).
Thelinear actionof G on J# given byp = p» will often be written
gvi=p(9)(V), geG veHX.

Equivalent terminology is tha#” is anFG—module, or just aG—-module (if the field

F and action ofG is clear from the context). This is becaug# is a module over
thegroup algebraFG (the F—vector space with a basis given by the elements of
and multiplication given by extending the multiplicatioh® linearly). A subspace
(or set)V C 47 is said to beG—invariant if gve V, Vv eV, and so

The G-invariant subspaces o’ are precisely th&#G—submodules of7.

Two representations??’, p») and (¢, p) are said to bequivalentf there is
an invertible linear map : 5 — ¢ such that

px (@) =Tpr(@T*  VgeG.

Any representation o6 is equivalent to one in whictk# is a Hilbert space, and
all the p»(g) are unitary transformations (see Exer. 10.4). It therefuffices to
consider frames of the form (10.1) where the action is uypiteee Corollary 10.1).

Definition 10.1.Let G be a finite group. We say that a frari@y)qcc for 27 is a
group frame or G—frame if there exists a unitary representatipn G — % (5¢)
such that

9th = P(9)th = @, vg,he G.

Example 10.1LetC, = (a) be the cyclic group of order. Then then equally spaced
unit vectors are &q—frame(gv)qec, for R2 given by the unitary group action

J_ J_ J. cos2" —sin2!
alv:= pRZ(a_ W= pRZ(a) v, pRz(a) = ., 5 . (10.2)
sin<t cos<lt

Since the representation (10.2)f&thful, i.e., injective, we can tak& to be the
abstract groufey, or the isomorphic coppg2(G) = (pgz(a)). In contrast{[1])gec,

is aC,—frame forR, via the trivial representatiora{v := v, Vv € R), but hereG
cannot be taken to bex (G) = {[1]} € Z (R) (the trivial group). This “repetition”
has certain technical advantages, e.g., for taking cortibimsa(see Theorem 10.2),
or decomposing &—frame into its constitute parts (see Theorem 10.7).
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10.2 The frame operator of aG—frame

Since unitary maps preserve lengths, the definition imptias
A G—frame is an equal-norm frame.

Theunitary action ofG in a G—frame gives:

Lemma 10.1.The frame operator S of a G—frame commutes with (the unitatigra
of) G, i.e,,
Shf) =hgf), vhe G, Vf e 2.

Proof. Let @ = (@y)gcc be aG—frame for.#, with frame operato6= Sy. Then
p(h)* =p(h)~t=p(h™*) gives

Shfy=§ (hf,@)@a=hS (f,h 1g)h?!
g; Po) Py g; Py

_ hg;(f, B 1)y 19 =hS(F),

as supposed. ad

The G—frame structure carries over to the dual and canonical tighmes.

Theorem 10.1.If ® is G—frame for’Z, then so is

e The dual framep.
e The canonical tight frame©a",
e Any unitarily equivalent fram&’.

In particular, @“@"is an equal-norm tight frame.

Proof. Let @ = (@)gcc be aG—frame for 7. By Lemma 10.1, the frame operator

S=Sp commutes withG, and hence v!itls”{ andS 2 (as these can be written as
power series ir§). Thus the dual frame@ = (@)qcc satisfies

9h=0S';h=S'g;m=S"'@h=@n  VgheG,

and so is @&—frame. A similar argument (WitEf%) shows thad®@"is aG—frame.

Suppose tha¥ is unitarily equivalent tap, say¥ =cU®,c>0,U € % (7).
Let pe be the representation wihy (g) ¢gh = @y, Vg, h, and define a representation
py : G — % () by pw(g) := UpeU L. Thenpy is unitary, and

Pw(9)h =Upo(9U U = cUps(9)¢h = cU@n = Jgn,  Vg,h€G,

so that¥ is aG—frame. m]
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Example 10.2A 6-isogonal com‘iguratiot»(j)‘j’:l of d unit vectors fofRY, i.e., one
with
- =cosf # ———— j £k
(Xj %) =CosB# — =7, | #

is a group frame (Exer. 10.13), and hence so is its dual. Bsid@also isogonal (see
Exer. 3.19). The canonical tight frame, an orthonormaldasialso a group frame.

A frame given by a linear actiop : G — GL(57) is similar to one given by a
unitary action;

Corollary 10.1. Let G be a finite group, an@ = (@) gcc be a frame for”. Then
the following are equivalent

1. @ = (p(g)V)gec for p : G — GL(5) a group homomorphism andar.7Z.
2. @@Njs g (tight) G—frame.

Proof. 1=-2. If ® = (p(g)Vv)gec is a frame, then it is similar to a tigl@—frame
yran(see Exer. 10.4). Since similar frames have unitarily ejeivt canonical tight
frames (Theorem 3.4 @"is unitarily equivalent td#°@", and hence is &—frame.

2=1. Suppose tha®®®" = (1(g)V)gec is a G-frame, and les be the frame
operator for®. Then

® = S pcan— (S% r(g)S‘%w)gee, w:= Sy,

whereG — GL(7) : g — Sh T(g)S% is a group homomorphism. O

For many of the methods of combining frames (Section 5), abioation of
group frames is again a group frame.

Theorem 10.2.Group frames can be combined as follows.

1. The direct sum of disjoint G—frames is a G—frame.
2. The sum of a Gframe and a G-frame is a G x Gyo—frame.
3. The tensor product of 5frame with a G—frame is a G x Go—frame.

Proof. Use the notatiom@y andx® Yy for the elements of#1 & 7% and.J A ® 4.

1. If @ = (gv)gec andW¥ = (gw)gcc are disjointG—frames, then their direct sum
is®BY = (g(VvdWw))gea, Whereg(xdy) := gx@® gy s a unitary action.

2 and 3. Let®; = (gjVj)g;<c; beGj—frames. Then

(01,02)(X®Y) == giX© 2y,  (01,92)(X®Y) = G1X®@ G2y
define a unitary action db1 x Gy on A4 & 7% and.JA ® 7%, respectively. Thus

1 1
(glaQZ)( /7|(32|V169 /‘Gl‘vz))(glng)eGlXGZ’
DL Py = ((91792)(V1®V2))<

D1 +®; = (

01,02)€G1 X Gy’

and so the sum and tensor product of group frames is agairug frame. O
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10.3 Group matrices and the Gramian of aG—frame

If @ = (@y)gec is aG—frame forsZ, then the unitary action @& gives

gvi=p(@)'v=p(Q) v=p(gv=gly, Vfeuz,

and so the entries of its Grami&fuh, @)]ghec have the special form

(@n. @) = (her,01) = (g "hew, ). (10.3)
This is an example of what is called a group matrixGsimatrix.

Definition 10.2. Let G be a finite group. A matri = [agn|q hec is aG—matrix (or
group matrix 1) if there exists a functiow : G — C such that

agh=v(gth), VgheG.

It is natural to think of am x n matrix A as aG—matrix for someG of ordern
if there is an indexing of its entries bB$ which yields aG—matrix. However, we
do not take this as our definition, as it complicates the detson of the algebraic
properties of group matrices.

Example 10.3Let G = D3 = S3 be the dihedral group of order 6, i.e.,
G=D3=(ab:a®=1b’=1blab=a?), (10.4)

and order its elements 4 a2, b, ab, a2b. Then eactG—matrix has the form

1 a & b ab &b

1 | v(d) v(a v(@) v(b) v(ab) v(a®b)
a |v@) v(l) v(a v(@b) v(b) v(ab)
v(@ v(@) v(1) v(ab) v(a’b) v(b) |- (10.5)
b | v(b) v(ab) v(ab) v(1) v(a) v(a)
ab |v(ab) v(b) v(a®h) v(a) v(1) v(ad)
a’b _v(azb) v(ab) v(b) v(a®) v(a) v(1) ]

Example 10.4If Gis a cyclic group, sa¥., with its elements ordered 0,...,n—1,
then aG—matrix is acirculant matrix (see [Dav79])

1 Recently there has been a revival of interest in group matraess, e.g., [BR04] and [Joh07].
Some authors write thgg, h)—entry asv(gh™1), and variations thereof.
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Co C ---Ch2Ch1
Ch-1 Co C1 Ch—2
A=|  crac - 1|, ak=0cj=Vv(k—]).
& o
LG C ---Ch1 Co |

We now show:

A frame is aG—frame if and only if its Gramian is @—matrix.

Theorem 10.3.(Characterisation) Let G be a finite group. Thén= (@)gcc is @
G—frame (for its spaw?’) if and only if its Gramian is a G—matrix.

Proof. If @ is aG—frame, then (10.3) implies that its Gramian i§&amatrix.
_ Conversely, suppose that the Gramian of a framéor 7 is a G-matrix. Let
® = (@y)gec be the dual frame, so that

f= ZGU,(Z)Q)(pg, Ve, (10.6)

ge

For eaclg € G, define a linear operatbly : 727 — J# by

Ug(f)i= 5 (@)@, Vier

h1eG
Since Grani®) = [(¢h, @)]gnec is aG—matrix, we have

(@ohy> @) = V((9he) "ghn) = v(hy he) = (G, @yy)- (10.7)
It follows from (10.6) and (10.7) thady is unitary, by the calculation

Ug(f).Ug(f2)) = (5 (f1, ) Borys 3 {F2. o) )

h]_EG h2€G

- f1, @ ) (T2, G ) (@t »
hlgGh;G< 1 l>< 2 2><%h1 %h2>

=5 S (1, @) (o, ) (G, )
h1€Gh,cG

_ <th<f1,cﬁnl>%1,hze<f2,@2>%2> — (fa, o).
1€ €

Similarly, we have

Ug% = hz <%a(;)ﬂl>%h1 = z <%h7 (th1>%h1 = %h-

1€G h1€G
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This implies thap : G — % (4¢) : g — Ug is a group homomorphism, since
Ugyg, $h = @y00h = Ug; @oh = Ug, Ug, ¢, A = spa ¢hthec-
Thusp is a unitary representation & on 2, with
P(@)h=qh  VgheG,

i.e., ®is aG-frame for. 7. O

In particular, we can characterise normalised ti@hframes:

Corollary 10.2. Let G be a finite group. The® = (@)gcc is a normalised tight
G—frame (for its spar?’) if and only if its Gramian P is a G—matrix which is a
projection, i.e., B =P.

Proof. A finite frame is a normalised tight frame if and only if its Gwan P is
an orthogonal projection matrix (Theorem 2.1), iR%. = P andP = P*. The result
then follows, since every Gramian satisfies- P*. O

This extends to spanning sequences via the canonical cabedi(Chapter 4).

Corollary 10.3. A spanning sequenc® = (¢)gec for an F-vector space (with
F =TF) is similar to a G—frame if and only if the canonical Gramian=Py is a
G-matrix. In this case, we can také= (Ppey)gec With the unitary action given by

g(Pen) = Peyh.

We will see in§13.1 that theG—matrices form an algebra, which is isomorphic
to thegroup algebraCG, via the correspondence

A=[v(g ghee %v(g)gecce. (10.8)
ge

ThusG—frames (up to similarity) can also be identified with eletsesf CG.
We now show that ifp is similar to aG—frame, then its complement is similar to
a G—frame.

Corollary 10.4. The complement of a tight G—frame is a tight G—frame.

Proof. Let¥ be the complement of a normalised tightframe® = (¢)gec. Since
Gram(@) + Gram¥) is the identity matrix, we have

_ () =g e @), h#g;
<wh’wg>_{1<%%>1<91h(p1,qol>, h=g

i.e.,¥is aG—frame. a
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10.4 Identifying G—frames from their Gramian

The previous results imply that we can determine whetheairad® is similar to a
G-frame by considering its (canonical) GramRg.
This gives simplenecessary conditiorfer @ to be similar to &5—frame, e.g.,

e The diagonal entries d%, must be constant.
e The entries of every row/column &, must be the same (up to reordering).

By investigating the symmetry group Sya) (which can be calculated), one can
determine whether a fram® is similar to aG—frame (possibly with repetitions).

Theorem 10.4.A frame @ with n vectors is similar to a G—frame if and only if its
symmetry grouBym(®) has a transitive subgroup G. In this case,with each of
its vectors repeatefl5| /n times is similar to the tight G—frame

(0P2€j)occ = (Po€sj)oecc (j fixed)
Proof. Let @ = (¢))}_;. The action ofo € Sym(®) on rar(Py) given by
0(Po€j) == Poeyj

is unitary (since(Pq>eJ-)’]-‘:1 is a tight frame). Hence, foy fixed, (0P»€j)scc is @
tight G—frame, which is similar t6¥ = (¢j)occ. If G is transitive, i.e., for any
i,ke{1,...,n} there is a permutatioo € G mappingj to k, then¥ consists of
|G| /n copies of®.

Conversely, if Syni®) is not transitive, them is not a group frame. O

Example 10.5Let @ = (uj)7_, be the three equally spaced unit vectorskif
(Mercedes—Benz frame), which has symmetry group @)= S; (Exer. 9.2).
The transitive grou®s has one transitive proper subgroup, i.e., the cyclic group

Cs = (a), a=(123.

The canonical Gramian @b, which determines Sy(®), is

Py = [V1,V2,V3].

Thus (by fixingj = 1) @ can be thought of as &—frame(vy1)ges, Of six vectors,
or as aCz—frame(Vvy1)gec, Of three vectors.

Suppose the action @ on @ is rotation through?Z, andb = (23) acts as the
reflection which fixeauy, i.e., buy = uz, b = uz, bug = up. Then the—frame
(Vo1)oes; is similar to theSs—frame(ouy)ges, (with the above unitary action). As
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these two frames are tight, they have the same Gramian (updalar), which is an
Ss—matrix. This matrix, with the same indexing as in (10.5yiigen by

1 a & b ab &b

1 [1-3-41 -3
a |-41-3-11
2 |-1-11-1-11] (10.9)
b 13-} 1 -}
b |-31 3314
@ |-3-3 13-} 1)

This can be calculated via

2
v(gth) := (hug,gu) = (g thug,up) = §<nglh17V1>,

e.g.
2 2, 3 1

2
v(ab) = 3(Va23 291, V1), = 3{V2,v1) = §<_Z) =—5

It is easy to check that this matrix is a rank 2 orthogonalgutipn (up to a scalar).
The element of the group algebi&s; that it corresponds to via (10.8) is
1.

T o S A SN T 11
glesz(g)g_l 5a— 5@ +b 2ab 2ab_(l+b)(1 5a 2a).

Example 10.6(Repeated vectors) b is a frame ofn vectors, then it may be that
Sym(®) is transitive, but doesn't contain a transitive subgr@upf ordern. Thus it
may be necessary to the repeat the vectorB in order to view it as a group frame.
For example, letp be the tight frame given by the 20 vertices of dodecahedmes (s
§10.6). With the labelling of Figure 10.2,

Sym®) = (a,b,r) 2 AsxZp,  |Sym(®)| =120
wherea andb act as rotations through 7 as a reflection, and are given by

a=(1,2,3,4,5)(6,8,10,12 14)(7,9,11,13,15)(16,17,18, 19, 20),
b=(1,6,7,8,2)(3,5,15,16,9)(4,14,20,17,10)(12,13,19,18,11),
c = (2,5)(3,4)(7,15)(8,14)(9,13)(10,12)(16,20)(17,19).

This group has one subgroup of order 20, which is not tramsitio subgroup of
order 40, and unique and transitive subgroups of orders®Q2. Thus the vertices
of the dodecahedron can be viewed asAghframe (vectors repeated three times)
and as a\s x Z,—frame (vectors repeated six times).
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10.5 Irreducible G—frames

Given a unitary action of a finite group on sZ, and somer € 7, one has
® = (gV)gec is aG—frame for its span.

In §10.9 we will answer the questions:

e When is® a frame for.7#?
e When is® tight?

The answer is particularly simple, and instructive, in tbkofving situation.

Definition 10.3. A linear action (or representation) of a groGpon ¢ # 0 is said
to beirreducible if the only G-invariant subspaces o# are{0} and.>Z, i.e.,

spaf{gQVlgec = A, W#0, ve .
A G-frame given by such a unitary action is callediaeducible G—frame.

Theorem 10.5.(Irreducible G—frames). Suppose a unitary action of a gr@ipn
S is irreducible. Ther(gv)gcc is a tight G—frame for#” for any v# 0, i.e.,

dim(s7) 1
=——_— 5 (f,gvgv, Ve 2.
G VP &
Proof. Fix a nonzero vectov, and letS be the frame operator fjv)gcc. Since
Sis positive, it has an eigenvalue > 0 with eigenvectow. By Lemma 10.1S
commutes with (the action ofp, and sogw is also an eigenvector fo, for any
g € G, by the calculation

S(gw) =gSw) = g(Aw) = A (gw).

But {gw} e spans”, and scS= Al i, i.e.,(gv)gcc is a tight frame. Taking traces
gives
traceS) = ¥ |gui|? = |G| V|> = A dim(.") = trace(Al ),
g

which determines . a

Corollary 10.5. All irreducible G—frames are tight.

Example 10.7(Equally spaced vectors) Theequally spaced unit vectors iR?
(vertices of am sided regular polygon) are an irreducible (tigef-frame. They
are an orbit of the cyclic group of orderacting via rotations as in (10.2), which
is clearly irreducible. By way of comparison, to show thiarfre is tight by direct
calculation would require the identities
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n 2mi\?> M/ 2mj\? n n 2mj . 2m]

Z cos— | = z sin— | = -, Z cos—-sin—- =0,

= n “ n 2 = n n
which can now be viewed as a consequence of Theorem 10.5.

We note that all irreducible representations of abeliaugso(such a€,) over
complex vector spaces are one—dimensional. From thislévisl(see Chapter 11)
that there are only finitely mang—frames forG abelian, i.e., the harmonic frames.
We now show:

If G is nonabelian, then there are uncountably many unitariyguivalent
irreducibleG—frames.

Proposition 10.1.Let G be a finite nonabelian group with an irreducible unitary
action onCY, d > 2 (such an action always exists). Then there are uncountably
many irreducible G—frames fdt? (up to projective unitary equivalence).

Proof. Since all irreducibleés—frames are tight, they are unitarily equivalent if and
only if their Gramians are equal (when the generating vedbawve equal norms).
Let p be the representation. Then sopi@) has two distinct eigenvalugg # Ay,
otherwise eaclp(g) would be a scalar matrix, and

spanf{gQV}gec = SpafVigec # (Cd7

contradicting the irreducibility ob. Letu; L up be corresponding unit eigenvectors,
andv, be the unit vector

Vg i=aup++/1—|a|?up, la] <1

The (1,g)—entry of the Gramian of the irreducib&-frame®y = (9Va )gec IS

(QVa, Vg ) = (aArup + 1/ 1—|a|2Aup, aus + /1 —|a2up) = a1 +4/1— |a]?Az,

and so for differentr, the frames®, are unitarily inequivalent. O

Example 10.8The above argument extends to some irreducible acfioos RY.

For example, if there is an elemeptg) # —| of order 2, then it has eigenvalues
+1 (with orthogonal eigenvectors iRY). An example of this is the action of the
dihedral grouD,, onR? (as reflections and rotations) given in Example 9.4, which
gives uncountably man®,—frames forR? (see Figure 2.2 for the case= 3).

Example 10.9Let G be the nonabelian group of orthogonal matrices generated by
athe rotation through 2/3 andb the reflection in thg—axis, i.e.,
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a= = , b= ,
2\\/3 -1 1

which is the dihedral groups. This action ofD3 onR? is irreducible. Thus
® := (QV)gen, = (V,av, a2y, by, aby abv)

is an irreducibleDz—frame for every nonzero vecterc R?. Forv = (x,y) a unit
vector, the Gramian of is theDz—matrix

1 -1/2 -1/2a+B —-a -PB
~1/2 1 -1/2 —B a+B —a
-1/2 -1/2 1 —-a B a+pB
a+p - —-a 1 -1/2-1/2
—a a+B -B -1/2 1 -1/2
-B —a a+p-1/2-1/2 1

Gram @) =

where
1, 1 1, 1 ,
—01= 15X —\@xy—éyz, —B:=5x +\f3xy—§y2, a+B=y"—x2.

We observe that this gives uncountably many unitarily imeajantDs—frames (see
Figure 2.2). By considering the leading principal minor oder 3, we can see that
the irreducible unitary action of the abelian subgr@sp= (a) gives just one irre-
ducibleCs—frame up to unitary equivalence (the Mercedes—Benz frame)

For irreducible actions o’ = CY there is an associated tight frame f&#*¢
(with the Frobenius inner product).

Theorem 10.6.Suppose that there is a unitary actiprof a finite group G orCY.
Then the following are equivalent

1. The action op is irreducible.
2. If (v, w) # 0, then(gv)gec and (gw)gec are dual tight G—frames, i.e.,

d 1

_ d
= Gl oW §<f,gw>gv7 viecd (10.10)

ge

3. The unitary map$p(g))qcc are a tight G—frame for the ¢ d matrices, i.e.,

A— f’qgém,p(g»p(g» vAE Cod, (10.11)
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Proof. Let Sbe the operato€® — C¢ given by

Sf:= %(f,gw)gv, fecd

ge

This commutes with the action & onCY (see Exer. 10.1).

1=2. If p is irreducible, then it is absolutely irreducible, and Sthuemma
(see Lemma 10.4) implies th&= Al. Take the trace of this, using Exer. 3.1 and the
fact the action ofG is unitary, to get

Ad = tracA 1) = tracdS) = Y (gugwh = 3 (ww) = |G|(vw).

2=:3. We have(f,gw) = trace( f (p(g)w)*) = trace fw*p(g)*) = (fw*, p(g)),
(v,w) = w*v, and so (10.10) can be written as

fw'v = |g §<fmﬁ,p(g)>p(g)v, vi,wyve CY
Ez (fw*,p(g))p(g), Vf,wecCH
— % ), VA€ C™=spar{ej€] }1<jk<d-
3—1. TakeA = fv*, and us€ fv*,p(g)) = (f,p(g)V), viv = ||v|/? to get
fv = |dG| %ﬁ\fﬁp(g»f?(g) = flv)*= |g %U,P(Q)V)P(g)v,

i.e., f € spar{gv}gcc, Vv # 0, and so the action is irreducible. O

Example 10.10The real unitary matrices

010 10 0
001}, 0-10
100 00 -1

generate a grou@ of order 12 (isomorphic téy) whose action ot is irreducible.
Thus the 12 matrices i@ form a tight frame for the 9—dimensional spag&3.

Example 10.11(Nice error bases) Ip is an irreducible unitary action @ on CY,
then, by Schur's lemma, the cenZ€¢p(G)) of the matrix groupp(G) consists of
scalar matrices, anp gives a projective representation df= p(G)/Z(p(G)).
WhenH has orderd?, i.e., thed? matrices ofp(G) (up to scalar multiples) are
an orthogonal basis fof9*9, the matrices are known asnice error basiswith
index groupH (see§13.13).
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10.6 The vertices of the Platonic solids

The unitary action of the symmetry groups of the fRlatonic solids(with centre

of gravity at the origin) orR? is irreducible (see Exer. 10.8), and so the vertices of
the Platonic solids are irreducib@&-frames. Similarly, the vertices of the truncated
icosahedron (aka the ‘soccer ball’, ‘bucky ball’) form ahigrame forR3.

ADTCRE

Fig. 10.1: The five Platonic solidgetrahedron cube octahedrondodecahedromndicosahedron

We may apply Theorem 10.4 to determine for which groGothe vertices of
a given Platonic solid are a (possibly not irreducib@®)frame (see Table 10.1).
These calculations are outlined in Figure 10.2, which welsgpted from [Mor04]
(who kindly allowed us to reproduce his figures here).

Table 10.1: The groups for which the verticesp of a Platonic solid are &—frame.

Platonic solid | vertices| faces| transitive subgroup& of Sym(®)

Tetrahedron |4 4 S (order 24) A4 (order 12)
D4 (order 8) Zy x Zy, Z4 (order 4)
Cube 8 6 Sy x Z (order 48)

S, Aq X Z (order 24) Dy x Z; (order 16)
Zip X T X Zz, Zop X Z4, D4 (order 8)

Octahedron |6 8 Sy X Zp (order 48) Sy, A4 X Z; (order 24)
A4, Dg (order 12) S3, Zg (order 6)
Dodecahedron20 12 | A5 x Z» (order 120) As (order 60)

Icosahedron | 12 20 | As x Zp (order 120) As (order 60)
A4 X Z (order 24) A4 (order 12)

Let G be the symmetry group of a Platonic solid actingioh(the order ofG can
be|G| = 24,48,120). For a generic vectare R3, the irreducibleG—frame(gv)gec
has|G| distinct vectors (none are repeated), and there are uradglyrmhany such
unitarily inequivalent frames. The vertices of the Platosolids have the additional
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property that they are stabilised byepersubgroup ofG. Generalising this leads
to the finite class ofiighly symmetric tight framegsee§13.8).

3
Tetrahedron
a:=(123),
b:=(423),
c:=(12),
2 (a,b,c) 2 S, (tetrahedral group).

8 7
Cube
6
a:=(1234(5678,
b:=(1485(2376),
4 c:=(24)(68)
2 (a,b,c) =2 S, xZ, (octohedral group).
5
Octahedron
4 3
a:=(1234,
b:=(512(634),
1 2 c:=(12)(34),
(a,b,c) 2 S, xZy (octohedral group).
6

Dodecahedron

crll [l

(12345(68101214(79111315(16 17 18 19 20
(16782(3515169(4142017 10(121319 181},
(25)(34)(7 15)(8 14)(9 13)(10 12(16 20/(17 19,

(a,b C) = As xZy (icosohedral group).

S Icosahedron
3 a:=(12345(78910 1),
1 b:=(126)(357)(4118(91012,
c:=(12)(35(8 11)(_9 10),
8 (a,b,c) 2 As x Z, (icosohedral group).

12

cr ] H W

Fig. 10.2: Generators for the symmetry groups of the verticélseoPlatonic solids.
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10.7 Irreducible G—frames from vertex—transitive graphs

LetI be a graph om vertices. There is a unitary action of the automorphism grou
Aut(l) of I onR" (where the vertices are labelled?]. .., n) given by

oej = €gj, V.

Let A= [ajk] be the(0,1)—adjacency matrix of the gragh (ajx = 1 if and only if
there is an edge fromto k). Foro € Aut(I"), agj ok = ajk, and so we have

o(Ag) = a(Za,jeJ =Y aj0e =3 ajeor =y 85156
r r r S

= Zawjes:Aegj =A(osg)), (10.12)
S

i.e., the action of AUt ) commutes with the actioA.

Now suppose thdt is avertex—transitive graph, i.e., a graph for which there is
an automorphism taking any vertex to any other. Gdie any subgroup of A4f)
whose action on the vertices 6f is transitive. Then by (10.12), the columns of
A are aG—frame(0A€))scc = (Aesj)gec (Where each column is repeatg| /n
times). SinceA is symmetric, it is unitarily diagonisable. LB} be the orthogonal
projection onto thel—eigenspace. ThE, are called the primitive idempotents. By
(10.12),

U(%AE)\GJ‘):;E)\EUJ‘ = UE,\ej:EAeo-j.

The unitary action ofG on the A—eigenspace is irreducible (this is true for any
distance—transitive graph), and so fBeorbit of anyA—eigenvectow is an irre-
ducibleG—frame for theA—eigenspace (Theorem 10.5). Taking the chuieeE, g
and lettingG be any transitive subgroup of Alit) gives a tightG—frame

(OEx ej)aeG = (Ex €oij Joca

for the A—eigenspace, which has at maestlistinct vectors. The Gramian of the
normalised tight framéE, ej)']?=1 is E, . From these observations, we obtain:

Proposition 10.2.LetI" be a vertex—transitive graph, with adjacency matrix A, and
primitive idempotents E For each choicer, € {0,1} (not all a, = 0), define an
orthogonal projection matrix

Py = ZG,\ E,, rank(Py) = z ay dim(E, ).
A )

Then the n columns of,Ran be viewed as a normalised tight G—fra(Rges ) occ,
where G is any transitive subgroup Atit(I").

By construction, the tight fram@ = (Pyej)|_; has Autl") C Sym(®).
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10.8 Maschke’s theorem and homogeneous-frames

To understand th&—frames for unitary actions which are not irreducible, wede
to decompose a space inBe-invariant subspace&G—submodules). This is often
presented in the language®G—modules (see Exer. 10.9, [JLO1]). We will use the
following terminology:

Definition 10.4. Suppose that there is a linear action of a gré@pn F—vector
spacesV andW. Then a linear maw : V — W is an FG-homomorphismif it
commutes with the action @, i.e.,

o(gf)=g9(of), Vge G, Vf e 2.
A bijective FG-homomorphism is aRG—isomorphism writtenV = W.

An FG-homomorphism is also calledamorphism, a G—equivariant map, or
aG—map, where the field is understood from the context.

Example 10.12The frame operatddof a G—frame is arfG—isomorphism (Lemma
10.1), and if there is a unitary action GfonV andW, then

Sf:=Y (f,oygw,  VfeV,
&

defines arfG—homomorphisns:V — W for anyv eV, w e W (see Exer. 10.1).

We now give a version of Maschke’s theorem, where the unaatipn ensures
that the direct sum isrthogonal

Lemma 10.2.(Maschke). Suppose that there is unitary action of finiteigré on
V = . ThenV can be written as an orthogonal (internal) direct sum

V=V1ieVo® --BVn (10.13)

of irreducible G—invariant subspaces,Where the Yare unique up to ordering and
FG—isomorphism, and the homogeneous components

Hy (W) := XEV X= PV (10.14)

K V=W

corresponding to an irreducible W are unique.

Proof. Use strong induction od = dim(s#). The casel = 0 is trivial. Ford > 0,
let V1 # 0 be an irreduciblé&s—invariant subspace. Thah=V; @ X, with X the
orthogonal complement of;. We now show thaKX is G—invariant, which gives
(10.13). Since the action is unitary, fgre G andx € X, we have

(gxV) = (x,g V) =0, WeVy =— gxeVi=X.
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The usual arguments to show that tigare unique up td*G-isomorphism
(Jordan-Hlder), andHy (W) = @v,=w V. apply without modification. O

Thus there is a unigue orthogonal decomposition of the spéce V into its
homogeneous components

V= @ HV(W)7

Wew

where” is the collection of different irreduciblé—invariant subspaces g#’
(up toFG—isomorphism). Thély (W) can be calculated by Theorem 13.2.

It is easy to check that @—invariant subspace of soriky (V) is again a sum of
irreducibleG—invariant subspaces which @f&—isomorphic ton.

Definition 10.5.A G—frame for a space?’ with just one nonzero homogeneous
component is called Bomogeneouss—frame.

Example 10.13An irreducible G—frame is a homogeneous-frame. ForG non-
abelian, there are uncountably many homogené&sdisames (see Proposition 10.1).

To decompose &—frame into homogeneous-frames, we need:

Lemma 10.3.(Schur). Suppose that:A — W is a linear map between irreducible
G—invariant subspaces o’ which commutes with the linear action of G, i.e, an
FG—homomorphism. Then either

1. A=0.
2. Alis invertible, i.e., V and W aféG—isomorphic.

Proof. Suppose thaf # 0. Then kefA) #V and rarfA) # 0. Since the mag is
anlFG-homomorphism, its kernel and range &dnvariant subspaces gfandw.
Hence, by irreducibility, keg\) = 0, rar(A) =W, i.e.,Als a bijection. O

Theorem 10.7.(Homogeneous decomposition). Suppose there is a unitéionaaf
a finite group G on
V=2x= P H(W).
Wew
If v=3SwMwv, W € Hy (W), then the G—frameP = (gv)gcc (for its span) can be
decomposed as an orthogonal direct sum of homogeneousr@edra.e.,

&= @ Py, B = (U )geG-

Wew/

In particular, G—frames in different homogeneous comptsare orthogonal.
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Proof. Sinceg(Twww) = Sw W, it follows immediately thatp is the direct sum
of the homogeneous—frames®yy, for spaf®y) C Hw (V). It remains only to show
the orthogonality of this direct sum, i.e., that the maps

B:spar{®y,) — spari®y,) : f — %(f,ngl>gw7 Wi # Wo
ge

are zero. By Maschke’s theorem, it suffices to show that R,,B|\, = 0, where

Vi C spani@®yw;) C Hv(Wj), Vj =W, are irreducibleG-invariant subspaces, and
Ry, is the orthogonal projection ont4. The mapA:V; — V, commutes with the
action ofG, sinceR, andA|y, do (the latter by the argument of Lemma 10.1). By
Schur's Lemma (Lemma 10.3), we hafe= 0, as otherwis&/; andV, would be
FG-isomorphic, contradictingj = W;. O

In other words:

A G—frame is theorthogonaldirect sum of homogeneo&-frames.

10.9 The characterisation of all tightG—frames

If there is aG—frame for.7Z, then there is one which is tight:

Proposition 10.3.Suppose that there is a unitary action of a finite group G#h
Then the following are equivalent

1. For some \e JZ, {gV}geG Spanss2.
2. There is a G—frame fogZ.
3. There is a tight G—frame fao#Z.

Proof. Since finite frames are simply spanning sequences, Thedelglves

spafQVlgeg = H <= @ = (QV)gec is aG—frame fors?
< @Nis a tightG—frame for 7.

a

This gives a simple necessary condition for the existeneetigfht G—frame for
2. We now give aonstructivecharacterisation of whicB—orbits under a unitary
action are tightG—frames.

We recall that a real vector spagé can be complexified#C =~ # ¢i#, and
a linear/unitary mafy on .# extends ta#’C via U (vi @ iv,) := (Uvq) @ (iUVs).
The complexification of .7 is € whenF = R, and.”# whenF = C.

In this way, anFG—moduleV can always be thought of ast8s—module.

Definition 10.6. A linear action of a finite groufis on J# (or representation, or
FG-module) isabsolutely irreducible if the action on#°C is irreducible.
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Example 10.14For F = C irreducibility and absolute irreducibility coincide. The
unitary action (10.2) of the cyclic groug, onR? is irreducible, but is not absolutely
irreducible, since the eigenspacesgt (a) as aC—linear map ar&—invariant.

Schur’'s lemma (Lemma 10.3) implies that tRevector space Hopg(V,W) of
the FG-homomorphisms between tfi&—isomorphic irreducibley andW is a
division ring WhenF = C (orV andW are absolutely irreducible), then this division
ring is one—dimensional. This leads to the following.

Lemma 10.4.(Schur) Suppose that:&; — Vi is anFG-homomorphism between
absolutely irreducibleFG—modules, which ar&G-isomorphic viao : Vj — V.
Then

S=ca, for some = FF.

Proof. SinceV; andV are absolutely irreducible, Hara(V;, Vi) is one—dimensional,
and so spanned hy. This gives the result (with possibly zero). O

We now show that every tigl@—frame is a direct sum of irreducib&-frames:

Theorem 10.8.(Characterisation). Let there be a unitary action of a firgreup G
onZ =Vi®Vo @ --- @V, an orthogonal direct sum of irreducible G-invariant
subspaces. Then

(9V)gea; V=Vi+-+Vm, Vj€Y]
is a tight G—frame forzZ if and only if

Ivill2  dim(V;)

iz Y e T dmvy

i £k, (10.15)

and when Y # V; are FG—isomorphic{gvj)gec and (gv)qec are orthogonal, i.e.,

;M ,9Vj) 9% = 0. (10.16)
ge

Moreover, if \ is absolutely irreducible, the(10.16)can be replaced by
(ovj, W) =0, (10.17)
whereo : V| — Vi is anyFG—isomorphism.

Proof. @ = (gv)gec is a tight frame foz# if and only if there exists & > 0 with

So(f) = %(f,gwgv:)\f, vies?.
g<

By linearity, it suffices to show this fof; € Vj, 1< j<m, i.e.,

%Uj,gwgv: %(ijgVﬂng + %;fj,gvj)gvk:/\ fj, (10.18)
ge geGKZ]

ge
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sincegv= 3 ; gv;. By equating th&j components, (10.18) holds if and only if

ZG<fj79Vj>gVJ =Afj,

ZG“jngj)ng:Q k+# j. (10.19)
ge

ge
By Theorem 10.5, the first condition will hold for a| € V; providedv; # 0, with
aA = A; > 0, which depends op, given by
A l8lvil?
J - . .
dim(Vj)

Therefored| is independent of if and only if the second part of (10.15) is satisfied.
By Theorem 10.7, the second condition in 10.19 automagidadlds if Vj 2 V.
Since{hv; }nec SpansVj, the second condition in 10.19 can be rewritten

(hvj,gvj)gvk=h'§ (vj,htgvj)h~tguc=h § (vj,gv))gw =0, k|,
ggG ] | ggG J ] ge% ] |

which gives (10.16), since mapsVik — V bijectively.
Finally, if V; is absolutelyirreducible, then

S:Vj >V fj— %(fj,ng-)gvk
g€

is a nonzerd&@G-homomorphism (Exer. 10.1), so Lemma 10.4 gi8esca, c€ F.
We now determine. Since the action is unitary, using Theorem 10.5, we cateula

(Sv,0vj) = ( §<V179V1>9\4<,0Vj> = 26<V179VJ><9\4<,0V1>

ge ge
= 3 (g V) (v 09 HYg) = (Ve Y (V.97 Tv))g )
g; g;
_ GlIvill®,, , _ [Gvill® _
= Mo % Gimev;)y VI = dimqvy) e OV
Since(Sv;, ovj) = (cavj,av;) = c||avj||, we have
Gl 1v3]1?
St=3% (f,gvj)ow = s—— = —— (W, 0Vj)of,
2o OO Gy o2 M 7
and the condition (10.16), i.e5y; = 0, is equivalent to (10.17). O

Example 10.15(0One summand). Fan = 1 this reduces to Theorem 10.5.

Example 10.16(Harmonic frames) IS is an abelian group, then all the absolutely
irreducibleFG-modules arene-dimensional, with the action @ given by

avj = ¢;(9)vj, vj €V,
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whereé;j is a character o6 (see§11.2). The condition (10.16) becomes

v, E @V &V = T &Q)E@IViIPw=0 = &(9)&(9) =0,
ZG >8] 76k k ggek j il vk g; k i

ge

i.e., the characters are orthogonal, and so each charactdrectaken at most once.
Theseharmonic framesre studied in Chapter 11.

Example 10.17(Dimension of aG—frame) For an absolutely irreducibe € 7
(for which the action ofG is unitary) andoj : V; — W any FG-isomorphism, the
condition (10.17) can be written (see Exer. 10.2) as

<UjVj,0ka> =0, ] #k.

Therefore the maximal number of summands which caR®eisomorphic toV is
dim(W). When the number of summands.i#f = @;V; that areFG-isomorphic to
a givenW is zero or dinfW), then one obtains eentral G-frame (segxx).

Taking each absolutely irreducibl® € # as a summand dif@) times gives
rise to tightG—frame, so that

Y dim(W)? <|G|. (10.20)
wew

On the other hand, taking =1 in Corollary 10.3 gives the tight—frame(ey)gcc
for C®, so there is equality. More generally, all of the possibieetisions for a
G—frame are
> awdimW),  0<ay<dimW),
wew

whereay is the multiplicity of the absolutely irreducibl® as a summand.

Example 10.18Suppose that there is an irreducible unitary actioGohW = CY.
This induces a unitary actigmon d x d matrices via matrix multiplication

p(9)[ug,...,ug] = [gu,...,guq], uj el

Let V; be theG-invariant subspace @9~ consisting of the matrices which are
zero in all but thej—th column (and the zero matrix),

. d.
Vj:[O,...,UJ,...70], gj .V = C".vj—uj.

Theno; is aCG-isomorphism, and so ti@&-orbit ofU = [ug,...,ug) =v1+---+Vqy
is a tightG—frame forC?*¢ if and only if ||vj|| = ||uj|| is constant (for alfj) and

(0jVj, OkVk) = (uj, k) =0, ] #K,
i.e.,U is a unitary matrix (up to a scalar). Thus, withunitary, (10.11) generalises
to
d

A= — S ¢
Gl 2

Ap(QU)p(@u,  vAecC™d
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10.10 G—frames of multivariate orthogonal polynomials

Here we apply Theorem 10.8 to construct tight frames of grtinal polynomials of
several variables which share the symmetries of the weadbb Ge€15 and$16).

Let 7 := 1(RY) be the polynomials ixl real variables, andly := IM(RY) those
of degree< k. Let u be a measure dRY, for which

(1, f2)p 1= / f1fdp

defines an inner product dii. The space obrthogonal polynomials of degreek
with respect to the measugeis

Y(u) ={f el (f,pu=0,Vpe M1}

This has dimension
k+d-1

amOin) = (3470,

Thesymmetry group of the measurg is
G = Sym(u) := {g € Aff (RY) :/fogdu = /fdu,Vf eny,

where AffRY) denotes the group of affine transformationsish This acts on1
viag- f ;= f og~?, with eachg € Sym(p1) inducing a unitary transformation

<9'f1,9'f2>uZ/(flogfl)(fzogfl)du=/(f1f2)0971dIJ=/flfsz=<f1, f2)us

which maps¥«(u) onto itself sinceg- My_1 = Mk_1, i-e., %(U) is a G—invariant
subspace. It is therefore natural to seéB-anvariant tight frame for/i(u), which
has a small number of vectors.

Example 10.19( Legendre polynomials on a square) L% be the 3—dimensional
space of quadratic Legendre polynomials on the squatel]?>  R2. Here

1
hf:—/ 11,
(fq, f2) 4 )1y 112

so that||1]| = 1, andG = D4 acts as the symmetries of the square.
The orthogonal decomposition 6P, into its homogeneous components consists
of three 1-dimension&—invariant subspaces, which are given by

2
mmw=%+f—@ p(%Y) =Xy, pa(xy) =X —y2

None of these spaces dr&—isomorphic. To see this, observe tliaf acts as the
identity onps, and the symmetryx,y) — (Y, X) fixes pz but notps.
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By Theorem 10.8, any which is a sum of vectors of equal length from these

subspaces gives@-frame(gf)gec for #,. Since||p1|| = ||ps|| = % Ip2| = 3.
we can take
5 2 5 1
fxy) = §<x2+y2— 3+ V2y+ g(xz—yz) = VB¢~ 2) +V2xy

This gives aD—invariant tight frame of four vectors fa#?,. Since the size of an
orbit divides the order of the group, there isDg-invariant basis fors.

) ) Vg,
A AKX
GIIIAA QAN
Y A
YV L7 ILAR
(\ : V“i"!(‘% ] ,"gé‘e“

Fig. 10.3: Contour plots of thé of Example 10.19, and its orbit (showing the square symmetry).

Example 10.20(Legendre polynomials on a triangle). L&t be the 3—dimensional
space of quadratic Legendre polynomials on a triafigkgth verticesV. Here

1
(f1, f2) = W/T f1fo,

andG = S, = D3 acts as the symmetries of the triangle, i.e.,dog S,
o V) = a,ov, (whereyay, = 1).
(222, v

The action ofG on the barycentric coordinatés= (&,)vev for V (see§4.7) is

The inner product between powers of the barycentric coatdm(which are linear
polynomials) is given by the special case- 2 of the formula

(a+p)

a gfy
565 (d+1Djaj+1p

for (normalised) integration over a simplexi®d with verticesV. LetV = {u,v,w}.
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In view of (10.21), the 1-dimensional subspagef &2, spanned by

1 1
h=g+&i+8-5 L=
is G—invariant. Further, it&—invariant orthogonal complemevit : = Vf =6V,
is irreducible. This follows since the action @fon &2, is faithful, and so i, was
not irreducible, then linear map#®, — £, induced byG would be simultaneously
diagonalisable, and 8 = S; would be abelian. The orthogonal projection&gf
ontoV; is given by

4 1 1 1
. 2_ 7 it T 2 _ =
By Theorem 10.8, th&-orbit of the unit vector
f]_ 1 f2 2 4 1
=ty [ o = (2VBF5V2) L £ 15V2( & — Z&+ ),
Tl V3™ T V'3 = BVeTovah (&~ 58 1)

is a tight frame for the 3—dimensional spag&. The polynomialf is fixed by any
permutation which fixes, and so this orbit has three distinct vectors. These give
an orthonormal basis fo#?, (the quadratic Legendre polynomials on the triangle),
which is invariant under the symmetries of the triangle Sigre 10.4).

Fig. 10.4: Contour plots of thé of Example 10.20, and its orbit (showing the triangular symmetry)

Since the orders of the symmetry groupsf the square and triangle are 8 and 6,
and the size of &—frame must dividéG|, it is not possible to find a tight—frame
for the space of orthogonal polynomials of degkeen the square and triangle (or
for any weight with a finite symmetry group) as soon as its disian is greater than
|G|. In these cases, it is natural to seek tight frame which i<3herbit of a small
number of vectors (segl0.11 and Chapter 15).
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10.11 G—invariant frames

Suppose there is unitary action of a finite grdBpn 7. If there is noG—frame
(9V)geq for 57, then it is natural to seek@-invariant (tight) frame for#’, which

is the orbit of asmall numbeof vectors. Here we give a complete characterisation
of suchG-invariant tight frames (Theorem 10.9). This allows onedtralate the
minimal number of generators forGinvariant frame §xx).

Definition 10.7. The number of generatorsof a G—invariant frame is the number
of orbits under the action @ on the set of its vectors.

We now prove the main result: a characterisation of wi@etorbits of vectors
W1, ..., W give tight frames.

Theorem 10.9.(Characterisation). Let’Z be a Hilbert space ovelF = C or R.
Suppose there is a unitary action of a finite group Gh=V1 EVo & - - - B Vi,
an orthogonal direct sum of irreducible G—invariant subses. Let P=R;; be the
orthogonal projection of# onto f. Then

&= (gWs)geG,lgsgr, Wi,...,Wr € %7
is a tight G—invariant frame fopZ if and only if

Soa [Pl dim(Vj)
Y1 lAws]? dim(Vi)’

r
ZIIF’;WsII2 #0, Vj, i £k (10.22)
2

and when Y # Vi are FG—isomorphic

> ZG<VJ,9PJWs>gPKWs: 0, (10.23)

S g€

for any (and hence all) nonzerq ¢ V;. Moreover, if \ is absolutely irreducible,
then (10.23) can be replaced by

rZ<0ijs, Rws) =0, (10.24)

whereo : Vj — Vi is any choice oFG—isomorphism.

Proof. @ is a tight frame fots# if and only if there exists & > 0 with

So(f) =3 Zc<f,gws>gws:A f,  viesx
ge

S

By linearity, it suffices to show this fof; € Vj, 1< j < m, i.e. to show that there
existsA (independent of) such that,

fi, gws)gws = fi,gPws)gRws = A fj, (10.25)
Zgg; 5) gWs Z%Z“ }Ws)gRWs = A fj
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sincews = 3 Rws. By equating th&/4 components, (10.25) holds if and only if

ge S ge

By Theorem 10.5, the first part of (10.26) will hold for &l € V; provided that
somews has a nonzer®;—component, i.e.ys||Pjws||> # 0, with aA = A > 0,
which depends o, given by

. 2
N = g Pl

ThisAj is independent of if and only if (10.22) holds. By Theorem 10.7, the second
part of (10.26) automatically holdsVf; 22 Vi, and so reduces to

Z §<fj,g|3JWs>gR<Ws:0, Vi eV, K#£j, Vi=W. (10.27)
€

By Lemma 10.3, this holds if and only if it holds fd, some nonzerw; € V;.
We now seek to simplify (10.27) in the case tNatis absolutely irreducible. Let
T:Vj = V be theFG-homomorphism (see Exer. 10.1)

Tf:=3% 5 (f,gPws)gRws.
5
Then foro : Vj — Vi anFG-isomorphism, we calculate
(1vi,0v) = (33 (v 0B ) R, o)

= Zz Vi, gPws) (gRws, V)
S

Zzg VJ7PJWS (Rws, 09~ VJ>
Sl

X F*Kws,oz Pws, g vi)g'vj)
S

s |v,(|G)PJ .

with the last equality given by Theorem 10.5. Singeis absolutely irreducible,
Lemma 10.4 implies that = co, for somec € F (possibly zero). Substituting =
co into the above gives

6|2
dim(v;) oy 2 & (Pl TP We 0

Thus (10.27), which is equivalent o= 0, holds if and only if (10.24) does. O

For a single generator & 1), Theorem 10.9 reduces to Theorem 10.8.
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10.12 Frames invariant under the action of an abelian group

We now consider Theorem 10.9 whénis abelian In this case, all the absolutely
irreducibleG-invariant subspacé4 are 1-dimensional, with the action Gfgiven

by
gv=¢&(9)v, veyv,

whereé is acharacter of G, i.e., a homomorphiss — C (see§11.2).

For one generator, there ardinite number of tightG—frames forC¢, the so
calledharmonic framegsee Example 10.16 and Chapter 11).

We now use Theorem 10.9 to describe the situation for two aergenerators.

Corollary 10.6. (G abelian) Suppose that there is a unitary action of a finitele@n
group G onC¢, and, without loss of generality, that the irreducible Gsdriant
subspaces arej\= spar{e; }, with the action ondygiven by ge= &j(0)ej, where
§j:G— Cisacharacter of G. Letw...,w; € C“. Then

@ = (gws) 1<s<r,geG

is a tight frame forC¢ if and only if

1. The matrix W= [wa, ..., w;] has rows of equal norm.
2. The rows of W corresponding to the same character are gahal.

In particular, there is a G—invariant tight frame f@® with r generators if and only
ifd <r|G].

Proof. SinceP,ws = (ws);ej, we have

> [IPws]|? =3 |(ws)j|? = (norm of thej—th row ofW)?,
S S

and so (10.22) reduces to 1Mf andV, areCG-isomorphic, i.e., correspond to the
same character, then: V; — Vj : ej — & is aCG—-isomorphism, since

o(ge) = 0(&(9)e)) = &(9)o(e) = &(Q)ac=g(0e)).

In this casegPjws = 0 (Ws)jej = e(Ws) €, and so (10.24) becomes

Z<UPJWSa Rws) = Z«Ws)ja(a (Ws)kex) = Z(Ws)j(Ws)k =0,

i.e., thej andk rows of W are orthogonal, which is condition 2. O

Example 10.21For G = (a) the cyclic group of order 2, define a unitary action of
GonC3 by

100 Vi
avi=[01 0 |v=| w |,

00-1 —V3
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i.e., take the trivial representation ¥n= Ce;, Vo> = Cey, and the sign representation
onV3 = Cez. There is nadG—frame(gv)gec for C3. However, there are many choices
for wy, W so that(gw; )1<j<2 gec is a tightG—invariant frame forC3, e.q.,

1 0
W = [wy,Wo] = |0 1 , lul <1

u+/1—|u?

Here(w;, W) = uy/1— |u|2, and sdnfinitelymany unitarily inequivalerG—invariant
tight frames forC® can be constructed in this way.

Given somew; = (X,Y,2), a suitablen, can be chosen provided? < |x|°+ |y|?,
since we can takev, = (Y, —X,u) where |u|? = |x|2 + |y|? — |Z]%. For example, if
wy = (1,2,2), then choosingv, = (2,—1,1) gives theG—invariant tight frame

1l [2] [2] [2
(wl,Wz,awl,ava)z( 2l -1, L2 |, ]-1 )
ol 1] 2| |-1

Example 10.22Let G = (a) be the cyclic group of orden. An irreducible unitary
action of G onR? is given by (10.2), i.e.,

cos? —sin2!

av= Ay, A= 5 5

i T T

sing’ cost

Suppose tha® acts onR* = R? x R? componentwise, i.ea(V,w) = (Av, Aw). Then
the conditions for th&—orbit of (v,w) to be a tight frame foR* are

VIl = [lwi[ # O, (fLAlVAlw= ( § AlwAT)f1 =0, Vi eR?
o (B o)

A calculation shows that this is not possible, and s@rorbit is a tight frame.

This can also be seen by appealing to Theorem 10.9, as follbhesaction of
G onR? given byav= Avis not absolutely irreducible. On the complexificatioh
there are two orthogon&@-invariant subspaces: the eigenspacesadrresponding
to the eigenvaluet = w, @, w:= e . Forn> 2, w # w, and so these subspaces are
not CG—isomorphic. Thus the complexificatidf* of R? x R? decomposes as the
sum of four 1—-dimensionab—invariant subspaces, with two paif€&—isomorphic
to each other. By Theorem 10.9, it is therefore not possibléend aG—frame for
C*, and hence neither fd&*.
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10.13 The minimal number of generators for aG—invariant
frame

Suppose that there is a unitary action of a finite gr@ipn a Hilbert space?’.
Let # be acomplete set of non-isomorphic irreducibleCG-modules i.e., each
irreducibleCG—-module occurs once i# up to CG-isomorphism. We denote the
direct sum ok copies of affG-moduleV by V.

Example 10.17 shows that there is a tightframe fors# if and only if 7 is
CG—isomorphic to an orthogonal direct sum

b waw, 0 < ay < dim(W). (10.28)
Wew/

On the other hand, Wedderburn’s Theorem states@ais CG—isomorphic to

@ Wdim(W) )
Wew

Combining these observations gives the following.

Proposition 10.4.The following are equivalent:

1. There is a tight framégv)gcg for 7.
2. There is a frame (spanning s€gv)qcc for 7.
3. 2 is CG—isomorphic to a submodule 6.

In other words:

The existence of a tight—frame for.7# depends only on th€G-module
structure of77. It does not depend on the inner productsh

We now generalise this. Denote the number of times an iribBu€G—module
appears in a direct sum decompositionzéf into irreducibleCG-modules by
mult(W, 5#) = dim(Homgg(W, 52)) = dim(Homgg (52, W)).

Theorem 10.10.(Minimal number of generators) The following are equivalen

1. There is a G—invariant tight fram@v; )gcc,1<j<r for 7 with r generators.
2. There is a G—invariant fram@v; )gec,1<j<r for 5 with r generators.
3. 4 is CG—isomorphic to a submodule gEG)', i.e.,

mult(W, #) < rdim(W), (10.29)

for every irreducibleCG—module W.
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Proof. (1<=2) This follows from a variation of the argument for Theoret1],
i.e., if @ = (gwj)gec1<j<r SPanssZ and S is the frame operator ofp, then
(9S 2Wj)geca<j<r is a tight frame for.

(2<=3) First, suppose thdw;)gcc 1<j<r SPans#’. Thens# is a quotient of
@;Wj, whereW; := spar{gvj }gec. By Proposition 10.4, eadhy; is CG-isomorphic
to a submodule of G, and hence” is CG—isomorphic to a submodule ¢€G)".

Conversely, now suppose that mMt .>#’) < rdim(W) for every irreducible
CG—moduleW. Then we can write’’ = 71 @ - - - @ Z;, where each submodulf
has multw, Z;) < dim(W), and so iSCG-isomorphic to a submodule &G. We
can choose vectow; € Z; for which (gw; )gec span<Z; (by Proposition 10.4). Thus
(9Wj)geG 1<j<r SPANSH’. o

We now briefly indicate how Theorems 10.9 and 10.10 can be toseohstruct
tight frames of multivariate orthogonal polynomials (§&6.10) which are invariant
under the symmetries of the weight and have a minimal numfogererators.

Recall from§10.10, that the symmetry group of a measurgu has a unitary
action on thed—variate polynomialg1 = M (RY) given byg- f := fog™1. We
are interested in findin@—invariant tight frames for spac#(u) of orthogonal
polynomials of degrek for this measure.

We denote the space of homogeneous polynomials of dédneél, = I'Iif(]Rid).
This is aG-invariant subspace ¢1 (RY), indeed it iSFG-isomorphic to%(u).

Proposition 10.5.Let G be a finite subgroup of the symmetry group of a megsure
Then%(u) is FG—isomorphic tdTg.

Proof. Let R, be the orthogonal projection onto a subsp¥céf V is G-invariant,
thenR, commutes with the action @. Thus

M — H(p) o f = f =Py =Py (F)

is anFG—homomorphism ontdi(u). Moreover, this is affG-isomorphism since
dim(r1) = dim(%(u)). 0

Thus the problem of finding—invariant frames for/k(u) therefore reduces to
understanding th€ G—module structure off¢. To this end, denote thB—invariant
polynomials by

neé:={femn:g-f="fvgeG.

Example 10.23(Trivial representation). L&/ be the trivial irreducibl&G—module.
This is one—dimensional, with tl&fixing every vector inW. Thus (10.29) becomes

mult(W, 110) = dim(M®n ) < rdimWw) =r,
and so the minimal number of generatoffer 7 () satisfies > dim(r1¢n Q).

WhenG is a finite reflection group, there are techniques to decomfjsinto
irreducibleCG-submodules. We now briefly outline these.
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10.14 The coinvariants of a finite reflection group

A linear transformation on a complex vector space ¢e@mplex reflectionif it has
finite order and fixes a hyperplane. A groGpgenerated by complex reflections is
called a complex reflection group. A complete classificatibtie finite irreducible
complex reflection groups was given by Shephard and Todd.

Let l'lf be theG—invariant polynomials with zero constant term, arg be the
ideal generated bijlf in 1. Thering of coinvariants (or coinvariant spacs is the
quotient ring

rn
I
This is naturally graded with respect to degree and inh#résaction ofG (since
#s Is a homogeneous ideal which@-invariant).
We now suppose th& is a finite reflection group. This implies

Mg :=

e [1%is aring (this characterises reflection groups).
o [Ig = CG (CG-isomorphism).
e There is a decomposition ¢t as a tensor product of grad€>—modules:

n=n®ecs. (10.30)

We identify g as aCG—submodule of1. Then (10.30) gives th€G—module
decomposition

k
;:@ (M) @c (Men ;).

We observe thafl® N 7} consists of dinir1® N 117) copies of the trivial module.
Hence, folW an irreducibleCG-module,

k
mult(W, 1) = zodim(rlG A7) mult(W, M NI ;).
wherey j mult(W, Mg N 17) < mult(W, Mg) = mult(W, CG) = dim(W). This gives:

For G ¢ Sym(u) a finite reflection group, determining the minimal number
of generators for a G—invariant tight frame for#(u) (via Theorem 10.10)
amounts to calculating myW, Mg N I'Ij"), 0< j <k, for each irreducibl&V.

These calculations are done for the orthogonal polynomiaks regular polygon
in R? and the cube ifR® (see [VW16]).
The discussion above also gives the following estimate for

r< maxdlm(I'IGﬂI'l ).
0<j<k
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Notes

The basic theory of groups frame was given in [VWO05], [Han@f]g generator),
and [VW16] (multiple generators). Thanks to Patrick Morafiadithe graphics used
in Figures 10.1 and 10.2.

Exercises

10.1.Suppose that there are unitary actions of a finite g@wmV; andV;. For any
Vj €Vj, W € V, show thaiS: Vj — Vi given by

St:=3 (f,avhogw,  VvVfeV,
&

is anFG—homomorphism, i.e., commutes with the actiorGof

10.2.Show that ifW is absolutely irreducible (with the action & unitary) and
oj :Vj = W is anFG-isomorphism, then the condition (10.17) can be written as

<UjVj,Gka> =0.

10.3.Let # be the subspace & consisting of vectors with Y% =0.

(a) Show there is unitary action & = S on J# given byp(o)x:= (xgj)?zl.

(b) Show that there are 28 distinct vectors in Gidrame(gv)gec for 7 given by

the vectov = (3,3,-1,-1,-1,-1,—-1,-1).

Remark:These 28 vectors are an equiangular tight fram@&fofsee Example 12.3).
They can be thought of as@frame (apply the permutation matrices to the vectors
in R8 and calculate the size of the stabiliser).

10.4.Let @ = (gV)gec = (P(9)V)gec be a finite frame for the vector space’,
wherep : G — GL(7) is a representation (group homomorphism). Choose some
inner product-,-) on s#, and letA* be the Hermitian transpose with respect to it.
(a) Show that a second inner product.#fi can be defined by

1 _ a1 .
(XY)p = |G‘g;<p(g)x,p(g)y> (Axy), A=A, |G‘g;p<g) p(Q).

(b) Show that eacp(g) is unitary with respect t¢-, -)p, i.e., it isG-invariant
(p(h)x,p(Ny)p = (x,¥)p, VYheG.

(c) LetB= A3 be the positive square root of the positive defifitabove. Show
thatp(g) := Bp(g)B~! defines a representatig@n: G — % (7).

(d) Show that® is similar to theG—frame¥ = (p(g)BVv)ges, and hence is similar
to the tightG—frameycan,



242 10 Group frames
10.5.Let (-,-)p be theG-invariant inner product of Exer. 10.4. Show that
(x,y) == (Mx,y)p, M positive definite with respect tg, -),

gives aG—invariant inner product o if and only if M commutes with the action
of G, i.e.,p(g)M = Mp(Qg), Vg € G. In particular, ifp is absolutely irreducible, then
there is a uniqu&—invariant inner product.

10.6.Let (gv)gec be aG—frame for. 7.
(a) Show that the variational condition (6.4) for tightnessomes

dim(2)
G ggG|<V79V>\22HVII4~

(b) Show thaigv)gec is a(t,t)—design if and only if

1
[ EGKV, gv)[* = c(d,IF)||v]|*.
g<

10.7.Prove the assertions of Theorem 10.2, i.e.,

(a) The direct sum of disjoint—frames is &5—frame.

(b) The sum of &;—frame and &,—frame is &1 x Go—frame.

(c) The tensor product @b;—frame with aGy—frame is aG; x Go—frame.
(d) The complement of a tigl@—frame is a tighG—frame.

10.8.Let G be the symmetry group of a Platonic sdlid- R? (with centre of gravity
the origin) acting as unitary transformations. Use the faat finite subgroups of
% (R?) are cyclic or dihedral to prove this action is irreducible.

10.9.FG—modulesLet G be a group. Araction of the groupG on a setX is a
mapG x X — X : (g,X) — gx satisfyingg: (g2x) = (9102)%, 1Ix = x. A vector space
V overF is anFG—module if there is a multiplicatiorgyv, g € G, v € V for which
(g,v) — gvis anactionandv — gvis alinear map Vg € G.

(a) Show thal/ is anFG-module if and only ifp : G — GL(V), p(g)v:=gvis a
(linear) representation/action.

(b) Show thaffG—submodules are the same@snvariant subspaces.
Remark:Other terminology carries over in the obvious way, e.g.,abgon of G
onV = 0 given by some representation is irreducible if and onlyhé bnly the
FG—-moduleV is simple i.e., has ndFG—submodules other than 0 axid

10.10.Suppose tha¥; andV are absolutely irreducibl€—invariant subspaces of
s, andg, T areFG-isomorphism¥; — V. Prove that

O=AT, for someA € C.

10.11.Let @ = (gv)gec be aG—frame forZ” given byp, ¥ be the set of vectors in
@, andH := {g € G: gv= v} be the stabiliser o¥.
(a) Show the vectors i# can be indexed by the set of left cosetd-bin G
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W= (QV)gHew, ¢ :={gH:geG} (10.31)

(b) SupposeH is normal, so that” becomes the groufs/H. Show that (10.31)
gives aG/H—frame if and onlyH = N, whereN is the kernel op.

(c) Supposés is abelian. Show thdtl = N, which is independent of, and hence
Wis aG/N—frame of distinct vectors.

10.12.Let G = (a,b) be thebinary icosahedral groupf order 120 generated by

1t 1-ti 1 -0
a=_ , b= ,
2\ 1 t 14y 0 i

wheret = 3(1+v/5) is the golden ratio.
(a) Show that for every unit vectare C2, the G—frame(gv)gec is a(5,5)—design.
(b) Show that there i5,5)—design of 12 vectors faE?.

10.13.Show that af—isogonal configuration (see Example 10.2) is a group frame
by determining the grou@® and its unitary action.






Chapter 11
Harmonic frames

11.1 Introduction

Here we consider the tigi&—frames forG abelian We will see that:

e There ardinitely many such frames (they will be called tharmonic frameps
e Each is given by a subset of the character&of
e Each is given by a subset 6f

We first motivate the definitions to come, by considering tixariple 2.4 for
n = 3. The character table (Fourier matrix) of the cyclic gr@p- C3 of order 3 is

11 1
1w w?|, w#1, w’=1,

1w? w

which has orthogonal columns of equal length. Since theogdhal projection of
an orthonormal basis is a tight frame, removing rows (i.earacters) from this
character table gives a submatrix whose columns are an-ewrai tight frame,
e.g., removing rows 1 or 2 gives the equal-norm tight frarne€f

B B

Equivalently, one could remove columns (i.e., element&pfThis amounts to
restricting the characters to a subgeif G, which is the most convenient way to
describe harmonic frames (we take this as the definitiorg.tigint frames of (11.1)
are clearlyG—frames under the respective unitary action&e# (a) given by

p@=(“zp), p@E=(,).

). (11.1)

245
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11.2 Character tables

We first outline the basics @haracter theoryor finite abelian groups (cf. [Rud90]).
Let G be a finite abelian group. Tha@reducible) characters of G are the group
homomorphismg : G — C\ {0}, whereC\ {0} is a group under multiplication.
Here we think of them as vecto€se C® (with the Euclidean inner product), which
satisfy

E(gh) =&(@é(h). VvgheG. (11.2)

The set of irreducible characters of the abelian gréiip denoted byG.

The character§ form group under the multiplicatiogé n)(g) := &(g)n(9),
which is called thecharacter group. The character grouf is isomorphic toG.
For x € G, (11.2) implies thaj (g) is a|G|—th root of unity, and so the inverse pf
satisfies

=x(9). (11.3)

The square matrix with the irreducible character€&ads rows is referred to as
the character table of G. For example, ifG = (a) is the cyclic group of orden,
with its elements ordered 4, ...,a" 1, then its character table is

11 1 .. 1
1 0w o? w1
1@ o - D | wi=er. (11.4)

11 wz(n*l) o w(n*1)<n*1)

This (and the scalar multiple %) is also known as thEourier matrix .

Example 11.11If all elements ofG have order 2, i.e.G is an elementary abelian
2—groupZ; x --- x Zp, then the entries of the character tablesodre+1.

The rows and columns of the character table are orthogoaal, i

(&,n) = %E(Q)WQ)=0, E#n, (11.5)
ge

> X@x(M=0, g#h (11.6)
XeG

These are referred to as tbghogonality andcolumn orthogonality relations.
The Pontryagin duality map (canonical group isomorphism) is given by

G- G:g—4d  §(x)=x(., vxeG geG (11.7)
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11.3 Harmonic frames

For G abelian, the absolutely irreduciblEG—modules arene-dimensional, with
the action ofG given by

av =&i(g)vj, & €6, (11.8)

whereé; € G. As outlined in Example 10.16, the condition (10.16) in Tieen
10.8 (the characterisation of tigl#-frames) is that the charactefgin (11.8) be
orthogonal, and hence can be taken at most once. By chogsing;, we therefore
conclude that all tigh6—frames forC® (up to unitary equivalence) are given by

¥ = (Yg)geo: Yy = (¢ (9))?:1 ec, (11.9)

whereéy,.... &4 € G aredistinct In view of (11.2), the action aB on ¥ = (yy) is

&1(9) &é1(h) é1(gh)
gy = : = : = Ygh-
&a(9)) \é&a(h) &a(gh)

The construction (11.9) amounts to takidgowsof the character table @3, i.e.,
a subset ofl elements of5. Equivalently (sinces andG are isomorphic), one can
selectcolumnsof the character table, i.e., a subdet. G. The latter is the most
convenient (cf. Theorem 11.2), and so we take it as our digiinit

Definition 11.1. Let G be a finite abelian group of order A tight frame forC¢
which is unitarily equivalent to

Dy = (£l3)geg € C & CY, (11.10)

whereJd C G, |J| =d, is called aharmonic frame (given byJ C G). If G can be a
cyclic group, then we say that the harmonic frameyislic'.

Our observations lead to the following:

Theorem 11.1.(Characterisation of harmonic frames) L€ be an equal-norm
tight frame for.# ~ CY. Then the following are equivalent:

1. @ is a G-frame, where G is abelian.

2. @ is given by a submatrix of d rows of the character table of aelia G.
3. @ is harmonic, given by somed G, |J| =d.

4. The symmetry groupym( @) has a transitive abelian subgroup G.

For each®, G can be taken to be the same in 1,2,3 and 4, but it need notiQeaun

1 Harmonic frames are also callggometrically uniform frameEB03] (orbits of abelian matrix
groups), and the term harmonic frame is also used for what we cgdilec harmonic frame.
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Proof. The equivalence of 1 and 2 follows from Theorem 10.8, as dirdscussed.
The equivalence of 1 and 4 follows from Theorem 10.4.
(3=1) The®; given by (11.10) is &—frame, via the unitary action

X-(&la) = (x12)(&la) = (X&) la-

SinceG andG are isomorphic, it therefore follows thdt; is aG—frame.

(2=3) We use thé®ontryagin duality ma§11.7). Suppose thap is given by a
submatrix of the character table &f SinceG andG are isomorphiap, is given by
a submatrix of the character table®f say

[é(é)]gej.feé = [E(g)]ge\],feé = [£|J]§eéa JCG,

and so@ is given by the harmonic fram®@; = (£[s) -
For the possible nonuniqueness&fsee Examples 11.2, 11.3and 11.4. O

Early applications of cyclic harmonic frames include ratsignal transmission
with quantization and erasures [GVT98], [GKK01], [CKO3]Hish introduces the
term harmonic tight frame), and multiple—antenna codegaef$i MR 00].

Example 11.2(Nonuniqueness dB) Let @ = (e, e, —e1, —€2) be the equal-norm
tight frame of four equally spaced unit vectors R#. This has symmetry group the
dihedral grouDg = (a,b) (see Exercise 9.4), where the actioraaindb onR? is

given by
0-1 01
a= , b= .
10 10
The frame® is theG-orbit of the honisomorphic abelian subgroups
(@2 b) ~CyxCp,  (a)~Cy,

and hence the group in Theorem 11.1 need not be unique.

Example 11.3(Orthonormal bases) Since the columns of a character table h
equal norm and are orthogonal, any orthonormal basi&fqjor C") is aG—frame
for any abelian grouf® of ordern.

Example 11.4(Simplex) By removing the first row from (11.4), i.e., thevtal char-
actery = 1, one obtains tha = d + 1 vertices of the regular simplex R, which
is therefore a tighCy . 1—frame. Similarly, the vertices of the simplex ar&aframe
for any abelian grouf® of ordern.

Example 11.5(Noncyclic harmononic frames) Consider the harmonic frgien
by the eight vertices of theube[—1, 1]3. This is a both &, x Z, x Z,—frame and
a Z, x Z4—frame, but not a cyclic harmonic frame since its symmetigugr(the
octohedral groujs; x Zy) contains no elements of order 8.
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11.4 Harmonic frames with distinct vectors and with real vetors

The condition for a harmonic frame to have distinct vectbesteal, or lifted are:

Theorem 11.2.Let G be an abelian group of order n, arpl= @; = (E|J)E€é be
the harmonic frame of n vectors f@ given by a choice & G, |J| =d. Then

1. @ has distinct vectors if and only if J generates G.
2. ®is areal frame if and only J is closed under taking inverses.
3. @ is a lifted frame if and only if the identity is an element of J.

Proof. We writeG additively, and observe thdt(j) = &(—j), V& € G, Vj € G.

1. LetH be the subgroup of generated byl. Then @ has distinct vectors if
and only if the composition of mapﬁ —H—C & &ln — &y is 1-1. Since
eachh € H can be written as a sum of elementslirand¢ is a characteré (h) is
determined by |5, and soé |y +— &|; is 1-1. Hence — &|; is 1-1 if and only if
the group homomorphism given lﬁ.‘y»—> H:E Elnis 1-1, i.e. G=H, and so
G=H={J).

2. The frame is real if and only if(x|3,n3) = (xn 1)[3,1]5) ER,Vxn 1€ G
ie.,

w=Y jerS. (11.11)
2

First, suppose that is closed under taking inverses, apg J. Then eitherj is
its own inverse, s@(j) = &(—j) = &(j) € R, or the pair{j,—j} C J contributes
E())+E&(—)=E&(j) +&(]) € R to the sum above. Thus we conclude each inner
product is real.

Conversely, suppose the inner products are real, i.e11}holds, and) = .
Let ({,T) be the Euclidean inner product @ normalised so that the characters
of G are orthonormal. Then

j€d = Wih=1 <= @H=WwiN=1 = —jed

3. By the column orthogonality relation (11.6) for charaste is unlifted if and
only if

S Eh=0 «— Y &)=Y EDEO0=0 Viel « 0gJ

&eG £eG £eG

It suffices to consider harmonic frames with distinct vestor

Corollary 11.1. Let ®; = (&s) ¢ be a harmonic frame, and H be the subgroup of
G generated by H. Then thel| distinct vectors ofp; are an H-frame(x[3) <3

Proof. Foré € G, x = &|n is a character oH with the property thaj|; appears
exactly|G|/|H| times in®;. O
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11.5 Combining and decomposing harmonic frames

We first observe that Theorem 11.2 guarantees the existémaeroonic frames of
any number of distinct vectors f@id.

Corollary 11.2. (Existence) Let G be a finite abelian group, with minimal nemb
of generators 8, Then there is a G—frame of distinct vectors @t if and only if

d* <d <G

Example 11.6Let G be anelementary abelian p—group a prime), i.e.,
G=Zpx--xZp (k times)

ThenG gives a harmonic frame afistinctvectors forCY only fork < d < p*.
Since harmonic frames atg-frames, we have a special case of Theorem 10.2.
Theorem 11.3.Harmonic frames can be combined as follows.

The direct sum of disjoint harmonic frames is a harmonic fam
The sum of harmonic frames a harmonic frame.

The tensor product of harmonic frames is a harmonic frame.
The complement of a harmonic frame is a harmonic frame.

Proof. For the first three, use Theorem 10.2, and observe that piodéi@belian
groups are abelian. For the last use Corollary 10.4. a0

Example 11.7(Direct sums) The orthogonality of the irreducible chagast; < G
of an abelian grouf is equivalent to the harmonic framé&; (g))gec for C! being
orthogonal (see Example 3.11). Thus the construction ahbaic frames by taking
rows ¢; of the character table can be interpreted as taking a ditentaf these
harmonic frames fo€*.

The decomposition of a harmonic frame as a direct sum oftigiéate characters
given above is unique (f@ given). Its decomposition into sums and tensor products
may not be unique:

Example 11.8The four equally spaced vectorsi? (the vertices of the square) can
be written as a suni—1,1} +{—-1,1}, and as a tensor produgt-1,1} ® {e, &},
where{e;, e} is an orthonormal basis.

Example 11.9(Symmetries) The symmetry group of a harmonic frame which is
combination of harmonic frames can be larger than that gieed by Proposition
9.3. For example, the harmonic frame of 9 vectorsRbgiven by the tensor product
(see Example 5.14) and by the sum of the three equally spatedactors inR?
with themselves has symmetry group of order33t3162. These two harmonic
frames are unitarily equivalent (up to a reordering).

The projective symmetry group of a harmonic frame is consid@ §11.12.
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11.6 Real harmonic frames

Most harmonic frames are complex (see [WHG@@]L.10), buteal harmonic frames
can always be constructed by using Theorem 11.2.

Corollary 11.3. (Existence of real cyclic harmonic frames). For albd? and n> 2,
there exists a cyclic harmonic frame of n distinct vectorsR®.

Proof. Let G = Z,. By choosing] C Z, |J| = d, to be a union of the disjoint sets
{oy, {i,-i}, 1<j<§-1, {3} (forneven)

we obtain a real cyclic harmonic frame f&f (they all come in this way). We can
ensure that this frame has distinct vectors by maldiaggenerating set fdt,, e.g.,
by choosing{1, -1} C J. O

The construction of Corollary 11.3 givesl real cyclic harmonic frames. It is
equivalent to selecting real rows and complex conjugatespzfi rows from the
Fourier matrix (11.4). The real rows correspondind® and{3} (n even) are

[1111--~11}, [1—11—1~--1—1.
To obtain a copy of the frame explicitly iR9, one can apply the unitary map

1 11 z Oz

U:=— ., Ul l=v2 ,
V2 |- A 0z
to the complex conjugate pairs of rows correspondingjte- j } to obtain real rows
1w o D _ 3 1 cog2ml) cog2m@l) ... cog2m L)
i o _(n—1)i . N o 2j : n—1)j
lw i w? ... 0D 1 sin2ml) sin(2r) - sin(2r®- 1)

The orthogonality of the rows of above can be viewed as orthogonality of the
corresponding trigonometric polynomials with respecti® discrete inner product

51

<f’g>::k;f< n n

Example 11.10(Equally spaced vectors) Threequally spaced unit vectors R?
a cyclic harmonic frame, since they ar&g-frame (Example 10.1). By the above
calculation, they are given k= {1, -1} C Z, (or {j,—j} for j a generator oZ).

Example 11.11For the special casp = 2 in Example 11.6, all nonzero elements
of G = Z& have order 2, and so are equal to their inverse. Thus all hdcframes
given by G = Z'g are real. These are noncyclic harmonic frames wken3 and
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the vectors are distinct (cf. Example 11.5). The charaetieletof the elementary
abelian 2—group&., x --- x Z» can be calculated by takingronecker producbf
that forZ,, e.g.,

11 1 1

11 11 1-11 -1
® = : (11.12)

1-1| |1-1 11-1-1

1-1-1 1

Example 11.12The vertices of thé&latonic solids(see§10.6) give tight framesp
for R? (with a high degree of symmetry). By Theorem 11.1, these armbnic if
and only if Syn{®) has has a transitive abelian subgrdBpBy Table 10.1, we
have that theetrahedron thecubeand theoctahedrorare harmonic frames, and the
icosahedrorn(12 vertices) andlodecahedroii20 vertices) are not harmonic frames.

The eight vertices of the cube givenancyclicharmonic frame foR® (sinceZsg
is not a transitive subgroup of their symmetry group). Sdseral.1.

We observe that the complex unlifted cyclic harmonic frarh&2vectors given
by {1,5,9} C Z1, has a symmetry group of order 384, and the complex lifted and
unlifted cyclic harmonic frames of 20 vectors given{® 1,11}, {1,10,11} C Zyo
have a symmetry group of order 200 (see Prob. 11.2).

Example 11.13There exist real harmonic frames with “large” symmetry grsu
e.g, the real cyclic harmonic frames of 14 vectors@rgiven byJ = {0,+1,+6}
andJ = {+1, +6,7} have symmetry groups of order 392. The remaining 334 cyclic
harmonic frames of 14 vectors f@P° have symmetry group orders 92, 28,14.

md |d=1d=2d=3 d=4 d=5 d=6 d=7
4 | 00) 1(0) 2(0) 1(0)
500 1 1 1 1
n=6| 0 1 3 3 2 1
7
8
9

0 1 1 1 1 1 1
00) 1(0) 3(1) 5() 5(1) 3(0) 20
00) 1(0) 1(0) 3(1) 3(1) 2(0) 20
n=10| 0 1 3 5 7 6 4
n=11| 0 1 1 2 2 2 2
n=12| 0 1(00) 3(1) 9(2) 15@3) 17(4) 17(3)

Table 11.1: The numbers of real harmonic frames gf 12 distinct vectors foRY, 1 < d < 7 (up
to unitary equivalence and reordering), with the number tvhi@ not cyclic in brackets.
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11.7 Unitary equivalence preserving the group structure

Here we outline techniques for efficiently determining wiegtharmonic frames are
unitarily equivalent to each other.

Since a harmonic frame® = (¢)gec is a G—frame, its Gramian is &—matrix
(Theorem 10.3). Thus each row and column of the Gramian lesame entries.
We call thismultisetminus the diagonal entry thengle multisetof @

Ang(®) := multiset of off diagonal entries of any row/column of Greh).
The angle multiset of the cyclic harmonic frame givenby {j1,...,Ja} C Znis
Ang(®y) = {wfl +wfl2 4. fofd:1<a<n-1}, w=e7r. (11.13)

Since the Gramian determines a frame up to unitary equigaleme have:

Harmonic frames which are unitarily equivalent up to a reortymusthave
the same angle multiset.

> >

Fig. 11.1: The angle multisets of the unitarily inequivaleatrhonic frames of 7 vectors fdi.
Note that one is real, and three are equiangular.

Example 11.14(7 vectors inC3) The angle multiset for the 7 unitarily inequivalent
(cyclic) harmonic frames of 7 vectors @ are depicted in Figure 11.1. Observe
that one is real (Corollary 11.3) and three are equiangular.
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Most, but not all, reindexings (reorderings) of a given hanm frame which
make it unitarily equivalent to another asetomorphismsLet Aut(G) denote the
group of automorphisms @, i.e., isomorphismg : G — G.

Definition 11.2. We sayG—frames(vg)gec and (Wg)geg are unitarily equivalent
via an automorphismo € Aut(G) if (vg)gec and(Weg)gec are unitarily equivalent.

Subsets]) andK of G aremultlpllcatlvely equivalent if there is ao € Aut(G)
for whichK = 0J. In this casef : G — G X — X oo~ Lis an automorphism ob,
and

(&la,nla) = (&, anlk),
i.e., ®; and®k are unitarily equivalent after reindexing by the automdasphd.

ForG =Zp, eacho € Aut(G) has the formg — ag, with a € Z;, a unit, and hence
JandK are multiplicatively equivalent if and only K = aJ for somea € Z;.

We now give a simple condition which ensures harmonic fraaresunitarily
equivalent via an automorphism.

Theorem 11.4.(Multiplicative equivalence) Let G be a finite abelian groapd @;
and @ be the harmonic frames for K C G. Then the following are equivalent:

1. The harmonic frame®; and @ are unitarily equivalent via an automorphism.
2. The subsets J and K are multiplicatively equivalent.

Proof. Let o € Aut(G). Using the Pontryagin duality map (11.7), and the fact that
the characters are a basis (they are orthogonal), we ctdcula
®g3 and @i are unitarily equivalent
(EloaNlos) = (Elk.nlk), VEneG
ZJE aj)n(oj) }ké n(k), v&neG
2 (&n° H(oi) = 2 (&n° YK, VEneG  [by(11.3)]

Je ke

ZJX(UJ)Z x(k), VxeG (takex =&n~1)
IS S

IIHIIM

KEx
Z(Ujfz > k  (by Pontryagin duality)
fe KEK

— o0J={0j:jed}=K (the characters of are a basis)

i.e.,J andK are multiplicatively equivalent. O

Multiplicative equivalence is an equivalence relatiorthwthe equivalence classes
being the orbits of the natural action of A®) on thed—element subsets @&. The
number of multiplicative equivalence classesdefelement subsets of a gro
which generatés is essentially Hall'sEulerian function®y(G), which counts the
orderedd—element generating subsetsaf
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In view of Theorem 11.4, the question of determining all tlaenhonic frames
(for a given group) up to unitary equivalence (and reoragrieduces to determin-
ing whether harmonic frames corresponding to differenttipichtive equivalence
classes are unitarily equivalent. This can most often be thgra simple calculation,
e.g., comparing their angle multisets. Examples wherestlsennitary equivalence
via a permutation which is not an automorphism are consitier§l11.2.

Example 11.15(Four vectors inC?) First considerG = Z,. The automorphism
group Au{G) has order 2, and is generated by. g — 3g (Z; = {1,3}). Thus
the multiplicative equivalence classes of 2—element dalidé& are

{{0.1},{0,;3}},  {{1.2},{23}}, {{1.3}}, {{0.2}}.

The first three give cyclic harmonic frames with distinct togs (1 generate6),
while the last does not. None are unitarily equivalent, sith@ir angle multisets are

(—-i+1,0i+1}, {0,-i-1i-1}, {0,0,-2}, {0,0,2}.

Now considelG = Z; x Z,, which is generated by any two of its three elements
{a,b,a+ b} of order 2. The automorphism group®tas order 6, with an automor-
phism corresponding to each permutation{afb,a+ b}. Thus the multiplicative
equivalence classes are

{{ab},{aa+b},{ba+b}},  {{0.a},{0,b},{0,a+b}}.

Only the first gives a harmonic frame with distinct vectorkisIframe is unitarily
equivalent to the cyclic harmonic frame of four equally sghanit vectors folR?.

Example 11.16(Seven vectors iit©3) For G = Z7, there are seven multiplicative
equivalence classes of 3—element subsets, with repréigeata

{1,2,6}, {1,2,3}, {0,1,2}, {0,1,3}, {1,2,5} (size 6)

{0,1,6} (size3) {1,2,4} (size?2)

Each gives a cyclic harmonic frame with distinct vectorafzero elements generate
G). None are unitarily equivalent since their angle mulsggffer (see Fig. 11.1).

There is just one harmonic frame wfistinct vectors forC?.

Example 11.17(Cyclic harmonic frames foE?) There is a unique harmonic frame
of n distinct vectors foiC?, namely the cyclic harmonic frame given by theth
roots of unity. This follows since such a frame must be giverd b= {g}, whereg
generate$s (which is therefore cyclic). There is a automorphismGfaking any
generator to any other.

Example 11.18(Cyclic harmonic frames fo€2) The cyclic harmonic frames of
n distinct vectors forC? are unitarily equivalent (up to reordering) if and only if
the subsets of, that give them are multiplicatively equivalent. This falle by
considering the angle multisets (see [CW11] for details).
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11.8 Noncyclic harmonic frames

The eight vertices of cube are a noncyclic harmonic fram&fofExample 11.12).

Example 11.19(Noncyclic harmonic frame foE?). There is a noncyclic complex
harmonic frame of eight vectors f@F given byJ = {(0,1), (1,0)} C G = Z4 x Z»,

A finite abelian groups can be written as a direct sum pfgroups
Gp = Zpe]_ @Zpez @"@Zpﬁ‘n

wherep are the prime divisors dfG|. The automorphism group @&, has order

m

Aut(Gp)| = b pl1) [ (pe )™ [ (po L m-G+1 11.14
|Aut(Gp)| I!]l(p p )Dl(p) i|1(|o ) ( )

wherecy := min{r : g = &} <k, dc := max{r : & = &} >k, and so the order
of Aut(G) is the product of these orders (see [HRO7]). In effect, tlss yclic an
abelian group is, the larger its automorphism group becomes

d=2 d=3 d=4
n non cyc harm n non cyc harm n non cyc harn
4 0 3 3 4 0 3 3 4 0 1 1
8 1 7 8 8 5 16 21 8 21 29
9 1 6 7 9 3 15 18 9 23 28
12 2 13 15 12 11 57 68 12 30 141 171
16 4 13 17 16 28 74 102 16 139 228 367
18 2 18 20 18 19 121 140 18 80 494 574
20 3 19 22 20 29 137 166 20 154 622 776
24 6 27 33 24 89 241 330 24 604 1349 1953
25 1 15 16 25 8 115 123 25 37 636 673
27 3 18 21 27 33 159 192 27 202 973 1175
28 4 25 29 28 57 255 312 28 443 1697 2140
32 9 25 34 32 158 278 436 32 1379 2152 3531

Table 11.2: The numbers abrcyclic, cydic harmonic frames oh < 35 distinct vectors fofcd,
d =2,3,4 (up to unitary equivalence and reordering) when there sreyclic abelian group.
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It was observed in [WHO06] that most harmonic frames seem toybkcg with
increasingly fewer a6 becomes less cyclic. A heuristic explanation for this id:tha
as the groupss becomes less cyclic, its automorphism group becomes Iggehe
number of multiplicative equivalence classes becomesleradnd the orders of its
elements become smaller (so that G is less likely to generat&, and hence give
a harmonic frame with distinct vectors).

11.9 Unitary equivalence not preserving the group structue

By considering the angle multisets (see [CW11]), it can bevshibat:

Theorem 11.5.Cyclic harmonic frames of n distinct vectors f6¢ are unitarily
equivalent (up to a reordering) if and only if the subset¥gfthat give them are
multiplicatively equivalent.

Theorem 11.5 implies that unitary equivalence (up to reamd®and multiplica-
tive equivalence are the same for cyclic harmonic framesCfyrexcept if both
frames are unlifted. There do exist examples of unliftedicyltarmonic frames
which are unitarily equivalent after a reordering which @ an automorphism.

Example 11.20For Zg there are 17 multiplicative equivalence classes of 3—ai¢me
subsets which generate it. Only two of these give frames thithsame angles,

namely
{{1,2,5},{3,6,7}}, {{1,5,6},{2,3,7} }.

The common angle multiset is-1,i,i,—i,—i,—2i — 1,2i — 1}. These two frames
are unitarily equivalent up to a reordering. Since they arergby multiplicatively
inequivalent subsets, this reordericgnnotbe an automorphism (see Table 11.3).

Three infinite families of such “exceptional cases” whergarg equivalence (up
to reordering) does not imply multiplicative equivalence given in in [Chil0]. It
is not known whether or not these are all of them.

If nis square fregi.e., is a product of distinct primes, then the primitiveth

roots of unity are a basis for the cyclotomic fi€ldw), w = e’ This leads to:

Theorem 11.6.Let n be square free. Then the cyclic harmonic frames of rowect
for CY given by JK C Zy, (the units) are unitarily equivalent (up to a reordering) if
and only if J and K are multiplicatively equivalent.

Proof. Suppose tha®; and @ are unitarily equivalent (after reordering), but are
not multiplicatively equivalent. Then the anglgc; w’ of @; is an angle ofdx,

so thaty jc; ' = Ty w3, wherea ¢ Z;. Since gcdak,n) = geda,n), vk € K,

it follows that 3« w?k = > bez; cpwP, where eaclt, € Z has the same sign (see
[Chi10] for details). Thus it follows thay jc; wl # S keK w? (sincen is not even),
which is a contradiction. ad
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Computations of [Chil0] suggest that Theorem 11.6 alsoshaldenn is not
square free, i.e., all examples of cyclic harmonic frameasafbich multiplicative
equivalence and unitary equivalence are not equivalemh(sis Example 11.20)
involve cyclic harmonic frame&; for which J contains a nonunit.

11.10 The number of cyclic harmonic frames

Computations of [WHO06] suggest that the number of harmomimés o distinct
vectors forCY grows likend—1 (for d fixed), andmost harmonic frames are cyclic
In [MWO04], it was established that the numb®gry of cyclic harmonic frames of
distinct vectors forC up to unitary equivalence (and reordering) grows like

d
n
hnd~ —— > nd-1

¢(n) ’

where@ (n) is Euler’s totient function. The proof uses a corresponddetween
unitarily equivalent cyclic harmonic frames and points ba torusT?4, in which
multiplicative equivalence gives a torsion point. Here wasider the particularly
simple case of whenis a prime, for which all harmonic frames are cyclic and there
is an explicit formula foth, 4 (see [MWO04], [Hir10]).

Let Z;, (as the automorphisms @,) act on thed—element subsets @, andS
be invariant under this action. Then, by Burnside’s coutémma, the number of
multiplicative equivalence classes$is

n— oo,

|S/Zy| = |Fix(a)], (11.15)

1
¢(n) ac ;f]
where FiXa) is the set of elements &fixed bya € Z,.

Theorem 11.7.Let p be a prime, and‘rﬁj and thd be the numbers of unlifted and
lifted (cyclic) harmonic frames of p d distinct vectors foC?, d > 1. Then

1 Pl
P ( i >¢<j>z L pore,
ilgedp-1d) N T
| 1 p%l H d—2
hp,d:fl d—1 ¢(J)%p ) p — oo,
P=Ljigedp=rd-1) \ T}

In particular, the number of harmonic frameg h= h; ; + h'p7d ~pil p— .

Proof. Let a € Z;, be one of thep(j) elements of ordej. The orbit of a nonzero
element ofZ,, under the action o& has sizej, and the orbit of zero is a singleton.
Thus if ad—element subse&tC Z, is fixed bya, then either
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e Jis unlifted and is the union o‘f of the (a)—orbits of nonzero singletons.

e Jislifted and is the union of0} and% of the (a)—orbits of nonzero singletons.
Sinced > 1 andp is prime, all the harmonic frames have distinct vectors.

is cyclic of orderg (p) = p—1 (soj dividesp— 1), and (11.15) gives the resultO

Example 11.21Ford = 2, we havehy > = %(p+ 1), since

1 ((p-1 pl 1
| |
L5,1:hp,2:1a ';,th,?:p_l{< 2 >+(:2L>}2(pl)-

Ford = 3, we have

L= h'p4 =51 p-1

1 {(pgl), p#£1 (mod 3;
(P3H+2(F), p=1 (mod 3.

Hence
hog— 4 8(PP=2p+3), p#1 (mod3;
P Yp?—2p+7), p=1 (mod 3.

As indicated above, formulas férx, 4 depending orp modulod andd — 1 can
be always be constructed. It is also possible to modify tbefpof Theorem 11.7 to
count the real harmonic frames:

Proposition 11.1.Let p be an odd prime. For d even, the number of real harmonic
(unlifted) frames of p vectors f@d (up to unitary equivalence) is

p-1 p-1

hﬂsd:Ffl{ngerp—m( é >¢(j>+ 2 (Zdj )4)(])}

jlocdp-19) N 2]

j even i odd

For d odd, the number of real harmonic (lifted) frames of pteesforRY is

p-1 p-1

LD (S LIRSS S i L10)

j jlgcdp-1,951) \72]

j even i odd

Proof. See Exer. 11.11 for details. O
Example 11.22Ford < 3, there is a single real harmonic framepofectors, i.e.,
hﬂs,l - hﬂ§2 - hﬂ§$3 - 1

Ford even,d > 4, we have the estimate

R R O . |
hp.d = hp,d+1 ~p2 p— .
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11.11 Projective unitary equivalence of harmonic frames

We have seen that multiplicatively equivalent subgetsG give harmonic frames

which are unitarilly equivalent up to a reindexing (Theor&in4). We now show

that thetranslatesof J gives projectively unitarily equivalent harmonic frames.
Thetranslation of a finite abelian groufs by b is the bijection

h:G—G:j— j+b, beG.
We say thaK is atranslate of Jif K=J+Db, i.e.,K = 1J.

Theorem 11.8.(Translates) Let G be a finite abelian group. If K is a tranelaf J,
then the harmonic frame®; and @« are projectively unitarily equivalent.

Proof. Suppose tha = J +b. Since®; = (&[s).g, We need to show

Elk =csU(Ely), €E€G,

whereU : C? — CK is unitary. LetUp = C? — CK be the unitary map given by
(Upv)(K) := v(k—b), k € K. Since¢ is a character, we have

(Un&la)(K) = &la(k—Db) = &(k—b) = &(k)& (—b) = & (b) E |k (),
and so we can takg = Up andc; = &(b). O

The converse: that projective unitary equivalence (witheordering) implies
thatJ andK are translates of each other, appears to be true.

Example 11.23(Seven vectors irC%) We now revisit Example 11.16. The seven
multiplicative equivalence classes of 3—element subde®s-07Z7 give rise to seven
(cyclic) harmonic frames up to unitary equivalence anddenng. By translating
a given subset, we obtain a projectively unitarily equimlearmonic frame. Since
the representatives of the multiplicative equivalences#sa are related by

{0,1,3} =6{1,2,6} +2, {1,2,4} =6{1,2,6}+3,

{0.1,2}={1,2.3}+6, {125} =3{123}+6, {0.1,6}={123}+5

we conclude that there are exactly two harmonic tight fraofeseven vectors for
C3 up to projective unitary equivalence and reordering. Bysidering the angle
multisets of Figure 11.1, we have that one is real, and therastequiangular.

Example 11.24Let p > 2 be a prime. Then all harmonic framesp¥ectors forC?
are projectively unitarily equivalent up to reindexing teetp equally spaced unit
vectors inR?. This follows since there is a unique affine map, taking a eaqe of
two distinct elements of., to any other. In particular the two harmonic frames of
three vectors if©2 which are unitarily inequivalent (one is real, one is cormplre
projectively unitarily equivalent up to a reordering.
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We define thaffine group of G to be the group of bijection®: G — G generated
by the translations and automorphisms3f.e., the|G|| Aut(G)| maps of the form

6(g) =o(g)+b, o cAut(G), beG.

If K= 6J, for somef in the affine group, we sayandK areaffinely equivalent,
i.e., they are in the same orbit under the natural action @fffine group ofG on
the subsets dB. Combining Theorems 11.4 and 11.8 gives the following:

Theorem 11.9.(Affine equivalence) Let G be a finite abelian group. If J and& a
affinely equivalent subsets of G, then the harmonic fragnesnd @« that they give
are projectively unitarily equivalent up to reindexing by automorphism.

In view of Theorem 11.9, the question of determining the ramm frames up
to projective unitary equivalence (and reordering) reduocedetermining whether
frames given by affinely inequivalent subsets are projeltiunitarily equivalent.
In all cases considered (see, e.g., Table 11.3) this canr®elgousing a simple test,
such as comparing the multisetrof-products.

d=2 d=3 d=4 d=5 d=6
n | uni| proj n |uni| proj n | uni | proj n | uni| proj n |uni| proj
2111 3 1 5 1 5111 611
3121 41 3|1 6| 9 3 6 1 71211
41 3| 2 5 1 7 2 7 1 8(11| 3
5({3|1 6 (11| 3 8(21| 6 819 4 9116 3
66| 3 7171 2 23| 5 20 10{ 55| 9
71411 816 4 9(123]| 4 9123 4 56
871 3 17 24 24 11| 48| 6
916 | 2 9(15| 3 101 53| 9 10| 67| 9
10| 9 | 3 10| 29| 4 54 11| 48| 6
1116 | 1 111 17| 2 11{ 34| 4
12| 13| 5 12| 56| 9 12|138| 21
13| 7| 1 57 141
14| 12| 3 13| 25| 3
151 13| 3

Table 11.3: The number of unitary and projective unitary egjence classes (up to reindexing) of
cyclic harmonic frames afi vectors forCY (d < 6). When the group theoretic estimate given by
Theorem 11.9 is larger (i.e., there are reindexings whiemat automorphisms), then it is given

in the row below.
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11.12 The projective symmetry group of a harmonic frame

The projective symmetry group of various harmonic frames walculated in
[WC14] (see Table 11.4). We say that a frame pagectively repeatedvectors if
some vectors are scalar multiples of each other (in this ttesprojective symme-
try group is not given). When a harmonic frame is complex, tttereded projective
symmetry group is given also. The numberesisuresof a frame forCY is the
maximum number of vectors that can be removed from it so tiege remaining
still spanC¢.

d| n [real|orth|reps| Symp(®) | Symep(®) J erasure
33| R | vy <6,1> {0,1,2} 0
3[4 R <24,12> {1,2,3} 1
3[5[ R <10,1> {0,1,3] 2
3] 6 <18,3> <36,10> {0,1,4} 2
R |y <12,4> {1,2,3} 3
RIy |y {1,3,5} 1
317 <21,1> <42,1> {1,2,6} 4
R <14,1> {1,3,5) 4
3[8 <16,8> | <3243> | {1,3.,4] 5
<32,11> | <64,134> | {0,1,4} 3
R <16,7> {0,1,2} 5
R y {1,3,5) 3
319 <9,1> <18,1> {1,4,6} 5
R |y <18,1> {0,1,2} 6
Ry |y {1,4,7} 2
3[10 <50,3> | <100,13> | {0,1,5} 4
R <20,4> {0,1,9} 7
<10,2> <20,4> {0,1,8} 7
R y {1,5,7} 5
3(11 <11,1> <22,1> {0,1,3} 8
R <22,1> {1,2,3} 8
312 <12,2> <246> |[{1,211}| 8
R |y <24,6> {1,2,3} 9
R y {1,410} 5
<12,2> <24,6> {0,3,4} 7
y {1,5,7} 5
y <245> | <48,38> | {0,1,8) 7
Ry |y {1,3,5} 7
<72,30> |<144,154> | {2,3,8} 5
Ry |y {1,5,9} 3
3[13| R <26,1> {0,1,12}| 10
<13,1> <26,1> {0,1,3} 10
<39,1> <78,1> [{1,2,11}| 10

Table 11.4: The cyclic harmonic framesm¥ectors forC3. If the frame doesn’t have projectively
repeated vectors, then its projective symmetry group is gived,véhen it is complex, then its

extended projective symmetry group is given. We also indicdteiframe has orthogonal vectors,
and its number of erasures.
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Notes

It has been known (at least) since [Zim01] that there exidtssat one real harmonic
frame ofn > d vectors forCY.

Exercises

11.1.An equal-norm frame = (v;) for 4 is said to beequispacedf the distances
|lv; — w|| are constant fof # K (this is equivalent tal(vj, vi) being constant).

(a) Show that the real and complex harmonic frames of thretoke for C2 are

equispaced (and also equiangular), but that the spaciegfifiarent in each case.
(b) Let® = (v;) be the cyclic harmonic frame f&&? given by{1,2} C Zs, i.e.,

[ oo

Show that® is equispaced.

(c) The equispaced harmonic frames of (a) and (b) can be gt as follows.
Let @ = (v;) be the cyclic harmonic frame ofd2- 1 vectors forCY given by
{0,1,...,d -1} C Zpy-1, and¥ = (w;) be the cyclic harmonic frame ofd2}- 1

vectors forC® given by{1,2,...,d} C Zyq.1. Show that® and¥ are equispaced.

11.2™ Write a function to compute the symmetry group of a frame frisnGiramian.
Apply it in the following cases:

(a) The unlifted cyclic harmonic frame of 12 vectors @t given by{1,5,9} C Z1,.
(b) The cyclic frames of 20 vectors @ given by{0,1,11},{1,10,11} C Zxo.

11.3.LetU be a unitary matrix angt € F9. Show that(U v)?j is an equal-norm

tight frame forF9 if and only if it is projectively unitarily equivalent to a clic
harmonic frame, i.elJ" =cl.

11.4.Show that the set ofi-th roots of unity is the unique harmonic frame rof
distinct vectors forC?.

11.5.Show that the only real harmonic frame mflistinct vectors forC? is then
equally spaced unit vectors R?.

11.6.Find all the (unitarily inequivalent) harmonic frames o siectors forC?.
Show that none are complex conjugates of each other, by dimgphe distances
between their vectors, or otherwise.
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11.7.Suppose thatP = (gv)g4e is a frame forFY generated by a finite abelian
group of matrice$s C GL(2#). Show that® hasdistinctvectors. Does this hold
for nonabelian groups?

11.8.Show that if® is a harmonic frame given by C G, then the complementary
tight frame is the harmonic frame given BA J (the complement ad).

11.9.Suppose thatp is an unlifted harmonic frame withSym(®)| = m. Show
thaty := @+ ... 5@ (d summands) has a symmetry group of order at |d&rst.
Remark:Thevertices of the cubg-1,1]9 in CY (see Example 5.12) are a balanced
tight frame of 2 vectors forR? with symmetry group of orded!29.

11.10.Let G be a finite abelian group.
(a) Show that a harmonic franfey)g-c satisfies

(Vj, W) = (Vj+a;Vi+a), Vij,k,ae G.

(b) Suppose that harmonic frameg)gcc and (Wg)gec are unitarily equivalent up
to reindexing. Show that for ajl, k,b € G there exists soma € G with

(Vj, Vi) = (Wa, Wh).

(c) Suppose that the harmonic frames given{y,...&4},{n1,...,N4} C G are
unitarily equivalent up to reindexing. Show that

for somea c G.

11.11.L et p be an odd prime.

(a) Show that il C Zp, |J| = d gives a real cyclic harmonic frame, thér= KU —K
whend is even, and) = {0} UK U —K whend is odd (disjoint unions), where
K C Zp\ {0} generated, (for d > 1).

(b) Use Burnside orbit counting to show that the number off [®alic) harmonic
frames ofp vectors forRY is given by

p1 2

hﬂ&d—pil{jg%e#d)(é>¢<1>+ 5 (zjl)qb(j)} (deven)

] ilgedp-1.9) j
J j odd

(:zji)cm)}, (d odd).

hndZﬁ{ > laa )+
lgedp-d.d-1) AT ilgedp-1.952) N72]

j even i odd



Chapter 12
Equiangular and Grassmannian frames

A set ofn unit vectors{ f;} in 9 is said to define a set @fuiangular linesif the
angles between the subspaces (lines) they determine aak egu3C > 0 with

[(fi, fih|=C,  Vj#k (12.1)

An illuminating example is three isogonal vectorsiif (see Example 3.9),

where one can choose<0C < 1, or evenC = 1 (in which case the vectors are
equal). By the variational characterisation of tight frani€heorem 6.1), it follows

that
[ n—d

with equality in (12.2) if and only if{f;} is a tight frame forF. Moreover, the
maximumC can be is 1, when the vectors lie in a common line.

Here we consider those sets of unit vectors that define a sefuidingular lines,
which, in addition, give equality in (12.2), i.e., are a fintight frame forFd. The
corresponding sets ¢ight equiangular lines can be thought as being spread out in
F9 as much as is possible. This extra structure gives sets dragplar lines with
special properties, e.g., the Gramian of the vectors defihia lines is an orthogonal
projection matrix, and so a complementary set of equiamdjnles exists.

265
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12.1 Equiangular lines and frames

Sets{f;} of nunit vectors inf9 for which themaximum cross—correlation

M = max|{f;, fx)| €[0,1
nax|{f;. )| € (0.1

is small have applications to wireless communication and codingrth§SHO03].
These correspond to sets of lines= {cf; : c € F} (through 0 andfj) for which
theminimal angle between them

1
i —1 . -
9 :=mincos (1¢f5, fal) € [0, 57

is large. The lower bound (6.3) fo¥ is attained as follows.
Definition 12.1. A set{ f;} of equal-norm vectors i’ is equiangular if 3C > 0
with
For a set of equiangular vectors of unit length, the conssamitten written
C=a =cosb, ael0,1], 06¢€][0,m/2,
with bothC = a and@ referred to as thanglebetween the vectors (or lines).

Theorem 12.1.Let (fj)_; be a sequence of n unit vectors.i#f, d = dim(¢").
Then
n—d

= . > _
M r}léakx|<flafk>|— d(n—l), (12 3)
or, equivalently,
6 = mincos 1 |(fj, fy)| < cos? _n-d (12.4)
j#k = d(n—1)’

with equality if and only if(fj)'j‘:1 is an equiangular tight frame.
Proof. We consider the case of equality in Exer. 6.2. Firstly, obsénat

1 1
2_ _ 2 _ 2 _ _ 2
M2 =m0 705 (6080 = 5 {3 3 106,80 n)

with equality if and only if( f;) is equiangular. By Theorem 6.1, we have

1 n—d

{ZZthfk)z—”} > m(j‘”) = dn=1)’

1
nZ—n
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with equality if and only if(f;) is a tight frame. The two inequalities above give
(12.3), and the fact that cosis strictly decreasing of0, %n] gives (12.4). ad

Example 12.1Thed vectors of arorthonormal basisn F¢ and thed + 1 vertices of
the regulaisimplexin RY give real equiangular tight frames with= 0 andC = é.
These exist in every dimensiah and are the unique equiangular tight frames of
andd + 1 vectors inCY up to projective unitary equivalence (see Example 9.8).

The equiangularity condition on a set of lines ensures tiatbrresponding set
of one-dimensional orthogonal projections is linearlygpdndent, which in turn
gives a bound on the possible number of equiangular lin&8.in

Theorem 12.2.Suppose @ 1. Let(f;) be a sequence of n unit vectorsffh giving
a set of n equiangular lines, then the orthogonal projection

P f— (f,f))f, ji=1,...,n

are linearly independent, and hence

1 -
n< ) 2d0@+D, F=R; (12.5)
d2

F=C

with equality if and only if{ P, ?:1 is a basis for the Hermitian matrices.

Proof. Sinced > 1, the equiangularity consta@tis less than 1. By Exer. 3.1
tracePiR;) = [(fj, f)P =C?, ] #k,

and so the Frobenius norm of the linear combinagige;P; is
Iy ciPy|[# = trace’y cjP ZTTkF’E) => Zcﬂfktraceﬁpj )
] ] ]
— z ZCJCECZ + Z Cjﬁj(l—Cz)
] ]

=C* Yy off+(1-C) Y [gif?,
] ]
which is zero only for the trivial linear combination.

The projectiong P, } belong to the real vector space of Hermitian matrices, which
has dimension (see Exer. 12.1) given by the right hand sid&205). ad

The right hand side of (12.5) is the numhbeof (8.24) which ensures that a
generic sequence afvectors inFY has a unique scaling to a tight signed frame.

If the upper bound (12.5) is attained, thef}) is a unit norm tight frame foFd
(see Exer. 12.2), i.e., the identity matrix can be written

dn
=~ S P.
ngl'
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The upper bound (12.5) for the maximum number of equiandiras inRY is
called theabsolute bound(or Gerzon bound). It is rarely attained: only the cases
d =2,3,7,23 are known (see Example 12.35). Many maximal set of equiang
lines turn out to be tight frames (see Table 12.3). By way oftiast, the upper
bound (12.5) for complex equiangular lines is conjecture@livays be attained
(Zauner’s conjecture), by a tight frame known as a SIC (sesp€en 14).

Example 12.2There are sets of two and three equiangular lin&inTheorem 12.2
confirms the familiar geometric fact that there aa four (or more) equiangular
lines inR?, and hence no equiangular tight frame of four or more vedr®K?.
There is a tight frame giving four equiangular linesiA (see Example 2.16).

Example 12.3An equiangular tight frame of 28 vectors f¢ can be constructed
as follows. Let(f;) be the 28 unit vectors of the form

1
——(X1,%2,...,X8), Xj € {—1,3}, Xj =0. (12.6)
v >

These vectors span a 7—dimensional subspa&® cénd give an equiangular tight
frame (see Exer. 12.4, Example 12.56), which gives equaﬁiy}d(d +1)in(12.5).

12.2 Grassmannian frames

If an equiangular tight frame does not exist for a given d, then a good substitute
is aGrassmannian framésee [SHO03], [BKO6]) or a variation thereof.

Definition 12.2. A frame @ = (fj){_, of n unit vectors for’#’ is aGrassmannian
frame if it minimises
Mo(P) = m¢$X|<fj, fio)l, (12.7)
i

and isoptimal if it gives equality in (12.3), i.e., is an equiangular tigigme.

Grassmannian framexistfor all n > d, for s# real or complex, since the the set
of n element unit norm frames is a compact subse#0t. By the same reasoning,
there exist equal-norm normalised tight frames which miseng12.7). These were
frames were called-Dptimalframes by [HP04], who proved that they are optimal
for the 2—erasure problem.

The Grassmannian space?(7,¢) = 4(d,?) is the set of alll—dimensional
subspaces of thé-dimensional space? = F¢ (usually real). ThéSrassmannian
packing problem is to find the best packing of subspaces of dimensidhn /7,
so that the angle between any two is as large as possibleGs96], [DHSTO08]).
Clearly, for¢ = 1 this equivalent to finding a Grassmannian frame.

Example 12.4The firstn vertices of the regular2-gon (multiplied by+1), i.e., the
n equally spaced lines iR? (see Exer. 6.10) are thmiqueGrassmannian frame of
nvectors forR? (see Exer. 12.5). This is tight, and it is equiangular onlyrfe- 3.
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Example 12.5By Theorem 12.1, an equiangular tight frame is Grassmannian

Example 12.6The only known example of aontightGrassmannian frame is that
of 5 vectors inR® which lie on the diagonals of the regular icosahedron, wisithe
optimal Grassmannian line packing (see [CHS96], Exer.)1Z11s is the nontight
equiangular frame given by the graph of the 5—cycle (see BiatR.44).

There is an extensive literature on the closely relatedlpmiof finding the dis-
tributions of points on a sphere that minimise a given paérisee [SK97]). A
classical example igammes’ problem of determining how to place points on
the unit sphere ifR® so as to maximise the minimum distance between them. For
five vectors the solution to Tammes’ problem is the north andtspoles together
with three equally spaced points on the equator. This setef/fctors isota tight
frame, or a Grassmannian frame t.

12.3 Equiangular harmonic frames and difference sets

Here we show that a harmonic frandg = (¢[s), s is equiangular if and only if
J C Gis adifference sefor the abelian groug. This leads to some infinite families
of equiangular tight frames.

Definition 12.3. A d element subset of a finite groupG of ordern is said to be
a (n,d,A)—difference setif every nonidentity element o6 can be written as a
dif'ferencejljg1 of two elementgs, j» € J in exactlyA ways. The difference set is
said to beabelian, cyclic, etc, when the grou@ is.

The complemen®\ J of a(n,d, A )—difference sell is a
(n,n—d,n—2d + A)—difference set

and so lists of difference sets (Tables 12.1 and 12.2) ysasiume @ <n, A > 0.
Since there are exacty? — d pairs of elements frond whose difference is not
the identity, a(n,d, A )—difference set must satisfy

d(d—1) = (n—1)A. (12.8)

The set of all translates of a difference Sajives asymmetric block desig(not
all symmetric block designs appear in this way). In pardcuthe parameters of a
difference set must satisfy tiBruck—Ryser—Chowla theoremvhich gives

e If nis even, theniterder d— A is a square.
¢ If nis odd, theDiophantine equation

X+ (d=A)y— (-1 V2) 2 =0

has a nontrivial solutiofix,y, z).
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We assume the basic theory of harmonic frames (and chaspetedetailed in
Chapter 11. The orthogonality between a charggtgrl and the trivial character 1
gives

%x(g) =0 = ;x(g):—L X#1 (12.9)
ge g#0
The characters of an abelian gro@sum to the so calletegular character
Z X = Xreg, Xreg(Q) = { (12.10)
XEé‘ 07 g 7é 1

Theorem 12.3.Let G be an abelian group of order n, amy = (&|3)¢ g be the
harmonic frame given by & G, |J| = d. Then the following are equivalent

1. @y is an equiangular tight frame of n vectors f6f.
2. Jis a(n,d,A)—difference set for G.

305 eax()2 =429 forall x #1, x € G.

Proof. (1<=-3) Suppose thaf # n, i.e.,x := &n—1 # 1. We calculate

(€la,nls) = ZJE Z(fn_l)(i)=]%x(i),

and so®; is equiangular if and only if

I3 RUIE o

d
which gives the equivalence of 1 and 3.
We now show the equivalence of 1 and 2. Sigg¢k) = x(—Kk), we have that

1(€13,n]3)[2 ZJZX -k = %agX(g)» X#1, (12.11)

ked

whereag :=#{(j,k) € Jx J: j —k=g}. Observe thatio = d, ¥ 4.00g = d? —d.
(2=1) Suppose thal is a difference set, i.eqy = A, g # 0. Then (12.11),
together with (12.9), gives

|<E|J7r”\] =A ;X :_)\+d7

i.e., ®; is equiangular.
(1=2) Suppose tha®; is equiangular. Then (12.11) gives

[(Ela,nla) P = ;agx(g)+d= “A4d, X #1,
g#0

for some fixedA. By Pontryagin duality, this can be written as
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agd(x) = —A, 1.
g;o 90(X) X#

Moreover, by counting the number of differences

Zaga(x): Zag:dz—d.
g#0 g#0

These combine to give the regular characteBafs a sum of characters

2 2 d2_d+)\ A
; agg+)\O= Txr(gg
g#0

Since the (irreducible) characters@fare linearly independent, (12.10) implies that
0g=A,vg#0,ie.,Jis a(n,d,A)-difference set foG. O

The condition 3 for difference sets is well known [Tur65]MB0]. However,
its interpretation in terms of equiangular lines (harmdratnes) seems to be more
recent [KOn99], [XZGO05], [Kal06]. In [XZG05] equiangular tight fraes are called
MWBE (maximum-Welch—bound—equality) codebooks

Example 12.7The cyclic harmonic frame af vectors forC® given by

1 w1 w31 (=11
CDJ:{ SN : e : }, w:=en
1 wid 2ld wM=Did
is equiangular if and only if = {j1, j2,..., jq¢} is a(n,d, A )—difference set foZ.

The cyclic difference sets fat < 10 are given in Table 12.1.

Example 12.8(Orthonormal bases) The choide= G is an(n,n,n)—difference set
which gives an orthonormal basis.

Example 12.9(Simplex) There is a unique difference set wite=0,d > 1, i.e., the
(n,1,0)—difference set consisting of the identity elemenGofThe complementary
(n,n—1,n— 2)—difference set (of the nonidentity elements) gives théaes of the
simplex. Both of these difference sets (and those @ith0, n) are said to bérivial .

Difference setsh andJ; for a groupG are said to bequivalent if there is an
automorphisno of G and some € G with

0J1 =09, for someg € G.

By Theorem 11.8, it follows that

Equivalent difference sets give projectively unitarilyuelent harmonic
frames (up to reordering by an automorphism).
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Table 12.1: List of the cycli¢n,d, A )—difference setd for d < 10,A > 0 (including complements).

12 Equiangular and Grassmannian frames

These give the cyclic equiangular harmonic frames ofd + 1 vectors forC¢.

n (d|A|[JcCZ, n(d|A|[JCZ,

7 [3|1]{124 15(8 |4 |{36,7,9,11,1213 14}

7 4|2 {0356} 5718 |1]{0,1,6,1522 26,4555}

13|4|1]{0,1,3,9} 13|19 |6 |{24,56,7,810,11,12}

11(5|2 |{1,3,4,59} 199 |4 |{1,4,56,7,9,1116,17}

21|51 |{3,6,7,1214} 37|19 |2 |{1,7,9,10,1216,26,33,34}

11|16 |3 |{0,2,6,7,8,10} 73|19 [1]{0,1,1220,26,30,33,3557}

31|61 |{1,511,242527} 19| 105 | {0,2,3,8,10,12,13 14,1518}

15|73 |{0,1,2,4,5,8,10} 91|10(1 | {0,2,6,7,1821,31,54,63 71}
Table 12.2: The abeliam, d, A )—difference sets fod < 50,n > 2d, A > 0, whereG has invariant
factors[ay, .. .,am]. These give the equiangular harmonic frames ofd + 1 vectors forCY,
n d [A]|G n d [A |G n d [A |G
7 |3 (1][7 31 [15]7 |[31 757 |28|1 | [757
13 |4 | 1] ][13 273|171 |[273 109 (28| 7 |[109
21 |5 |1][21 35 |17|8 |[35 59 |29]14] 59
11 |5 |2 |[1Y 307|181 | [307 175 | 30| 5 | [5,35
16 |6 |2 |44 96 | 204 |[2,4,12 871 |30|1 | [87]
16 |6 |2 |28 96 | 204 |[2,2,2,12 156 [ 31|6 | [156
16 |6 |2 |[224 96 |20|4 |[2,2226 63 |31]|15][63
16 |6 |2 |[2,2,22] 381|201 |[38] 63 31| 15| [3,2]]
31 |6 |1][3] 85 |21(5 |[85 993 | 32|1 |[993
15 |7 |3 |[15 43 [ 21(10] [43 133 | 33|8 |[133
57 |8 |1][57 47 | 23|11 [47) 67 |33]|16][67
73 |9 |[1][73 553|241 |[553 71 35|17 [71)
37 |9 |2 |37 101|25|6 | [10 1407( 38| 1 | [1407
19 (9 |4 |19 651|261 |[65] 79 39(19|[79
91 |10|1 |[91 64 | 28|12 (22,16 121 | 40| 13| [121
23 |11|5 | [23 64 |28|12|[2,4,8 121 | 40| 13| [11,1])
45 (12| 3 | [3,15 64 | 28|12 [4,4,4 83 |41|20| 83
133 12| 1 | [133 64 |28|12][2,2,4,4] 1723|421 |[1723
27 [ 13|16 | [3,3,3 64 | 28|12 (8,8 1893| 44| 1 | [1893
40 134 | [40 64 | 28|12 (4,16 2257|48 |1 | [2257
183| 14| 1 | [183 64 | 28|12 [2,2,2,2,2,2] 99 | 49|24 (3,33
36 |15|6 | [3,12 64 | 28|12 [2,2,2,2,4] 197 | 49| 12| [197
36 | 15| 6 | [6,6] 64 |28|12][2,2,2,8 2451|501 | [245]
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By (12.8), the numben of vectors in an equiangular harmonic frame @tis

n:/\i(dz—d)+1gd2—d+1. (12.12)
This is largest whei = 1, i.e.,J is aplanar difference set. Here the corresponding
symmetric block design gives projective plane(the blocks are the points on a
line, and so each pair of distinct lines intersects in a sipglint). For example, the
(7,3,1)—difference sef = {1,2,4} C Z7 gives theFano plane(7 points, 7 lines, 3
points on each line), whose lines are the translates ioé.,

{1,2,4}, {2,3,5}, {3,4,6}, {4,5,0}, {5,6,1}, {6,0,2}, {0,1,3}.

There is considerable work on difference sets (for bothiabelnd nonabelian
groups). The onlinga Jolla Difference Set Repositomyaintained by Dan Gordon is
an excellent resource. From this, we obtained the Tabledf2Rabelian difference
sets fom < 50, i.e., all equiangular harmonic framesmo& 50 vectors (for brevity,
the complementary difference sets are not included).

There are several infinite families of difference sets. €rae often classified via
their parameters, e.g., difference sets with paramétens- 1,2m—1,m— 1) are
of Paley—typé, and those with parametefdn?, 2n? — m,m? — m) are Hadamard
difference setgsee [DJ96]). We now give a few examples.

Example 12.10(Singer) LetPGny(q) be them-dimensional projective geometry
over Fq. The intersection of two hyperplanes is @n— 2)—dimensional subspace

. -2_ - . . : .
containing q" — 1 projective points, and so one obtains a symmetric blockoaesi
where the b?ocks are the projective points on a hyperplanelassical result of

Singer shows that there is a cyclic subgroup of the projedinear transformations

which acts regularly on the points and hyperplaneB®f,(q). From this, it follows

. P D SN )
that there exists a cycl(cq;_ll, qn;_ll 1, q";_l 1\_difference set. In particular, by tak-

ingm= 3, and lettingd = g+ 1, one obtains a cyclicd®> — d + 1,d, 1)—difference

set, i.e., an equiangular cyclic harmonic frameef d2 — d + 1 vectors forCY. The
Prime Power Conjecturés that every abelian planar difference set (such as these)
hasd — 1 a prime power. This has been verified fbx 2,000 000 [BG04].

Example 12.11(Paley) Letq = 4m— 1 be a prime powerf= 3 mod 4). Then the
set of all nonzero squares (BF(q), +) is a(4m—1,2m— 1, m— 1)—difference set.

Example 12.12(Twin prime powers) Let] andq+ 2 betwin prime powersi.e., a
pair of odd integers, each of which is a prime power, @:9,7,q+2=9= 3% Then
there exists dq(q-+ 2), 4421 AAFA3)_gifference set.

The last two examples, and the= 2 Singer difference sets are of Paley—type.

Example 12.13(n = 2d + 1, d odd) For a difference set of Paley—type, by letting
d=2m-1 (d is odd), the parameters becoitiel + 1,d, d;zl). Hence, Paley-type

1 The termHadamard typealifference set is also used.
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difference sets give equiangular harmonic frames ef 2d + 1 vectors forC9.
These exist whend®+ 2 is a power of 2, or@+ 1 is a prime power congruent to 3
mod 4, or 2141 is a product of twin prime powers. The first odevhere there is not
a an equiangular harmonic frame af 2 1 vectors forC% isd = 19 (2d + 1 = 39).

Example 12.14(n=2d — 1, d even) The complement of a Paley—type difference set
is a(4m— 1,2m m)—difference set. By lettind = 2m (d is even), these parameters
become(2d — 1,d, %), and so Paley—-type difference sets give rise to equiangular
harmonic frames ofi = 2d — 1 vectors forCY.

Example 12.15(Reversible difference sets) A differences $&t reversibleif it is
closed under taking inverses, i.e., the correspondingaaguiar harmonic frame is
real (Theorem 11.2). A reversible difference set@« Z4 x Z4 is given by

J= {(1’0)’ (270)7(3’0)’(07 1)7(072)7(073)}7

and so there exists a real equiangular harmonic frame of &®ngfor C®. There
is also a(16,6,2)—difference set foG = Z4, which must be reversible (as are all
difference sets for groups of exponent 2), since each eleuh@ﬁ is its own inverse.
The set

J={(x,0),(0,X),(x,X) : X# O} C Zg X Zg

is a reversiblg36, 15, 6)—difference set foG = Zg x Zg, and so there exists a real
equiangular harmonic frame of 36 vectors Fo°.

The boundn < d® —d + 1 of (12.12) for equiangular We say that a set of unit
vectors inCY (or the lines they determine) fiat if each vector entry has constant
modulus (of%). Harmonic frames are flat.

Proposition 12.1.([GR09]) There can be at mosfd-d + 1 flat equiangular lines
in CY, and any such set must be tight.

Proof. Suppose that the unit vecto#s = (v;) give n flat equiangular lines icd,
i.e.|(vj,vi)| = a, j # k. The Gram matrix of the rank one orthogonal projections
V1VI,...,VnV} andes€],. .., dq€] (with the Frobenius inner product) is

2 a2y L
A aJ+(ll a‘)ln gJ 7 -
1 lg

Since these vectors lie in th# dimensional spac&?*9, we have rank) < d?.
A calculation (see Exer. 12.9) shows that reik=n+d+ 1 and@® is tight, or
rank'A) = n-+d. Thusn+d — 1 < rankA) < d?, which gives the result. O

Example 12.16For 2< d < 6 there ared® —d + 1 flat equiangular lines fo€d,
given by an equiangular harmonic frame corresponding tocliccglifference set
(see Table 12.1).
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12.4 Equiangular tight frames from block designs

We call an equiangular tight frarm@;) of n unit vectors forCY subsimplicial (of
dimensiorr) if

1 . .
(Vi Vi) | = = 0 k,  for some integer,

i.e., if everyr 4+ 1 element subset df;) is anr—simplex, up to projective unitary
equivalence. The possibten for a subsimplicial frame are restricted by the fact
that
d(n—1)
n—d
A singled-simplex is a trivial example of a subsimplicial frame.

r= €Z. (12.13)

Example 12.17(Complementary frames) Ifi,n satisfy the necessary condition
(12.13) for being a subsimplicial frame, then the completagnframe may not.
For example, fod = 8, n= 15 there is a harmonic equiangular tight frame given by
the difference sef3,6,7,9,11,12 13 14} C Z15 which is subsimplicial withr = 4,

but the complementary tight frame is not subsimpliciai:(%).

Example 12.18(Real equiangular lines) A set of real equiangular linestingehe
absolute bounch = %d(d + 1) is subsimplicial (withr = +/d+2) if and only if
d+ 2 is a square. Many other maximal sets of tight real equiardires are also
subsimplicial, e.g., all those far+ 3 listed in Table 12.3 (including the conjectured
sets of lines in grey).

Example 12.19(SICs) A set of complex equiangular lines meeting the atsolu
boundn = d? is subsimplicial (withr = \/d+ 1) if and only ifd + 1 is a square.
The first two exampled = 3,8 are exceptional cases for SICs (see Chapter 14).

We now outline a construction of [FMT12] which uses Steingtems (a type
of block design) to construct subsimplicial equiangulghtiframes directly irC9.

A Steiner systenS(t, k, v) is a collectionZ of k—element subsets (callétbcks)
of anv element se?’, with the property that each elementisfis in exactlyr blocks
and each—element subset of is contained in exactly one block. A count shows

-1
_ (1)
= k-1
(1)

We consider Steiner systen# on ¥ witht = 2 (sor = ‘lgi), i.e., the property
that every pair of points lies in exactly one block. We ilhasé the construction
using anS(2,2,4) system (all two element subsets of a four element set). Each
can be represented byZ x ¥ matrix AT with a 1 in the(3,a) entry if the pointa

is in the blockB, and a 0 otherwiseX(is the incidence matrix of the system). For
each point € ¥, choose a Hadamard matrix of size 1, i.e.,
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h@
h
1 @ _ [h@ K@ (a
H@ _ P he) = [h&l he - b
(a)
h,

whereBy,...,[5 € & are ther blocks containinga. Ther + 1 rows of H® are
orthogonal, and of lengtk/r + 1. LetV be theZ x v(r 4+ 1) block matrix obtained

by replacing the nonzer(B,a)—entries ofAT by the 1x (r 4-1) blocks h;sa), and
replacing the zero entries by the<Ir + 1) zero matrix.

blocks
L L@
1100\ {1,2) h§11)72} N2 (0) 0
1010| {1,3) h({ll).s} 0 h{13} 0
ar_ |1001f {14 oy hig 0 O h14}
0110]| {2,3} 0 h(2)3} hg)?,} 0
0101] {2,4} 0 h?) 0 h%
001Y {34} o ) hﬁ)’4
0 0 {34} {34}
The columns of/ = [Va jJacy 1<j<r+1 are the vectors it, | %| = k ) given
by
@ :
Vaj(B) = {2’3*"’ :Zg (12.14)

Recall that the rows and columns of a Hadamard matrix aregathal. Thus, the
rows ofV are orthogonal, and s(v, j) is an equal norm tight frame. The inner
product between different vectors indexed by the same amthe inner product
between the corresponding columng-5f) with the first entries removed, giving

(Vaj.Vak) = —hGihGh,  j#k (12.15)

Vectors indexed by different pointsandb are both nonzero only in th@—entry,
wheref is the unique block containing both points, which gives

(Vaj Vo) =hEHOL azb. (12.16)
We have just proved the following result.

Theorem 12.4.(Steiner systems). For @,k, v)-Steiner systen®, r = {— 1, and
one can construct an equiangular tight frarfe, j) of n= v(r +1) vectors for a

space of dimension ¢ kék T via (12.14). Moreover, the inner products (scaled to

have unit modulus) are given by (12.15) and (12.16).
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The frame(v, ) above is called &teiner equiangular tight frame (constructed
from r—simplices). It is subsimplicial of dimension

A natural choice for the Hadamard matridéS) in the construction above is the
Fourier matrix for an abelian group of ordes 1. In particular, ifpy,.. ., pj are the
prime factors of + 1 andm:= pyp--- pj, then one can choo3¢® to havem-th
roots of unity entries. The scaled inner products of theltiesuSteiner equiangular
tight frame are them-th roots of unity and their negatives.

Example 12.20(Real case) There exists a real Steiner equiangular tighterif
and only if there is a real Hadamard matrix of size 1, e.g., whem +1= 2!,

Example 12.21For the Steiner systei®(2,2,4) of our worked example = 3, and
H(@ can be chosen to be one of

11 1 1 11 1 1
11 11) [|1-11-1 10 —1-i
1-1)%\1-1) 11 —11 | 1-11 -1
1-1-11 1—i -1 i

The first choice gives a real Steiner equiangular tight frafris vectors irR®, i.e.,

Example 12.22The collectionZ of all 2-element subsets dfl,...,v}, v > 2, is
anS(2,2v) Steiner system, with+ 1 = v. The corresponding Steiner equiangular
tight frames have = v2 vectors in a space of dimensidn= %v(v —1). Forv=3,
taking the Fourier matrix gives

110 11 1 lww?lww?00 0
AT=1101|,H@=[1w ?|, — V=|10? w00 0 1w «?]|,
011 1o? w 00 010 w1lw w

2
wherew =¢e73 .

Example 12.23There are eight infinite families of Steiner equiangulahtigames
arising from known infinite families of Steiner syste®&,k, v) (see [FMT12]).

We now use certain Steiner equiangular tight frames to olgquiangular tight
frames with more vectors in a higher dimension.



278 12 Equiangular and Grassmannian frames

12.5 Tremain equiangular tight frames

Let (vaj) be the Steiner equiangular tight frame given tftainer triple systen®
onv points ¥ (blocks of size three) and Hadamard matrieé®, a € #. We now
outline a construction of [Tre08] (see [FIMP16]) which givan equiangular tight
frame of3(v + 1)(v + 2) vectors for a space of dimensigiv +2) (v + 3).

For the vectors, j € CP,ac ¥, 1< j <r+1, given by (12.14), let

Vaj = (Vaj,V2hles,00 e C* o C” @ C. (12.17)

a a e a
For a (complex) Hadamard matrfx = 2"V a; e C,w; e CY, let
W1 W2 -+ -Wy41

. 1 \F PR
Wy = (0, —=wp,1/ zay) e CPC” @ C. 12.18
= ( 73"\ 3 0) ( )

Since(Wy, Wm) = —ay0m, £ # m, ||w;||> = v, the vectorgw;)1<¢<y 1 are said to be
the vertices of animodular simplexn CV with complementa;).

Theorem 12.5.(Tremain frames) Letv, j) be the Steiner equiangular tight frame
given by a Steiner triple syste#d on v points? and Hadamard matrices 3, and
(wy) be the vertices of a unimodular simplex f6¥, with complementa,). Define
Va,j andw, by (12.17) and (12.18). Then

(Vaj)acr 1<j<r+1U (Wp)1<r<vi1 (12.19)

is an equiangular tight frame d§(v + 1)(v + 2) vectors forCs(v+2(v+3) which is
subsimplicial of dimension+ 2 = (v + 3).

Proof. A calculation shows that the vectors are equiangular arfd, tigith angle
a = 3, (see Exer. 12.10). i

Subsimplicial equiangular tight frames of the form (12.48) known a3remain
(equiangular tight) frames. Steiner triple systems on points exist if and only if
v=1,3 (mod 6), v > 3. Thus (since Hadamard matrices of all sizes exist), we have

There exists a Tremain equiangular tight fram% of + 1) (v + 2) vectors for
Cs+2(v+3) it and only if v = 1,3 (mod 6), v > 3.

Example 12.24The construction gives a real equiangular tight frame pledithere
exists a real Hadamard matrix of siz¢ 1= %(v +1) (and hence one of siae+1).
Thus there is a Tremain equiangular tight frame%qﬁf/ +1)(v + 2) vectors for

R&(+2(v+3) if and only if there is a real Hadamard matrix of sigev + 1), where
1(v+1)=1,2 (mod 3, e.g., there are 820 equiangular lineRitf’ (v = 39).
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12.6 Equiangular frames and their signature matrices

Since frames are determined up to unitary equivalence hy &ramian matrices,
the Gramian of an equiangular frardewith C > 0 has the form

1 Cz,Czs---Czp
Cziz 1 Czs-- Czny
Q=|[CzazCzs 1 =14+C%,  |z|=1

Czin Czon 1

We call anyn x n Hermitian matrix> of the above form, i.e., with zero diagonal
and off diagonal entries of modulus ki@gnature matrix. Since signature matrices
are nonzero Hermitian matrices with zero trace, they haleaat two eigenvalues:
one negative and one positive. lléstand forR or C. Then x n signature matrices
with entries fromF are in 1-1 correspondence with the equiangular frames of
vectors (which are not orthogonal bases).

Theorem 12.6.(Signature matrices) LeX be an nx n signature matrix (oveF),
with smallest eigenvalueA of multiplicity n—d, d> 1, then

1 1
=l+=2=—(Z—(-A)l r>o0
Qi=l+1Z=3(E- (A, r>
is the Gramian matrix of an equiangular frame of n vectors F; and every
Gramian of an equiangular frame of » d vectors forF¢ can be constructed in
this way. Further, the frame is tight if and onlyif has (exactly) two eigenvalues
A1, A2, in which case

(n—d)(n—1)

(12.20)

Proof. By construction, the matrig is positive semidefinite of rani > 0, and so
has a positive square roBt= Q%. SinceQ = B2 = B*B, Q is the Gramian matrix of
the frame given by the columns Bf(which span al-dimensional subspace).
Conversely, a frame afi > d vectors is tight if only if its Gramian has a zero
eigenvalue of multiplicityn — d and exactly one nonzero eigenvalue (see Exer. 2.17).
Hence an equiangular frani&; ) of n > d vectors for ad—dimensional space is tight
if and only if its signature matrix has exactly two eigenwesuMoreover, by Exercise
2.16, we have

dA 1 A [d(n—d)
n

1:<f17f1>:?7 V], 7:‘<fj7fk>|: n—1 °

3 ] #K,

which gives the formula foA = —A;. Since trac€>) = (n—d)A; +dA, =0, we
have
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n—d)\l: (n—dzj(n—l).

Thus we have (12.20). ad

Theorem 12.6 gives rise to a system %rf(n —1) equations in th%n(n— 1)
entries of2 (see [BP05]).

do=—

Corollary 12.1. Let(zjk)1<j<k<n be scalars of moduluk then the signature matrix

0 212213+ Z1n
712 0 203+ 2o
>—|z3z3 0

Zin Zn 0

gives an equiangular tight frame ofad vectors for? if and only if

n-1

2 _ _ _ - o
Pt A)Z (=11 =0, Autdei=(n-2d)) [ or—as,

(12.21)

which is equivalent to

n—1 j—1 k-1 n
(n=2d)/ =2k = /z ZijZk + ZjiZik + Zj(Za, 1<j<k<n
d(n—d) =1 iz%l I <X

(12.22)

Proof. The signature matrix has two eigenvaligs= —A (with multiplicity n—d)
andA; if and only if it satisfies the minimal polynomial

52 (M4 A2)Z + A2l =0, (12.23)

whereA;A2 = n— 1. From the entries of the matrix equation (12.23), we thoreef
obtainn? equations in the, with real coefficients depending only enandd.
Those from the diagonal entries hold automatically, andesihe(j,k) and(k, j)
entries are complex conjugates, we obtain the equivaletesy

(A1 +22)Zjk = (2, 1<j<k<n,
which can be written as (12.22). O

Example 12.25Forn =4, d = 2, (12.22) gives 6 equations. Let, = a, z13 = b,
714 = c. Then the(j,k) = (1,2) and(1,3) equations are

21373+ 21424 =0, 21323+ 21473a=0 = Zy4= —bCr3, Z34=—aZa.

Making the above substitutions fag, andzz,4 reduces the other 4 equations to one
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(abz3)?= -1 =— 2z3=+iab

Hence there is a three parameter family of unitarily inegl@mt equiangular tight
frames of four vectors foE? given by the signature matrices

a b c
0 Ziabziac

Fiab 0 +ibc

+iac Fibc 0O

)

ol O

la = |b| = |¢| = L. (12.24)

ol

If an n x n signature matrixz satisfies>? = u> + 1l for somey, 1, theny is
real andr = n— 1 (by considering entries), so thathas two eigenvalues with sum
U. Therefore, Corollary 12.1 can be stated in the followingvemient form.

Theorem 12.7.(Characterisation) Letz be an nx n signature matrix. Then the
following are equivalent

1. X is the signature matrix of an equiangular tight frame @#.
2. 52 = (n—1)l + u for some necessarily real.
3. 2 has exactly two eigenvalues (with sy

Further, when these hold, we have

q—n_ M (12.25)
2 2\/4(n—1)+pu2
Proof. Solving
2 _ (n—2d2_ =1
H= din—d)
for d gives
n nu
d= -+ —-——.
2 2\/4(n—1)+pu2
Substituting this formula fod back into
n—-1
p=(n—2d) din—d)’
shows that the- choice must be made. d

Example 12.26(Hermitian complex Hadamard matrices)uf= A1 + A2 = —2, so
that>2 +2> = (n—1)I, thenZ +1 is a Hermitian complex Hadamard matrix, via
the calculation

(Z+N)(E+) = (Z+1)2=52425+1=(n—=1)l +1 =nl.

This example generalises to a correspondence betweengimatigie matrices
with |u| < 2 and the complex Hadamard matrices with constant diag&zalB].
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Corollary 12.2. (Complex Hadamard matrices) LEthe an nx n signature matrix.
Then the following are equivalent

+

E

1. 5 gives an equiangular tight frame f@d, wherej — 4 <d<
2.32=(n—1)l 4 uz, where-2< u <2
3. X+l is a complex Hadamard matrix faf = 2 (—p =+ /4 —[p32i).

NIS

Proof. The equivalence of the first two follows from the observatiat

> n—-1

d(n—d)

(2= 3) Suppose that 2 holds, thén= %(—u ++/4—|u|4) is a unit modulus
complex number, witl{ + ¢ = —p, and

u? = (n—2d) <4 = (dfn)zgg.

2

(Z+IV'(E+)=(E+INE+U) =22+ L+ +1
=((n—Dl+pu2)—puz+I1=nl,

i.e.,> 4l is a complex Hadamard matrix.
(3= 2) Suppose that 3 holds, thén= %(*[J ++/4—|u|?) has unit modulus,

and—2 < u = —({ +) = 20(—) < 2, which gives
2= (4 (E+I)-Q+ D1 =nl+pus—1=(n-1)l4pus.

O

Example 12.27For a SIC, i.e.d? equiangular lines irC%, the signature matrix
satisfies>? = | whend =2 (u = 0), and>? = 2| + 2> whend =3 (u = 2).

Example 12.28Let 3 be the signature matrix for the equiangular harmonic frame
of 7 vectors forC2 given by the cyclic difference sét= {1,2,4}. Hereu = %

and we obtain the constant diagonal Hadamard matrix

12772177

{3¢27¢¢

(qqCeee

SS hd 1 VT
SH=17000C0CC |, (=——Frx+—FI,

0334z

(qqqCee

where{ = %(aﬂr WP+ W), w=eT.

ForV a complex Hadamard matrix, we now define a variant of the Kekee
product ofV andV* which yields Hadamard matrices with constant diagonal.
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Theorem 12.8.Let V = |v1,...,Vn] be a complex Hadamard matrix of order m.
Then
Vlv*i . va*i
K= : ; (12.26)
Vlv*m e va*m
is a Hermitian complex Hadamard matrix of ordef ywith 1’s on its diagonal. Thus

> = +(K —1) is the signature matrix of equiangular tight frame of=m? vectors
for C4, where d= im(m=+1).

Proof. By constructiorK is Hermitian with entries of unit modulus, and 1's on its
diagonal. The j,k)-block ofK? is

0, j#k
i.,e., K=2+1 is a complex Hadamard matrix. Corollary 12.2 implies thais

the signature matrix of an equiangular tight framenef m? vectors forC9, where
U =—2,and, by (12.25),

ZVe\fka\fé = (Vjwi) ;VNZ = (ViVi)VV* = (Vju)ml = {

1
ny n+@:—m(m+1).

d="_ _0
2 2y/An-1+p> 2 2 2

The complementary equiangular tight frame doe n? — %m(er 1= %m(mf 1)
dimensions has signature matrixK —1). O

Example 12.29(Cube root signature matrices) Takigo be the 3« 3 Hadamard
matrix given by the Fourier matrix gives

111 1 11111
11 1 w w w w? o?w?
11 10w w w w

11 1 1l w 1 wo?l wo?

-
V=|1ww?|, o=e7 — K=[1w? w o? 1 w w ? 1
lw? w 1l w w1 ? 1l w

lwaw?l o wlodow
lw o w 1 o 1 o?
loww w 1w wl

with K — | the signature matrix for an equiangular tight frame of 9 vein C®,
and—K +1 the signature matrix for an equiangular tight frame of 9 eein C3.
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12.7 The reduced signature matrix and projective unitary
equivalence

Recall from§2.3 (and;8.1) that framed’ are® are projectively unitarily equivalent
if and only if their Gramians satisfy

Gram¥) = A* Gram @)/, N =diag(aj),

where|aj| = 1,Vj. For equiangular frames, this condition can be expresstsiims
of the signature matrices
Sy =N*"ZpA.

Hence every equiangular frame is projectively unitarilyigglent to one with a
signature matrix of the form

1* .
NIN* = (O ) , A :=diagl,z12,213,...,21n), 1:=(1,1,...,1)"

15
(12.27)
We will call the above matrix thereduced signature matrix of the equiangular
frame (and its projective unitary equivalence class).

An equiangular frame is uniquely determined by its redudgaisgure matrix.

Theorem 12.9.(Triple products) An equiangular frame is uniquely detared up
to projective unitary equivalence by its reduced signatasgrix.

Proof. Each equiangular fram® has a reduced signature matéix The matrix

12

is the signature matrix of an equiangular fratewhich is projectively unitarily
equivalent to®. It therefore suffices to show that the entries of the ahbware
projectively unitarily invariant. Without loss of geneity] assume tha® = (v;) has
be scaled so thavj, v) = Z;j. Then

<Vlvvj> = 17 V]
Thus the(k, j)—entry of X can be written as
(Vi Vi) = (v, i) (Vi Vi) (Vies V)

Clearly, the “triple products” on the right hand side depenty on (v;) up to pro-
jective unitary equivalence (s§éor the general theory). ad
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Example 12.30The reduced signature matrix for theof (12.24) is

0 +i Fi
S=|=Fi 0 &4i]. (12.28)
+HiFi O

Thus there are justvoequiangular tight frames of four vectors@s up to projective
unitary equivalence (and reordering). Moreover, theselmanbtained from each
other by taking the entrywise complex conjugate of the redwgignature matrix.

Example 12.31The complement of ight equiangular frame is a tight equiangular
frame. If its signature and reduced signature matriceg aedZ, then those of the
complementary equiangular tight frame ar& and—2>.

By Theorem 12.6, the construction of equiangular framek lgitge numbers of
vectors (compared to the dimension) is equivalent to findiggature matrice&
whose smallest eigenvalue has a large multiplicity. We negkgo translate this to
the reduced signature matiix

Proposition 12.2.(Spectral structure of) Let S be the reduced signature matrix
of a2 satisfying (12.27), and v be’a—eigenvector o&. Then

e (0O,v)is aA—eigenvector oA ZA* if and only if v_L 1. .
e (a,1)is an eigenvector ol ZA* if and only if1 is a B—eigenvector ok and

a= %(—B:t\/32+4(n—1)). (12.29)

Proof. The first follows since

£)0-6)-6)

For the second, observe that

01°) [a) 11 [ n-1

15)\1) \at+31) \a1+51)°
Thus(a, 1) can be can be an eigenvector onlpaif+ S1is a multiple of1, i.e.,1is
a 3—eigenvector of.. In this case(a, 1) is aa—eigenvector if and only if

aa=n-1, (a+pB)=a,

which gives (12.29), where = a+ 3. O
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Since the eigenspaces of the Hermitian maﬁbgre orthogonal, we obtain a
correspondence between the eigenstructuresafd> whenlis ap—eigenvector
of 2.

Example 12.32The reduced signature matri of (12.28) has eigenvectdr for
eigenvalueB = 0, and the other eigenvalues are/3. Thus the eigenvalues of any
2 (of sizen = 4) with this reduced signature matrix are

a=atf=1(B+\/Bran-1)=+3

together witht-1/3 (which happen to be the same).

The factorisation (12.27) allows the number of variabled22) to be reduced
by n—1to 3(n—1)(n—2). We now express these equations in terms of the reduced

signature matrix, and show that must be an eigenvector af

Proposition 12.3.There exists an equiangular tight frame of-nd vectors forFd
with reduced signature matriX if and only if

M4+A)E=5210-(n—1),  Ar+Ar:=(n—2d) d(”n_ld), J:=11,
and1lis an eigenvector af for the eigenvalud + A,.
Proof. Substitute> = (2 1;) into (12.23)
(e 5%) e (35) o (50) o
and equate the blocks. ad

Example 12.33(The simplex) Up to projective unitary equivalence and deoing,
there is a unique equiangular tight framenof d + 1 vectors forR? or C9, which

is given by the vertices of the regular simplex. Foe d + 1, thed x d reduced
signature matrix> hasl as an eigenvector for, + A, = —(d— 1), and so all its off
diagonal entries must bel. In particular, there is a unique equiangular tight frame
of three vectors it€2, which is a real frame (the Mercedes—Benz frame).

In summary:
Each equiangular frame is uniquely determined up to unggrjivalence by

its signature matrix, and it is uniquely determined up tojgrtive unitary
equivalence by its reduced signature matrix.
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12.8 The relative bound on the number of real equiangular line

Equiangular lines iiR? are given by a set of unit vectofs; } with
|(fj, fj)] = a =cosB, i #k.

The variational characterisation of tight frames (see Té06.1) immediately
gives the following estimate on the maximum number of equigar lines.

Theorem 12.10.(Relative bound) Suppose thgt;} gives n equiangular lines in
RY with anglea = cosf. If a < 1/+/d, then

d—da?

< a7 (12.30)

with equality if and only if f;} is a tight frame forR¢.

Proof. By the variational characterisation, we have

1 1 2
> Y16 8 =n+ (0 ~ma? = 5o = 5 (3 I617)
J ]

with equality if and only if{ f; } is a tight frame. The above inequality is equivalent
to
1 o 2
n(a —09)<1-oa-
Hence ifa < 1/+/d, then we can divide (without changing the sign) to obtain the
result. O

Example 12.34The isogonal vectors of Example 3.9 givequiangular lines ifk®

P
W|thﬁ§a<1.

We observe that the relative bound is not a generalisatidheoébsolute bound
(Theorem 12.2). Indeed, it also holds (by the proof) for claxgquiangular lines.

In the algebraic graph theory literature (12.30) is callegkéelative bound, and
the tight frame condition is usually stated as the orthopprigiectionsP; := f; fj*

satisfy
n
n
P =-l.
"N
Thus tightness (equality) in (12.30) occurs if and only ttaerfe{ f; } is tight.

We say that a set of equiangular linesRf is tight if the vectors defining
them are a tight frame, equivalently, there is equality mrlative bound.

The relative bound is very useful when used in conjunctiath ie following.
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Theorem 12.11.Suppose there are n equiangular linesifiwith anglea = cos6.
If n > 2d, thenl/a is an odd integer.

Proof. LetQ =1+ a2 be the Gramian afi unit vectors giving the equiangular lines
in RY. Since these vectors span a subspace of dimewsigrd, by Theorem 12.6,

the signature matrix
1
S==(Q-1)

a

has smallest eigenvaluel/a, with multiplicity m=n—d’ > n—d. SinceX is an
integer matrix, its eigenvalues are algebraic integere digenvalue-1/a must
be rational, and hence is an integer. Otherwise, the cotgugfa—1/a would be
a second eigenvalue with multiplicity, son > 2m > 2(n— d), which contradicts
n> 2d.

To see ¥a is odd, consider the integer matrix

1
B=_-(Z+11"+1).
S(Z 411 +1)
SinceX has a—1/a eigenspace of dimension>n—d >2d—d > 1 and11* has a
0 eigenspace of dimension- 1, the matrixB has 88 = 3 (— 2 + 0+ 1) eigenvalue.
Sincef3 is a rational algebraic integer, it is an integer, and ga + —23 + 1 is

odd. O

Unlike the relative bound, Theorem 12.11 does not hold fonglex equiangular
lines inCY, e.g., forn = d? such lines Ya=vd+1.

Example 12.35lf the absolute and relative bounds hold for 2d, then
d= (—)2 -2, wherel is an odd integer

i.e.,d=7,2347,79,.... Thus the absolute bound (Theorem 12.2) for the maximal
number of equiangular lines k% can only hold wheml = 2,3 ord + 2 is the square
of an odd integer.

The maximum sizeM(d) of a set ofn real equiangular lines iiRY has been
investigated since [Haa48] showed th&t2) = 3 (the Mercedes—Benz frame) and
M(3) = 6 (lines through the opposite vertices of an icosahedror)oBY14],
[GKMS16], the best estimates d(d), d < 47 are given in Table 12.3.

We observe (see Example 12.41) that the first instance viédg is known to
be not attained by a tight frame (in a possibly lower dimemgisd = 16.

A nontight set o%(d +1)2 equiangular lines foE® was constructed by de Caen
[dCoQ] ford = %4t —1,t > 1. By using the existence of a set g>f+ 1 mutually
unbiased bases & for d = 4, t > 1, [GKMS16] adapted this example to construct
nontight equiangular lines i@ giving the following lower bound

320243280 +296  (d+2)?
> .
M(d) = 1089 T
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Table 12.3: The maximum numbigt(d) of equiangular lines iR, d < 47. The last column gives
the number of vectors in tight frame ¢ given by a strongly regular graph (s§£2.10). When
the existence of the graph (and hence the equiangular linssl isnknown, then it is in grey.

d M(d) % tight d M(d) 1 tight
2 3 2 3 19 72-75 5
3 6 V5 6 20 90-95 5
4 6 53 21 126 5 126
5 10 3 10 22 176 5 176
6 16 3 16 23-41 276 5 276
7-13| 28 3 28 42 276—288 57 288
14 28—29 35 43 344 7 344
15 36 5 36 44 344-422 7
16 40-41 5 45 344-540 7 540
17 48-50 5 46 344-736 7 736
18 54-60 5 47 344-1127 7

12.9 The connection with algebraic graph theory

The Seidel matrix X = Seid ") of a graphl” with n vertices is then x n matrix
with a —1 in the (j,k)—entry if thej andk vertices are adjacent (connected by an
edge), a 1 if they are nonadjacent, and 0 diagonal entriesrig] Seidel matrices
are signature matrices ovi&r and vice versa.

ForF = R, there ardinitely many possiblen x n signature matrices, and hence
finitely many real equiangular framesm¥fectors, each in 1-1 correspondence with
a graph om vertices, namely the graph whose Seidel matrix is its sigeanatrix.
This correspondence between vectors defining a set of re@regular lines and a
graph goes back to the foundation of algebraic graph thesery [GRO1]).

The set ofn vectors{f;} defining a set of equiangular lines ¢ can each
be multiplied byo; = +1 to obtain a set defining theameequiangular lines, but
possibly withdifferentGramian matrices

Gram({gjfj}) = A Gram{f;})A, A :=diag(o1,...,0n), (12.31)

and hence possiblgifferentcorresponding graphs. Any two graphs related in this
way (for some ordering of their points) are said to dwetching equivalent (by
switching on the verticeg j : o; = —1}). This is an equivalence relation. Switching
on a vertexj of a graph entails changing all edges frgnto nonedges, and all
nonedges fronj to edges. The set of all graphs switching equivalerit is called
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the switching clas€ of I" In view of (12.31), Sei¢{gjf;}) = A~1Seid{fj})A,
and so the eigenvalues of the Seidel matrices of any twokingequivalent graphs
are the same (reindexing a set of vectors does not changégmevalues of their
Gramian). The eigenvalues of the Seidel matrix are calleds#idel spectrumof
the graph (or its switching class).

Each real equiangular frame which is not a basis is uniquetigrchined up to
projective unitary equivalence and reordering by a switghilass of graphs
(the one containing a graph whose Seidel matrix is its sigeanatrix). It is
tight if and only if its Seidel matrix has exactly two eigehwes.

Example 12.36(The simplex) Letr be the complete grapk, onn > 2 vertices.
Then its Seidel matrix hastwo eigenvalues:-(n— 1) of multiplicity 1, and 1. The
corresponding tight frame of vectors inR"* (cf. Example 12.33) is the vertices
of a regular simplex. Similarly, its complement, the emptyain onn vertices, gives
the equiangular tight frame fd@* consisting of a nonzero vector repeatetimes.

By switching on a vertex oK, on obtains the graph consisting of a point together
with K1 Forn= 3, I' is the 3—cycle (see Figure 12.1). Its Seidel ma8jand
those obtained by switching on the first, second and thirtloesr are

0 -1-1 01 1 01-1 0 -11
-1-10 1-10 -11 0 1 10

A ._.. ) )
/ /

Fig. 12.1: The graphs in the switching class of the completetgkap and the corresponding

equiangular (tight) frames of three vectorsRA.

Example 12.37For n = 4 the eleven graphs lie in three switching classes. The one
containing the complete graph gives the vertices of thelaegetrahedron, the one
containing the empty graph gives equiangular linéRinThe third switching class,
which contains theath graph gives four lines at an angle of Cds{%) ~ 63.4°,
which we recognise as diagonals of the regular icosahedemnExample 12.44).

2 Theswitching classs also known as awvo—graph
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12.10 Real equiangular tight frames and strongly regular gaphs

Let > be the Seidel matrix of a graph, and given by (12.27) be itseduced
Seidel matrix The condition that have two eigenvalues, and hence give a real
equiangular tight frame, is most easily expressed in teffntiseograph with Seidel
matrix = (which can depend on the ordering of the point§ df This graph must be
strongly regular with particular parameters (Theorem 12.12).

A regular graph of degrelewith v vertices is said to bstrongly regular, or a
srg(v,k, A, 1), if there are integerd andu such that

e Every two adjacent vertices haxecommon neighbours.
e Every two non-adjacent vertices hauecommon neighbours.

The adjacency matrid = Adj(I") (which has a 1 for adjacency, and a 0 otherwise)
of a strongly regular graph which is not complete or empty is characterised by

Al=kJ, AP+ (u—M)A+(u—K)I = pd, (12.32)

whereJd = J, is thev x v matrix of all 1's and = |, is the identity.
The eigenvalues of the adjacency matiare

CA—u+vVA T_/\—u—\/Z
- 2 ) _f7

with multiplicities

6 A=A —p)?+4(k—p), (12.33)

m9=l(V—1_2k+(V?/%)(A —u))7 mrzl(v_1+2"+("?/1£“ —u)),
(12.34)

2 2
andk with eigenvectorl (see [GRO1]). Since the trace éfis zero, its smallest
eigenvalue isT < 0. We note that the adjacency and Seidel matrises Adj(I")
andX> = Seid ") of a graph™ are related byA = %(J—I —-2),2=J-1-2A.The
spectral structure of one can be deduced from the other Whisrk-regular, i.e.,
1=(1,...,1) is an eigenvector oA for eigenvalue (cf. Proposition 12.2).

Theorem 12.12.Let > be the Seidel matrix of a graph on n vertices which is not
switching equivalent to the complete or empty graph, ane given by (12.27).
ThenX has two eigenvalues (and so corresponds with an equiangjgltatrframe of
n> d+ 1 vectors forRY) if and only if 5 is the Seidel matrix of a strongly regular
graph[~ of the type

3k—n

srqn_lakv)\vu)7 A= 2 )

k
h=s. (12.35)

The n, k, d above are related as follows

1 1 nh-2k-2)

1 n d(n—1)
22 nagrrek =t -y T a2

d:
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Proof. By Proposition 12.32 has two eigenvalues (i.e., gives rise to an equiangular
tight frame forRY), if and only if 1 is an eigenvector af for the eigenvalud + Ao,
and

AM+A2)E=324+3—-(n—-1)I, J:=11" (12.37)
Thus1 is an eigenvector of the adjacency matbix= %(J -1 - 2) of I for the
eigenvalue
C(h=D-1-(MtA) 1 n d(n—l)
k= 2 = 2n 1+(1 2d) 4 (12.38)

with k a positive integer (since the nonzero entriedafre 1). Hencé is a regular
graph of degreé, which is not the complete or empty graph (by our assumption)
Using2 =J—1 —2A, AJ=JA=kJand (12.38), we can rewrite (12.37) as

A%+ (77k)Af'f| =A24

(k 3k—n k k
2 2 2 2

JA+(5 Kl =5,

which is equivalent td being a srgn— 1.k, A, 1), A = %(SK— n), u= 'i‘
Finally, solving (12.38) fod gives

do }ni n(n—2k—2)

1
2 2 /(n_2k21 8k

with the choice of sign determined by the multiplicities b&teigenvalues of.
More preciselyd is the multiplicity of the largest eigenvalue bf which by Propo-

sition 12.2 andA = %(J -1 - 2) is 1 plus the multiplicity of the smallest eigenvalue
of A i.e., .
2k+(n—2)(5(2k—n
1+%(n—2+ +(n=2)(5( )))7
\/3(2k—n)2+43k
which simplifies to the formula fod in (12.36). O

The linear equations of (12.35) can be solvedrfandk, giving
n=—2A 464, k=2u.

In this way, the equiangular tight frames be indexed by theqfantegers(A, u).

Example 12.38(Complements) Lek be the reduced signature matrix of an equian-
gular tight frame oh > d + 1 vectors folRY, which corresponds to a strongly regu-
lar graph with the parameters (12.35). The complementaniaegular tight frame

of n vectors forR™ 9 has reduced signature matrix> (see Exer. 12.14), and so
corresponds to the complementary strongly regular graplthwhas the parameters

2n—3k—-6 n—k—2)
2 ’ 2 '

srgn—1,n—k—2,

wherek is given by (12.36).
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By Theorem 12.12, the existence and construction of equlantight frames in
RY can be expressed in terms of strongly regular graphs withiograrameters.

Strongly regular graphs which are the unimrcomplete graphs ow vertices,
and their complements, are considelexting. The strongly regular graphs which
are not boring are said to Ipgimitive . These graphs have parameters

srgmww—1,w—2,0), srg(mw (m—1)w, (m—2)w, (m— 1)w),
and so give rise to equiangular tight frames (as above) ifoatgdif m=w = 1.

Corollary 12.3. There exists an equiangular tight frame of-rd + 1 vectors forRd
if and only if there exists a strongly regular gragph with Seidel matrix>, of the

type

3k—n k k::}n—l+ n d(n—l).

2 ’2)’ 2 (1_%) n—d

srgin— 1k,

Moreover, all graphd™ giving an equiangular tight frame of » d + 1 vectors for
RY have Seidel matrices of the form

L1 [OT — i _
P—"A | AP, N =diag(01,...,0n), 0j==1, (12.39)
12

where P is a permutation matrix antis as above. In particular, we can taketo
bel” together with an isolated point.

Example 12.39The switching class of the graghobtained by adding an isolated
point to the unique si®,2,0,1), i.e., the 5—cycle, is given in the Figure 12.2. The
corresponding tight frame af = 6 vectors fofR3 consists of vectors which are on
the six diagonals of the regular icosahedron.

O dAPN

Fig. 12.2: The switching class of the graptconsisting of a 5—cycle and an isolated point.

We observe that graph consisting of a strongly regular graphtogether with
an isolated point is switching equivalentfidogether with a point which is adjacent
to all points ofl".
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The switching class of a graphgiving an equiangular tight frame ofvectors is
called aregular two—graph. It may contain graphs consisting of &olated point
(one with no neighbours) together various nonisomorphizngfly regular graphs
on n—1 points (callecheighbourhoods This is sometimes used as a method to
construct strongly regular graphs. Thus reordering théove®f an equiangular
tight frame may vyield a reduced signature matrix for a défdrstrongly regular
graph (with the same parameters).

Since the unique equiangular tight framenet d + 1 vectors inRY (the vertices
of the simplex) is given by the boring strongly regular graph

[=Kni1=srgn—1,n—2,n—3,0)  (the complete graph)

we can summarise our results as follows.

Up to projective unitary equivalence and reordering, eaphangular tight
frame (which isn't an orthonormal basis) corresponds to kection of
strongly regular graphs. These strongly regular graphe tia property that
the graphs obtained by adding an isolated point are swiobguivalent.

A list of the known real equiangular tight frames (i< 50) obtained by this
correspondence is given in Table 12.5.
The construction of Theorem 12.12 also gimesitightequiangular frames.

Corollary 12.4. Let S be the Seidel matrix of a strongly regular graptof the type

3k—n
5

srgn—1,k A, ), A# (12.40)

Then there exists a nontight equiangular tight frame ofei+ 1 vectors forRY with
reduced signature matriX if and only if

“1-A+pu—VA< %(n—Z—Zk—\/(n—2—2k)2+4(n—1))7

whereA := (A — p)2+4(k— ), and

d= %(n+2+

2k+ (n—2)(A —u))
= .

Proof. Letv =n—1, then by (12.33), (12.34) and Proposition 12.2, the eigei®s
of Sare—1-20=-1-A+pu—vA, -1-21=-1-A+u++4A, and

B+%(*Bi\/lﬁ(nf1)), B:=n-2-2k=v-1-2k,

with multiplicitiesmg, m;, 1, 1.
The condition for—1— 260 to be the smallest eigenvalue is
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1
—1-20=—-1-A+u—vVA< 5(B—1/B?+4(n-1)).
If there is equality, then the frame is tight, and if the inalify doesn't hold, then

2 has rankn— 1, and so corresponds to the= d + 1 vertices of the simplex. For
strict inequalityn — d = my, which completes the proof. O

Table 12.4: Selected examples of nontight equiangular fraries- d + 1 vectors forRY given by
Corollary 12.4, including the Seidel spectrumxf

n |d |srg parameterseigenvalues multiplicities
11|6 |(10,3,0,1) -3,3,-2,5 5411
17|7 |(16,5,0,2) —3,57%(11\/@) 10,5,1,1
17|11} (16,6,2,2) —5,3%(31\@) 6,9,1,1
27(14](26,10,3,4) —5,5,%(51\/@) 13121,1
37(14| (36,14,4,6) —5,7,%(71\/@) 21,1411
41|17| (40,12,2,4) 75,7,%(151\/?53'5) 241511
65(20| (64,18 2,6) 75,1],%(271\/@ 4518 1,1

12.11 Conditions for the existence of real equiangular tigh
frames

Fortight real equiangular lines, we refine the absolute bound andréhed2.11.

Theorem 12.13.Suppose d> 1. Then a necessary condition for an equiangular
tight frame of n> d + 1 vectors forR¢ to exist is that n be even, and

n< min{%d(dJrl),%(n—d)(n—dJrl)}, (12.41)
or, equivalently,
d42< 2‘”1% ved+1 _ o %d(d+1). (12.42)

Moreover, for n£ 2d, one must have

e The eigenvalueg; = —/ dE]"__dl), A = \/% of the signature matrixz

are odd integers.

e n—1is odd, but not a prime.

71122((,?;,19 and} (”*jf,i(d”)*” are perfect squares.
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Proof. Since the complement of an equiangular tight frame wéctors forRY is
one forR"¢, from the bound (12.5) of Theorem 12.2, we get (12.41). Now

n< %(nfd)(nfdJrl) — f(n):= n27(2d+1)n+d27d20-

The quadraticf is non-negative if and only ifi is less than its smallest root or
greater than its largest, i.e.,

n§d+%—%\/8d+1<d, nzd+%+%\/8d+1,

which gives (12.42).

The eigenvalueds, A, of > are given by (12.20), and are real algebraic integers
with multiplicitiesn—d,d > 2. By Theorem 12.12, Proposition 12.2 and the spectral
structure of strongly regular graphk,, A, are eigenvalues of with multiplicities
n—d—1d—1> 1, and the corresponding eigenvectors are orthogoraltence,
the adjacency matrix of the graph given byi.e.,A:= %(J —1—25) has eigenvalues
%(—1— A1), %(—1— A2) with multiplicittesn—d—-1,d—1> 1.

For n £ 2d, the pairs of multiplicities above are not equal, and so thiespof
eigenvalues are algebraic integers which are not algeboajcgates, A simple cal-
culation shows\1 # —1, A, # 1. The three conditions then follow from the calcula-
tions

/\,:—2_1_)” -1 AAe=—(n-1),
—1-A1 —1-2\2 1 »  1nm(n-1)
( 2 2 ) =z ~4d(n—d)’
—1-A1 —1-A\2 1 > 1(n—=2d)*(n—1)
( 2 T2 ) =Mt =7 d(n—d)

O

Forn = 2d, the eigenvalues of are++/2d — 1. In this case, we obtain an infinite
family of equiangular lines, corresponding to ttenference graphs

An nx n matrix C is aconference matrixif its diagonal entries are 0, its off
diagonal entries are-1, andC*C = (n— 1)I. The reduced signature matrixof a
symmetric conference matr= 2 (for whichn must be even) is a strongly regular
graph ) 5 )

n—-2n-6 n—
srgn—1,——,—— )

called aconference graph Equivalently, conference graphs are the strongly regular
graphs srgv,k, A, ) with

2&k+(v—=1)(A—pu) =0,

i.e., the multiplicities (12.34) of the eigenvalu@g of the adjacency matrix equal.
We now characterise equiangular tight frames ef 2d vectors forRY.
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Proposition 12.4.For d > 3, the following are equivalent

1. There is an equiangular tight frame 2d vectors forRY.
2. There exists &d x 2d symmetric conference matrix.
3. There exists a conference graph wath— 1 vertices, i.e., a

d3d1

srg2d ~1.d—1, ==, —57).

For these to hold it is necessary that d be odd, 2dd- 1 be a sum of two squares.

Proof. Suppose thab = 2d, d > 3. Let 5 be the reduced signature matrix of an
n x n signature matrixx. By Corollary 12.1 and Proposition 12.3, the following
conditions are equivalent tb giving an equiangular tight frame of= 2d vectors
for RY

52 _(n—-1)I =0,

51=0, 3%24J-(n-1)I=0.

The first says thak is a symmetric conference matrix. Writing the second in terms
of the adjacency matrik = 3(J—1 — %) gives

Al=31(n-2)J,  A2+A+3(2-n)l=3%(n-2)J

By the characterisation (12 32), th|s says tEaglves a erZd 1 kA, u) with
k=31(n-2)=d-1,A=%(n-6)=3(d-3),u=1(n-2) =

A well known necessary condmon for anx n conference matrlx to exist is that
n=2 (mod 4 andn—1 be a sum of squares. This completes the proof. O

An infinite family of conference graphs are given by fadey graphs

Example 12.40(Paley graphs) Lej = p™ be a prime power witly = 1 (mod 4).
This impliesFq, the unique finite field of orden, has a square root 6f1 and so
b—ais a square if and only i — a is a square. ThBaley graphof ordern—1=q
(or g-Paley) is the graph with verticeBy, and an edge betweanandb if a—bis
a square (aka quadratic residue nd g = p). Whengq is prime its Paley graph
is a Hamiltonian circulant graphThe Paley graph on— 1 = q vertices is a self
complementary conference graph.

12.12 A list of real equiangular tight frames

There may or may not be a real equiangular tight frame»fd > 1 vectors fofRY.
For example, for

e n=d one has orthonormal bases.
e n=d+ 1 one has the vertices of the regular simplex.
e n=d+ 2 there areo equiangular tight frames, by Theorem 12.13.
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If there did exist an equiangular tight frame mf= d + 2 vectors forR¢Y, then its
complement would be a real equiangular tight frama of 3 vectors forR?.

In Table 12.5, we list all equiangular tight framesrof> d + 1 vectors known
to exist ford < 50. This was constructed using the literature on strongiyilesr
graphs (see Brouwer [Bro07] and the associated internef)ptée also include (in
grey) those which are conjectured to exist, e.g., the l@mgbhg open question in
algebraic graph theory:

Does there exist a conference graph(6832, 15,16), i.e., an equiangular
tight frame of 66 vectors foR33?

Table 12.5: The equiangular tight framesrof- d + 1 vectors forR? (d < 50), forn # 2d and
n= 2d (conference graphs). Here # gives the number of associatedlgtregglar graph& (with
+ indicating at least one exists). The existence of those in geeg@en problems.

n d # Al /\2 G =

n d # r 2d-1
16 [6 |1 -3 5 srg156,13) —
6 [3 |1 Paley5) 1°+2
16 | 10| 1 -5 3 srg15,8,4,4) )
105 |1 Paley9) 02+3
28 |7 |1 -3 9 s1¢27,10,1,5) o
147 |1 Paley13) 2243
28 211 —9 3 sr¢27,16,10,8) o
18|19 |1 Paley17) 12+4
36 | 15|3854 -5 7  srg35,16,6,8) .
26| 13|15  Paley2s) 32+4
3 21|+ -7 5  s1g35189,9 L
30| 15|41  Paley29) 22+5
126 21| + -5 25 srg12552 15 26) o
38| 19| 6760 Palefd?) 12+6
176 | 22| + -5 35  srq17572 20,36) o
42| 21|+  Paleyal) 42+5
276 | 23| 1 -5 55 srd275 112 30,56) 2
46 | 23 | + Conference 3+6
64 | 28|+ -7 9  srg6330,1315) 2
50| 25| + Paley49) 0?+7
64 | 36|+ -9 7  srg633216 16) o
54| 27|+  Paley53 2247
120 35| + -7 17  srg11954,21,27) .
62| 31|+  Paley6l) 52+6
148 | 37| 2 ~7 21 srg147,66,25,33) ,
66| 33| 7? Conference 4+ 8
246 | 41| ? —7 35 srg(245108 39,54) > a2
74| 37|+  Paley73) 2+8
288 | 42| ? -7 41 srg(287,126,45,63) 5
82| 41| + Paley81) 02+9
344 43| + -7 49  srg34315053,75) 5
86|43 | ? Conference 2+9
100 45| + -9 11  srg99,48,22 24) o
90| 45| +  Paley89) 52+8
540 | 45| ? -7 77 srg(53923481,117) 2. o2
98| 49 | +  Paley97) 42+9
736 | 46 | ?

—7 105 srg(735 318109 159)

Example 12.41There is no equiangular tight frame of 40 or 41 vectorsKaf.
Therefore (by Table 12.3) the maximal number of equiandiias inR1® is given
by a nontight equiangular frame. This is currently the oniypwn case where the
maximum number of equiangular lines is not given by a tighirfe.
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12.13 Nontight real equiangular frames from graphs

We now consider some nontight real equiangular frames amdjitiphs that they
come from. We recall Theorem 12.6 as it applies:

Proposition 12.5.Let " be a graph (with two or more vertices) whose n Seidel
matrix 2 has smallest eigenvalueA of multiplicity n—d. ThenZX is the signature
matrix of an equiangular frame of n d vectors fofRY, which is tight if and only if
2 has only two eigenvalues.

Example 12.42The construction of Corollary 12.4 (see Table 12.4) givesmes
of nontight frames whose associated graphs have four Saighvalues.

Example 12.43The lower bounds on the maximum number of real equiangular
lines inRY given by Table 12.3 are attained fdr= 16,17,19,20 by graphs with
three (but not two) eigenvalues. See Table 12.6 (and [GKNifat @ etails).

Table 12.6: The graphs corresponding to the nontight equlandrames giving the maximum
numbem of equiangular lines ilR? currently known (see [GKMS16]).

n |d | Origin of graph| eigenvalues | multiplicities
40| 16| srg40,12,2,4) | —5,7,12 24,151

48| 17| Netto triples | —5,7,11 31,8,9

72 (19| Witt design —5,13 19 5316,3

90| 20| Taylor [Tay72] | —5,15,19,25| 70,9,10,1

o

Example 12.44Let @ be the nontight equiangular frame of five vectorsidmgiven
by I the 5—cycle, whose Seidel matrk has eigenvalues-v/5, —/5,0,/5,v/5.
This anontight Grassmannian fran{see Example 12.6). The du@land canonical
tight frame®°@"are equal-norm frames. The minimal anglesdord and®®"are

3+5 1++/5

~57.4°.
8 6

1
cost— ~634°, cos?! ~49.1°, cos?!

V5
It is easy to verify thatP consists of vectors that lie in five of the six diagonals of
the regular icosahedron, and that the tight fra®t@" is the harmonic frame given
by the lifted fifth roots of unity (see Exer. 12.7).

We now generalise Example 12.44 to wheris a strongly regular graph (these
have adjacency matrices with three eigenvalues).

We say that an equal norm fran® = (f;) hastwo distances(cf §12.14) if
(fj, fi), | # k takes two values.
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Lemma 12.1.Let A be the adjacency matrix obag(v,k,A, 1), and B, P, B be the
orthogonal projections onto it8, T,k eigenspaces, whetk T are given by (12.33).
Then

J

J 1 @—n—w—né) Po=1-Py—. (12.43)

= — P = —
R vt b= 91
In particular, the diagonal entries ofgPand R are constant, and their off diagonal
entries take only two values.

Proof. We have B = (1/+/V)(1/+/V)* = J/v, andl = B+ Py + P}, so it suffices
to prove the formula foPy. From the spectral decompositionAfwe have

J J
A:9P9+TPT+kU, Tl :TP9+TPT+T;.
Eliminating TP;, and solving foiPy gives the desired formula fd. O

Proposition 12.6.Let I be a strongly regular graplsrg(v,k,A, 1), and @ be the
equiangular frame o vectors forRY that it determines. The is tight if and only
if

A== 2kt v =/(A )2+ Ak p), (12.44)

Otherwise, either

VA~ )2+ 4k—p) > p- A+ 2k v, (12.45)

and the frame, its dual, and canonical tight frame are eqnatm frames with two
distances, where
1

dzé(v+1+

2k+(v—1)(A — )
V(A —u)2+4(k_u))’ (12.46)

ord=v-1
Proof. By (12.33), (12.34), the eigenvalues of the Seidel mairdf I are

~1-20, —1-21, v-1-2,

with multiplicities mg, m;, 1. These are distinct, unlessl — 208 or —1 — 21 equals
v — 1— 2k, which is equivalent to (12.44), ardl is tight, withd = v — (mg + 1) or
d = v —mg, respectively (by Theorem 12.6).

Otherwise, the minimal eigenvalue af is —(1+ 260) (with multiplicity mg)
when—1—-26 <v—1-k, i.e., (12.45) holds. Here, the spectral decomposition of
the symmetric matrix is

2 =—(14+20)Py + (—1—2r)PT+(v—1—2k)%,
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wherePy andP; are the orthogonal projections onto tBendt eigenspaces dk.
SincePy = | —P; — J/v, the Gramian of the associated equiangular framéRfgr
d = v —mg, has the form

20-21  _ 20+v-—2k

! 14207 - 1+26

J
AT RV

The dual and canonical tight frames have Gramians

(I+ /\EZ)T = %PT + %% (I+ %Z)T(l + )\12) =P+ %
By Lemma 12.1P; has a constant diagonal, and off diagonal entries taking two
possible values. Henag, its dual and canonical tight frame are equal-norm frames
with two distances (all the entries dfare 1).
The only remaining case is when- 1—k < —1—286, in which case the minimal
eigenvaluev — 1 —k has multiplicity one, and sd = v — 1. O

NTAN

\

Fig. 12.3: Three switching equivalent graphs that give 1€dimR®: The Paley graph on 9 vertices
and a point, the Petersen graph, and the triangular gkaph

Example 12.45For n < 50 there are 28 equal-norm tight frames with two angles
that can be constructed by Theorem 12.6 (see Table 12.7}e ®re also many
equiangular tight frames that can be constructed in this way, forn = 10 the
unique graphs sf30,3,0,1) (thePetersen graphand srg10, 6, 3,4) (thetriangular
graph ) give a set of 10 equiangular vectorsii. Since there is a unique such
frame up to switching equivalence of the graphs, it folloWwsse two graphs are
switching equivalent to that obtained by taking the Palepbron nine vertices and
adding an isolated vertex (see Figure 12.3).

Example 12.46The strongly regular graph s#0,12 2,4) gives 40 equiangular
lines inR'8, which are not tight. There are no strongly regular grapkimgitight
frames of 40 or 41 vectors iR (see Table 12.5). Therefore the maximal set of
equiangular lines in 16 dimensions is not tight (see Tabl8)12
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Table 12.7: The list of all equiangular framesrok 50 vectors foiRY constructed from strongly
regular graph$ . Here the type refers to the three cases in Theorem 12.6.

d | type r n |d | type r
5 | 3 | nontight| srg(5,2,0,1) 36 | 26 | nontight | srg(36,10,4,2)
9 | 5 | nontight| srg(9,4,1,2) 36| 35| — srg(36,25,16, 20)
10 | 5 | tight srg(10,3,0,1) 36 | 15 | tight srg(36,14,4,6)
10 | 5 | tight srg(10,6,3,4) 36 | 21 | tight sr(36,21,12,12)
13 | 7 | nontight | srg(13,6,2,3) 36 | 28 | nontight | srg(36,14,7,4)
15 | 6 | nontight | srg(15,6,1,3) 36| 35| - srg(36,21,10,15)
15 | 10 | nontight | srg(15,8,4,4) 36 | 21 | tight srg(36,15,6,6)
16 | 6 | tight srg(16,5,0,2) 36 | 15 | tight srg(36,20,10,12)
16 | 10 | tight srg(16,10,6,6) 37 | 19 | nontight | srg(37,18,8,9)
16 | 10 | tight srg(16,6,2,2) 40 | 16 | nontight | srg(40,12,2,4)
16 | 6 | tight srg(16,9,4,6) 40| 39| - srg(40,27,18,18)
17 | 9 | nontight | srg(17,8,3,4) 41 | 21 | nontight | srg(41,20,9,10)
21 | 7 | nontight | srg(21,10,3,6) 45 | 25 | nontight | srg(45,12,3,3)
21 | 15 | nontight | srg(21,10,5,4) 45| 44 | - srg(45,32,22 24)
25 | 17 | nontight | srg(25,8,3,2) 45 | 36 | nontight | srg(45,16,8,4)
25| 24| - srg(25,16,9,12) 45 | 44 | — srg(45,28,15,21)
25 | 13 | nontight | srg(25,12,5,6) 45 | 23 | nontight | srg(45,22,10,11)
26 | 13 | tight srg(26,10,3,4) 49 | 37 | nontight | srg(49,12,5,2)
26 | 13 | tight srg(26,15,8,9) 49 | 48 | - srg(49, 36, 25,30)
27 | 7 | nontight | srg(27,10,1,5) 49 | 31 | nontight | srg(49,18,7,6)
27 | 21 | nontight | srg(27,16,10,8) 49 | 48 | — srg(49,30,17,20)
28 | 21 | tight srg(28,12,6,4) 49 | 25 | nontight | srg(49,24,11,12)
28 | 7 | tight srg(28,15,6,10) 50 | 22 | nontight | srg(50,7,0,1)
29 | 15 | nontight | srg(29,14,6,7) 50| 49| - srg(50,42,35,36)
35| 15 | nontight | srg(35,16,6,8) 50 | 25 | nontight | srg(50,21,8,9)
35| 21 | nontight | srg(35,18,9,9) 50 | 25 | tight srg(50,28,15,16)

Example 12.47The strongly regular graphs g6, 30, 8, 14) and srd76,40, 18, 24)
give equiangular tight frames of 76 vectors 1°, i.e., a srg75,32,10,16). Since
there are no other strongly regular graphs on 75 or 76 ver(ather than the com-
plements) [Hae93], it follows that there is a strongly reguraph on 75 points if
and only if there is a strongly regular graph on 76 pointsBRIR14] it was shown
there is no sr@76,30,8,14)), and in [AM15] that there is no s(@5,32,10,16). It
therefore follows that there is no i, 40,18, 24) (and hence no strongly regular
graphs on 75 or 76 points), and no equiangular tight fram&@$ ekctors forC1°.
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Example 12.48In [AM16], it was shown that no s(§5,40,12,20) exists, and so
there are not 96 equiangular linesR3°. From Proposition 12.6, it follows that no
srg(96,38,10,18) exists (see [Deg07]) and no $8$, 50,22, 30) exists.

The next open problem of the above type is the following.

Does there exist 148 equiangular linesi’, i.e., a srg147,66,2533?
The existence of such an equiangular tight frame impliestistence of a
srg(148,63,22,30) or a srd148 77, 36,44), and the nonexistence implies that
there is no strongly regular graph with 148 vertices.

The 6—cycle is a regular, buiot strongly regular graph. Its Seidel matrix has
three eigenvalues, and gives an equiangular frame of siorgefor R*. The dual
and canonical tight frames have equal norms (and more thaamgles). This is a
consequence of the 6—cycle beingiulant graph

LetC be a subset ¢, which is closed under taking additive inverses,+e £ C,

V¢ € C. Then thecirculant graph G with connection seC is the graph with vertices
Zn and an edge fromto k if j —k € C. The choiceC = {—1,1} gives then—cycle.

Proposition 12.7.(Circulant graphs) . Let” be a circulant graph, andp be the
real equiangular frame that it determines. Then the duairfes® and canonical
tight frame®®@" are equal-norm frames.

Proof. Sincel is a circulant graph, the Gramian @f is ann x n circulant matrix,
and hence is diagonalised by the Fourier mafjx.e.,
1

1 . - 2
FoH(+ 3 2)F =diagy,...A),  Fi= %[ K kezg, wi=€T.

SinceF is unitary, we can write this spectral decomposition as
1 _ . R PPN
|—|—XZZZ)\J'P], P =1 i fj = %(OJJ YkeZp-
]

The rank one projection matricé% have constant diagonal entries (equa%l)o
and so the dual and canoncial tight frames have equal-ndhas Gramians are
Yj %P andy;P). 0

Example 12.49(n—cycle graph) The Seidel matrix of the-cycle has a minimal
eigenvalue-1— 40052?” of multiplicity 2 with corresponding eigenvectofs;, f.
The corresponding equiangular frame isofectors forR" 2, and its complement
is the tight frame oh equally spaced vectors f&? (up to similarity).

Example 12.50(Paley graphs) Fon a prime congruent to Imod 4), the Paley
graphis circulant, with connection s€t given by the quadratic residues modualo
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12.14 Spherical two—distance tight frames

A set® = (x;) of n unit vectors inRY is called a $pherical) two—distance setif
the inner products between distinct vectors take two vadissdb, i.e.,

{(xj.x):j#k} ={ab}, a#b

The spherical distance between poirtsandx is CO§1<xj,xk>, and so these sets
have precisely two spherical distances between their fdlie maximum sizg(d)
of a spherical two—distance set has been studied for selecabes [BY13].
Whenb = —a, a spherical two—distance set is equivalent to a real equlan
frame (se€12.9). We therefore primarily consider the case whaenb # 0.
Lete,...,eq 1 be the standard basis f&?*+2. Then then = 3d(d + 1) points
ej + &, j # kgive a spherical two—distance set (after scaling), as d@esrthogonal
projection of these points onto tlde-dimensional subspace given by the orthogonal
complement o&; + - - - + €441 (See§12.16). We therefore have the lower bound

g(d) > %d(d+1).

Delsarte, Goethals and Seidel [DGS77] proved the “harniagper bound

g(d) < %d(d+3).

Various improvements and refinements of this have been reagleMusin [Mus09]
proved the upper bound

d(d+1), whena+b> 0.

NI

g(d) <

This generalises the estimate (12.2) for the maximal nurabef real equiangular
lines (the casa+ b = 0). As of the improvements of [BY13], the best estimates of
g(d) for d < 93 are as follows.

Theorem 12.14.The maximum size(d) of a spherical two—distance set&f' sat-
isfies
9(2) =5,

g(d) =

NI 2
w

d(d+1), 7<d<93 d=#£2246,78
g(22) = 275,
1 1
éd(dﬁ—l) <g(d) < éd(d+3)—l, d =46,78.
All the known maximal configurations are tight.

Given a spherical two—distance set= (x;), one can associate with it the graph
Ia with points {x;} and an edge from; to x, if (Xj,x) = a. The following result
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of [BGOY14] shows that if® is tight andb £ —a (@ is not equiangular), theRy is
a strongly regular graph, and that all tight nonequianguiar-distance frames can
be constructed in this way.

Theorem 12.15.Let @ = (x;) be a two—distance set, with;a —b and associated
graphl,. Then® is tight if and only ifl is a strongly regular grapisrg(v,k, A, 1),
in which case (after normalisation) its Gramian is one of

Po, Pot>, Pi Pt (12.47)

where B, Py, % are the orthogonal projections onto the eigenspaces of digccancy
matrix A ofl,. Further, all the projections of (12.47) give tight two diste sets.

Proof. Suppose tha® = (x;);_, is atight two—distance frame fdRY.
Let N, be the number of points a distanadérom a given poini;. Since® is a
unit-norm tight frame (withA = ), the norm of thg—th column of its Gramian is

1+ Nga2+ (v —1—Na)b? = g.

Sincea # —b, a?—b? £ 0, and so the above can be solvedNgrwhich is therefore
independent of, i.e.,l; is a regular graph.

Fix a pair of indicek, £ with (x¢,X,) = a. LetC, be the number of indicejs£ Kk, ¢
for which the distances betweanandx,x are botha. Since® is tight, Parseval
gives

(X, Xe) = i(xk7xj><xj7xe>,
=1

o<

from which we obtain

ga =2a+2(Nag—Cy— 1)ab+Caa2 +(v— 2Na+Ca)b2

= 2a+2(Ny — 1)ab+ (v — 2Na)b? + (a— b)°C,.

Sincea # b, this gives a unique solution fdZ;, i.e., every two adjacent vertices
haveA = C, common neighbours. Similarly, every two nonadjacent gegtihas the
same number of adjacent vertices, and'sis strongly regular.

The (normalised) Gram matrix @b is

P= g((l, b)l + (a—b)A+bJ).
The spectral decomposition &f(see Lemma 12.1) gives

J J
| =Po+Pt>,  A=0R+ TRk,

and soP can be written in the form
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J

The conditionP? = P implies thata? = a, B2 =8, y* = y, and saa, 3, y must be 0
or 1. The choice® = Py +P; + 3 =1 andP =Py + P, =1 — 2 give an orthonormal
basis and the vertices of the simplex, which are not twoadist sets. The other
choices give two—distance sets. For example, whenP; + % (which has constant

diagonal), we havd = rank(Pg) 4+ rank(J) = mg + 1, and, by Lemma 12.1,

mg+1 1 J J
P:L((l—b)lJr(a—b)AanJ):ﬁ(A—TI—(k—r);)JrU.
By taking an entry withA = 1, we obtain
mg+1_ 1 1 1 B v—k+6
v a_G—r(l_(k_T)v)+v — T merne-_1)

Similarly, taking an off diagonal entry witlj = O gives a formula fob. The
results of these calculations for the four possible choaresgiven in Table 12.8.
We observe that, sinae+ 0, each of these choices gives a two—distance setd

Table 12.8: The parameters of the tight two—distance set®%ogiven by I, a srgv,k,A, u).
Here the Gramian matrix (after normalisation) is the orthogpnajection matrixP, andN, is the
number of neighbours @t The condition for these to be equiangular is given in the lalstran.

Gramian matrixP | d Na | a b a= —bholds
Ps mg k % m;(ketfr) v=2Kk-T1)
P9 + % Mg + 1 k (mg\:li;J(rSefr) (mgllﬁr(g—r) V= 2(k_ 9)
Pr=1-Py— % v-mg—1|k (vf;;irli)i(g—r) (v—mgk:f)(e—r) v=2(k-0)
Pr+d=1-P |v-mg kK | omies TRoIET) v=2k-T1)

By combining Corollary 12.3 and Theorem 12.15, we obtain ar&tterisation
of all spherical two—distance tight frames in terms of therggly regular graphs.

Corollary 12.5. All spherical two—distance tight frames ofsnd + 1 vectors forRd
can be constructed from the strongly regular graphs as ¥ailo

1. (Equiangular) From therg(n— 1,k, 30 Ky k.= 1n_14 (1 1), /901,
2. (Nonequiangular) From therg(v,k, A, i), v =n.
Each complementary pair of strongly regular graphs givesr foonequiangular

spherical two—distance tight frames, unless: 2(k— 1) or v = 2(k— 8), in which
case there are only two (the other two being equiangular).
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Example 12.51For a srg10,3,0,1), we havef = 1, T = —2, so that
v=10=2(3—(-2)) =2(k—1).

Hence the spherical two—distance tight frames with Gramignand P; + % are
equiangular, and those with Gramia?ger% andP; are nonequiangular. HeRp is

the tight frame constructed by Proposition 12.6, a’net% is the one constructed
from the complementary graph.

Example 12.52Here, we consider the nonprimitive strongly regular grapkmyby
the union ofm complete graphs ow vertices, which is a sfgnww — 1,w—2,0).
We have =w—1,mg=m—-1,7=-1,m; =m(w—1), and

1 J

In this case, there are only two eigenvalues, skheav— 1 = 6. The corresponding
spherical two—distance tight frames are described in ThbI@.

Table 12.9: The parameters of the two—distance tight frame&%ogiven by the nonprimitive
2 =srgmww—1,w—2,0), which consists ofn copies of a complete graph enpoints.

Gramian matrixP | d Na a b description
Q=23A+)-2 |m-1 w—1]1 —=L5 | wcopies ofm-simplex
Q+3 m w—1]|1 0 w copies of{er, ..., em}
R=1-(Q+3) |[n-m w-1|-z4 |0 complement of second
R+Z=1-Q n—m+1|w-1| -4 | L | complement of first

12.15 Two—distance tight frames and partial difference set
We now show that nonequiangular two—distance tight framgisiware harmonic
can be constructed fropartial difference setécf. Theorem 12.3).

Definition 12.4. A d element subset of a finite groupG of ordern is said to be a
(n,d, A, u)—partial difference setif the multiset of (nonzero) differences

{izizt i i2 €31 # 2}

contains each nonidentity elementixactlyA times and each nonidentity element
of G\ J exactlyu times. If A = u then one has a difference set.
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Partial difference sets with # u are are reversible (i.e., closed under taking
inverses). A partial difference sétfor which 1¢ J is said to beegular. It suffices
to study the regular partial difference sets, sincgig a partial difference set with
1€ J, thend\ {1} is a (regular) partial difference set.

Proposition 12.8.Let G be an abelian group of order n, amh = (&|) g be the
harmonic frame given by & G, |J| = d. Then the following are equivalent

1. Jis a(n,d, A, p)—partial difference set for G.
2. Forallx #1, x € G,

A=t/ (A —p)2+4(d-)) 0cJ:
x(J) = e ' (12.48)
Jgj A—p£4/(A _2“)2+4(d_1u)’ 0 ¢ 3.

In particular, if these hold withA # u, then®; is a nonequiangular two—distance
tight frame of n vectors faR¢.

Proof. The equivalence of 1 and 2 is a standard characterisaticartédifference
sets [LM90],[Ma94]. By (12.48), the harmonic frame givendyartial difference
set is real, with two—distances, and is equiangular if arig ibrA = . O

Example 12.53The set]l = {1,4} C Zs (of nonzero quadratic residues) is a regular
cyclic (5,2,0,1)—partial difference set. The regulgd, 4, 1, 2)—partial difference set

J=1{(0,1),(0,2),(1,0),(2,0)} C Z3 x Z3.
is a noncyclic example.

Table 12.10 lists the regular abelian partial differends & d < 21.

Table 12.10: The reguldn,d, A, u)—partial difference sets fat < 21, where <A <k—-1, 1<
u<k—1,k< “%l This was adapted from [Ma94] (which lists those wdtk< 100).

n (d|{A|u ni{d|A|u n |d[A|u n |d[A|u
5 12|01 17(8 |3 |4 29 |14|6 |7 37 [18|8 |9
9 [4]1(2 36(10(4 |2 36 [15|6 |6 81 [20|1|6
16|5|0|2 49|12|5 |2 81 |16|7 |2 121120(9 |2
16(6(2|2 25|12(5|6 64 [18(2 |6 41 |20|9 |10
13|62 |3 36(14|4 |6 49 [18|7 |6 64 |21|8 |6
25|83 |2 64|14(6 |2 100(18(8 |2 243|221 |2

Example 12.54The set] = {0,1,4} C Zs is a cyclic(5, 2,0, 1)—partial difference
set. It is not regular, since it contains the identity O.
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In view of Theorem 12.15, the nonequiangular two—distarex@nbnic frames
must be associated with strongly regular graphs. Thesetitrto be Cayley graphs.
ForJ a generating subset of a groGwith 1 ¢ J, the (uncolouredCayley graph

has verticess and a directed edge frogy to gz if g = 01j for somej € J (Jis
called theconnection s@t For J with J-1 = J (e.g., a partial difference set with
A # ), the Cayley graph given byis undirected.

Proposition 12.9.If J is a regular(n,d, A, u)—partial difference set for a group G
with A # u, then the (undirected) Cayley graph given by J &@n,d,A, ).

There is a converse of Proposition 12.9 (the condifiog [ is replaced by the
condition that the partial difference set be reversiblea 4.

12.16 The standardm—distance tight frame

We say that a seP = (x;) of n unit vectors inRY is a (spherical) m-distance set

if the inner products between distinct vectors takealues. This generalisation of

the isogonal configurations of Example 3@ 1) and spherical two—distance sets

(m= 2) are not well studied. However, we can provide one nice gkam
Letey,...,eq;1 be the standard basis 1. Then then = (1) points

m
&t €, 1<ji<-<jm<d+1l

give anm—distance set (after scaling). The orthogonal projectfdhese points onto
(e1+---+e441)" gives arm-distance tight frame fdRY.

Proposition 12.10.Supposd < m<d. ForJ={j1,...,jm} € {1,2,...,d+ 1}, let

m
Wi ::ejl+ej2+“.+ejm_ﬁ(el+"'ed+1)'

Then(w;)3—m is a tight frame for(ey + - -- +€441)*, with Gramian given by

(Wy,Wg) =r [INK]|=r.

o d+1

Proof. This frame is the highly symmetric tight frame of Example kxparticular,
it is tight, since it is the orbit of an irreducible unitarytem. Writing

m
Wy = e+ & — —— (€1 +--€dy1),
E;K R;K d+1

and expanding the inner product gives

Wy, W)= |r— M ) - (-
d+1 d+1 d+
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O

d+1-m

The number of entries in a given column of the Gramian([§) (°} -,

for there to be at least oneentry, one must have

), and so

d+1-m>m-r <= d+1>2m-r.

In particular, ford + 1 > 2m,

_ d+1
®=@W)plm = mG o

is anm—distance tight frame o(f’;l) vectors forRY, with distances

d+1 ( mz)7

T mdrim\ T dr1

r=01,....m-1,

which we call thestandard m-distance tight frame.
Example 12.55Ford > 3, the standard 2—distance tight frame has

d-3 2

a:alzz b:ao:—dil, (12.49)

d-1)°

and corresponds (Vi in Theorem 12.15) td; = Ty, 1, the triangular graph
which is a srgj%d(d+ 1),2(d — 1),d — 1,4). The triangular graph is the unique
graph with these parameters, except for wden 1 = 8, in which case there are
three other sr28,12 6,4) (the Chang graphs).

Example 12.56(28 equiangular lines iiR’) The standard 2—distance tight frame
gives a set of equiangular lines if and onlyaif= b in (12.49), i.e.d = 7, which
gives the 28 lines of (12.6)

12.17 Complex equiangular tight frames

We first observe that the complex analogue of Theorem 12.It3ho

Proposition 12.11.Suppose d> 1. A necessary condition for an equiangular tight
frame of n> d + 1 vectors forCH to exist is that

n < min{d?, (n—d)?}, (12.50)

or, equivalently,

1+v4d+1 2d+1+\4d+1

d+ > >

<n<d? (12.51)
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Example 12.57There is no equiangular tight frame nf= d + 2 vectors forC¢
whend > 3.

The existence and construction of equiangular tight fraofies= d? vectors for
€Y is a compelling subject (see Chapter 14).

There have been attempts to adapt the methods of consgguetthequiangular
tight frames to complex ones. Most notably, by restrictimgéntries of the Gramian
(or the vectors) to ben-th roots of unity: thereby giving a finite set of possible
vector equiangular tight frames f@49. When the entries of the vectors are roots
of unity (as for harmonic frames), then< d? —d + 1 (Theorem 12.16). When
the entries of the signature matrix are roots of unity (geligng real equiangular
tight frames), then there exist some intriguing exampleduding a maximal set of
n = d? equiangular lines fod = 3, 8.

We now give some details on the known constructions.

Theorem 12.16.Suppose thatb = (f;) is an equiangular tight frame of n (unit)
vectors forCY, for which the entries of Gram( @) are contained in a subring? of
the algebraic integers. Then

1. o/ has elements of modul d(n"__f)
2. 909 ¢ Nz
3. n= 3d(d—1)+1, for some positive intege¥. In particular, n< d? —d + 1.

Proof. By our assumptiomjx := d(fj, fx) € o7, j # k. Since® is equiangular,

laj| = d|(fj, f)| =d \/ \/

For any fixedj # k,

d(in—d
(n—l ) _ |aj|? = ajaj € ,
so that ( ) is a rational algebraic integer, and hence is an integew(inFurther,
B din—d) d(d-1)
A=d- n-1  n-1
is a rational algebraic integer, and hence is a positivgyere ad

Example 12.58(Unital frames) If then vectors of® have the form

V1

Vi,...,Vq € &,

ol

Vd
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where.«/ is a subring of the algebraic integers which is closed undajugation,
thend Gram( @) has entries in, and san < d? —d+ 1.

A special case is when the entrigsare m-th roots of unity, which is known
as aunital equiangular tight frame (of degrem). These are a generalisation of
the equiangular harmonic frames ($d.3). The only know example of a unital
equiangular tight frame which is not harmonic is one of 57¢tes forR276, given
by aKirkman frame[JMF14]. For example, [STDHO07] found a unital equiangular
tight frame of 27 vectors foE'2 with m= 3 via a computer search. This corresponds
to a(27,13,6)—difference set foZ3.

Theorem 12.17.(m-th root signature matrices) Letbe the signature matrix of an
equiangular tight frame of n vectors f@°. Then

A1+A2=(n—2d) € Z[%] (thering generated by the entries by.

d(n—d)
If n #£ 2d, and the entries aof are algebraic integers, then eigenvaluessof

_[din—1 _
M=o\ g AT

(n—d)(n—1)
d

are algebraic integers in the subfield Gfgenerated by the entries &t Thus, if the
entries of2 are powers of the primitive m—th root of unidy= ezﬁm, then

A1,z € Z[w+ @] = Z[cosZ].

Proof. Multiply (12.22) byz; = Zj to obtainA; + A, € Z[Z]. If the entries o are
algebraic integers, then so are the coefficients of the ctatrstic polynomial of,
whose roots\1, A, are therefore algebraic integers. Fo£ 2d, solving

A1+A2=(n-2d) € Z[2], (n—d)A1+dA2=0,

shows thatA1, A, are in the field generated by the entries>ofFinally, whenX
consists ofn-th roots of unity, we have thag, A, are in the cyclotomic fiel@(w).
SinceAq, A2 are also real algebraic integers, they aré&{w+ ) (the intersection
of Q(w) and the real algebraic integers). O

Example 12.59(SICs) Fom = d?, we have
Ai+A2=(d-2)vd+1
Thus, ford # 2, v/d + 1 must be in the field generated by the entrie& of

Example 12.60(Cube roots) If the entries of & giving an equiangular tight frame
are third roots of unity thei1, A> must be integers. It can be shown [BPT09] that
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Al,)\z =2 (mod 3)

In particular, sinceA1A, = n—1, one must have = 0 (mod 3. Let w = e
Forn=9, d = 6 there is a cube root signature matdxgiven by the Kronecker
product type construction of Example 12.29 (taking the pobégain gives = 81,

d = 45). This example can also be obtained by associ&imgth a directed graph
(1 corresponds to a nonedge, aidw? to directed edges) [BPT09]. The choice
n=33,d = 11 givesA; = —4, A, = 8. It is unknown whether or not there is a cube
root signature matrix with these parameters.

The above condition oA, A2 has been generalised by [BE10] as follows.

Theorem 12.18.Let p> 2 be prime. If the entries of are p—th roots of unity and
5 is the signature matrix of an equiangular tight frame of ntees for C9, then

1. A1, Ao are integers, with\1,A; = p—1 (mod p).
2.4(n—1) + (A1 — A2)? is a perfect square, which Bmodulo §.

Many of the knownp—th root signature matrices for equiangular tight frames ar
given by Theorem 12.8 applied Butson typecomplex Hadamard matric&s i.e.,
those withp—th root entries.

Corollary 12.6. Let V € H(p,m), i.e., be a complex Hadamard matrix of order m
with p—th root entries, and K H(p,?) be given by (12.26). Then

1. K—1is a p—th root signature matrix for an equiangular tight fre of n= n?
vectors for a% m(m+ 1) dimensional space.

2. | — K is a2p-th root (or a p—th root, when p is even) signature matrixdar
equiangular tight frame of B n? vectors for a%m(m— 1) dimensional space.

Proof. By construction, the entries & — | are p—th roots of unity, and those of
| — K are the negatives qf-th roots of unity (which are [2-th roots wherp is odd,
and arep-th roots wherp is even). O

The equiangular tight frames of Corollary 12.6 are subsicrgdlwith r = m+ 1.

Example 12.61(Butson) Letp be a prime. There are complex Hadamard matrices
V of orderm= 21 p¥, 0< j < k, whose entries arp-th roots of unity [But62]. Thus,
with _

n=(2/p%2, 0<j<k

there is ap-th root signature matrix of sizegiving an equiangular tight frame of
vectors ind = %21 p"(2J P+ 1) dimensions. The complementary equiangular tight
frame in32/ pX(2/ p* — 1) dimensions has ap2th (or p-th) root signature matrix.

Example 12.62(n = 36) There exist & 6 complex Hadamard matrices with cube
root entries and with fourth root entries. Thus there js-th root signature matrix
for an equiangular tight frame of 36 vectors@i? for p = 2,3,4, and one irnC*®
for p=2,6,4 (the complement). The real equiangular tight framgs-(2) can be
obtained from a reversible difference set (see Example5)2.1
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Example 12.63(Conference matrices) L& = —C" be ann x n skew—symmetric
conference matrix(must be a multiple of 4 when# 2). Then

Z=iC
is the signature matrix (with entriesi) of an equiangular tight frame aof = 2d
vectors forCY. This follows by Theeorem 12.7, via the calculation (seerEx2.11)

s2— _(-Ch)c=(n-1)I.

These frames are not subsimplicial, simce v/2d — 1 implies that is odd, and so
n = 2d is not a multiple of 4. Given an x n skew—symmetric conference matfx
one of size A is given by

C C-I
C+l -C )
For example,
0—i—i—i

0-1 [ C C-—I i 0 i —i

C= — X =i =
(1 O) <C+I —C) i —i 0 i
ii —-io0

which is the signature matrix of an equiangular tight frarhéoar vectors forC?.
Fourth root Seidel matrices are studied in [DHS10].

A suitable choice foH® in Theorem 12.4 givep—th root signature matrices.

Corollary 12.7. For a (2,k, v)—Steiner system, let m be the product of the prime

factors of r+-1 = ‘ﬁ + 1. Then there exists a Steiner equiangular tight frame of

n=v(r+ 1) vectors for a space of dimension=d ‘I’(gﬁjll)) whose signature matrix

has nonzero entries the m—th roots of unity and their negativ

Proof. In the construction of Theorem 12.4 take e&t{® to be a Fourier matrix
with m—th root entries. a

Example 12.64There exist Steiner equiangular tight frames wéctors forCd with
m-th root signature matrices in cases where such frames dabenconstructed
by the methods already considered, e.g., wired) is (45,12) (r = 4, m= 10),
(65,13) (r =4, m=10),(65,13) (r =5, m=6), (65,13) (r =6, m=14).

Example 12.65The inner products between the vectors in a Tremain equiangu
tight frame are products of the entries of the Hadamard oestrihat are used in
their construction (see Exer. 12.10). The Hadamard matHé® can be taken as
in Corollary 12.7, and the Hadamard matrix giving the thenodular simplex in
CY can be taken to be one of these tensored byx®2eal Hadamard matrix. In
this way, Tremain equiangular tight frames can be consttbaiith with signature
matrix have nonzero entries given by timeth roots of unity and their negatives.
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Motivated by Theorem 12.18, in Table 12.11 we listralll (d < 30) for which
the eigenvalued;, A of the signature matriX of an equiangular tight frame of>
d+ 1 vectors forCY are integers. In view of (12.13), this condition is equival®
both the frame and its complementary frame being subsimpli&/e indicate when
anm-th root a signature matrix of such a frame is known to exigtCbrollaries
12.3,12.6 and 12.7, or the Hoggar lines<{ 64,d = 8 see§14.6).

Table 12.11: Then,d (d < 30) for which the eigenvaluek;, A, of the signature matriz of an
equiangular tight frame of > d + 1 vectors forCY are integers. We indicate when such a signature
matrix is known to exist with entries which ane-th roots, and use grey when it is unknown.

n [d | A1 As|exists n d | A1 Ay | exists n d | A1 Ao | exists
9 |13 |-2 4|m=6 65 | 13| —4 16/ m—10 126(21|-5 25|m=2
10|{5 [-3 3 |m=2 105|14| -4 26/m>3 33 (22|-8 4 im>4
916 |-4 2|{m=3 25 (15| -6 4 |m=5 55 (22| -6 9 [m>4
16|6 [-3 5| m=2 36 [15|-5 7 |m=2 176|22| -5 35|m=2
28|7 | -3 9 m=2 225(15( -4 56| m>2 276|23| -5 55| m=2
64|18 | -3 21|m=4 51 {17|-5 10|m=>4 576({24| -5 115/ m>4
16{10({-5 3 |m=2 76 (19| -5 15|m>2 50 |25(-7 7 |m=2
25|10| -4 m=10 96 (20| -5 19|m=6 91 (26| -6 15 |m=14
33|11| -4 m>3 28 |21{-9 3 |m=2 49 |28/ -8 6 |m=7
45(12| -4 11|m=10 36 [21|-7 5|m=2 64 |28/-7 9 |m=2
26|13|-5 5|m=2 49 |21|-6 8 |m=14 145|29| -6 24 |m>4

Example 12.66(SICs) Fom=d? andd = j>—1, j = 2,3,..., we have
/\]_:—j7 Az:j(j2_1)7 ,/d_|_1:J

The first two cases are:

e d =3, where there is a cube root signature matrix,
e d =8, where there is a fourth root signature matrix (the Hogiges)).

Both are exceptional cases for SICs. In view of this, one gatwate about the
existence of a SIC for
d=152435,...

with a simple form, which is not a Heisenberg SIC (§&4.5).
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12.18 Algebraic equations for tight complex equiangular lnes

The equations (12.22) determining the signature ma&irof an equiangular tight
frame ofn vectors forCY each involve variablegj from each row/column of.
The number of these variables can be reduced by considereduaed signature
matrix > (Proposition 12.3). Here we consider necessary equatianiwolve only
variables from principal submatrices af= [zy]. These have been used to good
effect by Spll6si [SD14] to investigate the existence of complex equiangutgt ti
frames with small numbers of vectors. We now consider thaxsasi.

The Gramian of an equiangular tight framerofinit vectors forC9, n > d, has
the form

1 azoaziz--- azn

azi; 1 azs--- azpp
n—d
=l4+aZ=|azz302%3 1 aQ=,|— Zik| =1

aZin 02 1
(12.52)
whereP := [ Qis a rankd orthogonal projection matrix (s&d2.6). In particular,

(i) The (d +1) x (d + 1) minors ofl + a X are zero, giving(dil)2 equations.

FromP? =P, i.e.,dQ*—nQ=0, a block matrix calculation (see Exer. 12.15) gives

(iri]) If Qn_r is a principal submatrix o0Q = | + aX of sizen—r, 0<r < 3,
then

rankdQ@_, —nQy_;) <T.

n

2 .
.11)” equations.

For a giverr, this gives(

Less obvious equations involving principal submatriceg aff sizen— 2, can
be obtained from the equations (12.22) which charactega@agular tight frames,
by using the following identity for the triple product of te flat vectors irC2.

Lemma 12.2.Let xy,z€ C?, with |x1| = [X2| = |y1| = |y2| = |z1| = || = 1, then
<X7y> <y,Z><Z,X> = |<X7y>|2+ |<y7z>|2+ ‘<Z,X>|2 —4.

Proof. By direct calculation, using the fact thét=1/&, when|&| = 1. O
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With z;; := 0, the equations (12.21), which characterise equiangglatrftames,
can be written

(nZd)Vd(nrr—ld)z""b ; ZasZsh— (N—1)8p, 1<ab<n

s#ab
Thus, for 1< a,b < n-2, we have
n—2

d(nn__ld)zab— ; ZasZsh+ (N—1)0ap = (Va,Vp),  (12.53)

Cab:= (N—2d)
s#ab
whereva := (Zan-1,Zan) € C2. Since eachy, is flat, we can apply Lemma 12.2

to obtain equations which depend only on the principal subraf the signature
matrix = = [zj¢] of sizen—2.

Theorem 12.19.([S214]) Let n> 5 and = = [zj] be the signature matrix of an
equiangular tight frame of n vectors f@, n > d (here z; = 0, zx = %, j # k).
For1<ab<n-2, a#b, define

n—1 n-2
Cab = (n—2d)1/d(n7d)zab— Z ZasZsh, a#b,  Caa=2  (12.54)

s#ab

ThenX satisfies
CikCkeCrj = |Cik|2+ ok +lcrj 2 —4, 1< jkf<n-2 (12.55)

Proof. By Lemma 12.2, withx = vj, y = v, z= Vv, we have (12.55), where the
formula (12.53) defining,, can be written as (12.54). O

In [Sz614], the equations (i), (ii) and (12.55) for &én— 2) x (n— 2) principal
submatrix of the Gramian was used to give a description gp@dlsible sets of
tight complex equiangular lines i@®. We now outline what they are.

Example 12.67There exists a unique set pftight equiangular lines i€ (up to
projective unitary equivalence) for= 3 (orthonormal basis) and = 4 (vertices

of the tetrahedron). Far= 5 there are no tight equiangular lines (Example 12.57).
For n = 6 there are tight real equiangular lines given by the diatpoofathe regu-

lar icosahedron (Example 12.39). Further, a calculati@infuGroebner bases) of
the possible 4 4 principal submatrices, shows that all the Gramian magrfoe
equiangular tight frames six vectors@¥ have the (reduced signature) form
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(V51 1 1|1 1]
V5 a —al-1 1
a+vh1|-a-1
-a 1l +5a -1
—-1-a al|Vv5 1
1—1—11\/5_

, acC, |a=1

Sl
e

Forn=7, there is a unique set of 7 equiangular lines (given by thebaic frame
for the (7,3, 1)—difference set). Fan = 8, there are no tight equiangular linesGa
(the equations have no solution). Foe 9, there is a one parameter family of SICs
(see [BWO07], [Zhul2], [Sa14]).

Example 12.68For C#, sets ofn tight equiangular lines are known for= 4,5
(orthonormal basis, simplex),= 7,13 (harmonic frames given by difference sets),
n= 8 (Example 12.63), and= 16 (a SIC). There are no tight equiangular lines for
n=6 (Example 12.57), and so we can pose the following elemgpfzen problem:

Is there an equiangular tight frame of 9 vectors@3e

12.19 Mutually unbiased bases and-angular tight frames

For an equal-norm fram@ (or set of lines), its set ainglesis
Ang(®) := {|(v,w)| : vw € @ are are not scalar multiplgs

It is said to bes—angular (or hass angles) if And®) hass elements.
The 1-angular frames/lines are precisely the equiangalards/lines, and MUBs
are 2—angular tight frames. We now generalise Theorem 12.2.

Theorem 12.20.Let @ be a set of n unit vectors ii¢ (d > 1) giving a system of n
(distinct) lines with s angles A Ang(®), and

ik [ P -axx _J1 0eA
o= et [] =20, k.{o’ 0k

Then the polynomial§py }ve o are linearly independent, and hence

S— 2 .
n< {E(Hs ) OF A (12.56)

d+s—1) (d-;sIZ), OcA

S
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Proof. Eachpy is a polynomial which is homogeneous of degsée x;, ...,Xq and

is homogeneous of degree-kin Xi,...,%g. The spacél?. , (CY) of such polyno-

ss—k
mials has complex dimensidi;®;") (*7%"9™1) (see Exer. 6.17). By construction,

Aw(pv) = pv(W) = dyw, V,\we @,

so the{py}veo are linearly independent, and we obtain (12.56). ad

Remark 12.1The same argument gives the following bound for vectorsgigys-

tems of lines irRk4 L
S—‘r o .
( d— )7 0 € A,

"= { (zsgdi_z), OeA (12.57)

Example 12.69For nonorthogonal equiangular lines=€ 1, 0 & A), (12.56) and
(12.57) give Theorem 12.2.

Example 12.70Spherical two—distance sets (and tight frames) are 2—anfyames
for RY (see§12.14). The estimate of the maximum size of a spherical tigbace
set inRY given by (12.57) has a higher order of growthdrthan that given by
Theorem 12.14 (though it is exact for= 2).

Example 12.71The highly symmetric tight frames given by finite reflecticogps
(see§13.8,§13.10) ares—angular tight frames witk small(see Tables 13.1, 13.2).

For the 2—angular frame give g mutually unbiased bases f6 (see§2.11),
the bound (12.56) gives

d+1\/d\ 1, 1
< = <z .
md_( ) >(1> SdPd+1) — m<zdd+D)

The following argument of [WF89] gives the sharper boumd d + 1.

Proposition 12.12.Let. % be m mutually unbiased bases 6. Then m< d + 1.

Proof. Let R, be the orthogonal projection ontce CY, so thatR, — 'a is a traceless
Hermitian operator. SincB € # is an orthonormal basig, .z P, = |, so that the
matricesR, — 'a, v € B are linearly dependent and span a spgg®f dimension
< d-1. The space¥g, B € & are orthogonal in the Frobenius norm, sinceor
andw in mutually unbiased bases, we have

1 1 1
(R — e RPv— a) =tracgR,Ry) — atrace(P\,) - atrace(PW) T tracel)
1 2 1
= a — a + a =0.

The dimension of the real vector space of traceless of Hemmitperators isl> — 1.
Thus a dimension count gives dimgczVe < m(d—1) <d? — 1= (d+1)(d—1),
and cancellingl — 1 gives the result. O
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12.20 Mutually unbiased bases and Hadamard matrices

We now investigate MUBs in more detail. First consider theeoaf two MUBS(v;)
and (w;) for CY. The synthesis operator of this tight frartg) U (w;) is [V,W],
whereV = [vj], W = [w;], and so its Gramian has the form

V*V V*W I V*W
W*V W*W W*V |

Thus, to understand two MUBs up to unitary equivalence,fitces to consider the
d x d matrixV*W. This leads to the following connection with Hadamard necasi

Lemma 12.3.Two orthonormal basegr;) and (w;) for C% are mutually unbiased
if and only if

(Wg,va) - (Wg,Va)
Hi=Vdvw=vd| : - (12.58)
(Wa,Vq) -+ (Wg, V)

is a (complex) Hadamard matrix (of size d).

Proof. If V = [vj] andW = |w;] are the synthesis operators of orthonormal bases
for CY,i.e.,V*V = andWW* =1, thenH := /dV*W satisfies

H*H = d(W*V)(V*W) = dW* (VV*)W = dWW = dI.

Thus(v;j) and(wj) are mutually unbiased if and onlykf has entries of modulus 1,
i.e.,H is a Hadamard matrix. O

We will refer to theH of (12.58) as théHadamard matrix of (vj) and (w;).
Conversely, ifH is a (complex) Hadamard matrix of sidethen

1
Q_( ! ﬂH) (12.59)

1 g
Ly

is the Gramian of two mutually unbiased bases@8r This follows sinceQ has the
correct form, and is a tight frame f@4, sinceP = %Q is an orthogonal projection
of rankd, by the calculation

1 * 1 1 1
I R LA LA VG LA I VLA I
A\ FH + FH FHH 4 2\ Ly

vd vd
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Two MUBs for CY are determined up to unitary equivalence by their
Hadamard matrix, and each Hadamard matrix correspondsot®étuBs.

The vectorgv;) and(w;j) can be multiplied by unit scalafgrj) and(f;) so that
the Hadamard matrix of (12.58) has each entry of it first roat e@lumn 1. This is
called adephased Hadamard matrix In this way, each pair of MUBSs corresponds
to auniquedephased Hadamard matrix: onegis chosen the remaining scalars are
determined by

<[3ka,le1> =1 1<k<d, <B1W1,C¥J'Vj> =1 2< j <d, (12.60)

with each choice ofr; giving the same dephased Hadamard matrix, which we call
thedephased Hadamard matrix of(v;) and (w).

Proposition 12.13.Two mutually unbiased bases f6f are uniquely determined
up to projective unitary equivalence by their dephased Hiaala matrix.

Proof. Let (vj) and(w;) be mutually unbiased bases f6f. We already observed
that their dephased Hadamard matrix is projectively uiytamvariant. Indeed, by
solving (12.60), we see that tli¢ k)—entry of the dephased Hadamard matrix is the
4—product

(B, V) = (Wi, Vi) (Vj, W) (W, V1) (V1, W)

It therefore suffices to show thét;) and(w;) are determined (up to projective
unitary equivalence) by their dephased Hadamard métriXhis follows from the
formula (12.59), which gives the Gramighof a frame that is projectively unitarily
equivalent ta(vj) U (wj). O

Hadamard matricell; andH, are said to bequivalentif there are unitary di-
agonal matriceg\; = diag(aj), N> = diag(8j) and permutation matrice®;, Pr,
with

Hi = AP TH P A,

In particular, For the Hadamard matiik= v/d[(w, ;)] of (12.58) is equivalent to
AL P HPA = A (Wei, Vo )] TA2 = [(BWek, Vo )]

Thus we have:

Two MUBs for C9 are determined up to projective unitary equivalence by

their dephased Hadamard matkx and are determined to projective unitary
equivalence after a reordering blyup to Hadamard matrix equivalence.

A catalogue of complex Hadamard matricgas given in [TZ06a], and an online
version (for 2< d < 16) is maintained by Bruzda, Tadej aAgczkowski.
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Example 12.72Ford = 2, 3,5 there is a unique complex Hadamard matrix of size
d up to equivalence, which is given by the Fourier matrix (3¢&597], which uses
the language ofmaximal abelian«—algebra3. Ford = 4, there is one—parameter
family of inequivalent Hadamard matrices given by

11 1 1

) 1 ie? —1 —ie?

F,7(a) = , O<a<rm
1 -1 1 -1

1—jeld —1 je@

Motivated by this example, it was conjectured that there imiglue Hadamard
matrix of sized (up to equivalence), given by the Fourier matrix, wikis a prime.
However, this is not the case for primps> 7 (see the discussion of [8%0]).

Example 12.73The Hadamard matrices of side= 6 have not been fully classified.
There is evidence that their variety has dimension 4 (seSBIN [SD12]).

LetH bed x d matrix with complex entries of unit modulus. Then then eopret
H*H =dI

characterise wheH is a Hadamard matrix. These are the analog of the equations
52— (A1+A2)Z — (n—1)I = 0 for the signature matrix of a equiangular tight frame
(Corollary 12.1). Define the dephased forntbés for when it is a Hadamard matrix

11

1=(1,...,1) eRYL Heclbxd1)
1H

)

We callH (which has unit modulus entries) theduced Hadamard matrix of H.
The analogue of the equations of Proposition 12.3 is asvsllo

Proposition 12.14.LetH be the reduced Hadamard matrix of axc matrix with
entries of unit modulus. Thet gives a dx d Hadamard matrix if and only if

LHH=dl-J,J=1"1 i
2. 1is an eigenvector dff and ofH* for eigenvalue-1.

Proof. Block multiplication of the condition for being a Hadamarditmx gives

11* 11* d 1* +1*H g d o

1H 1H 1+H*1 1T + H*H 0dlg_1

Equating the blocks gives 1, and tHais an eigenvector ofi* for eigenvalue—1.
By considering the conditiodH* = dI instead, we conclude thatmust also be an
eigenvector oH (for eigenvalue-1). O
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By using Lemma 12.2 (as in Theorem 12.19), one can obtairssapgequations
for being a Hadamard matrix that depend only of the subnestriéH of sized — 2
(see [Haa97]). We now briefly consider how to go frtwao mutually unbiased bases
(a Hadamard matrix) tthreeor more.

Theorem 12.21.There are m mutually unbiased bases €t if and only if there

are m— 1 Hadamard matrices b...,Hm of size d, for which thg(m— 1)(m—2)

matrices 1
—H"H, 2<j<k<sm,

have entries of modulus &f

Proof. LetVi,...,Vny, be the synthesis maps farmutually unbiased basés,, . .., Zn

for CY. Let Hj be the Hadamard matrix faB; and %m, i.e.,Hm = v/dV;'Vim. Then

the Hadamard matrix fo#; and % is

1 1
— = —HIHy.
Jd va e

Thus all the Hadamard matrices for tb8, ..., %, are determined bi,, ..., Hny
by the above formula for 2 j < k < m. These matrices satisfy

Hjic == VAV Vi = VAVF (VIVD Vi = —= (VAV} V)" (VAV; Vi)

HjiHji = 5 (HH) (HcHj) = SHJ(dDH; = SHf (dDH; = dl,
and so are Hadamard (giving mutually unbiased bases) if ahdibthey have
entries of modulus 1. O

The condition thaH;"Hx have entries of constant modulus, gives the following
concrete construction for the mutually unbiased bases.

If Ha, ..., Hny are the Hadamard matrices of Theorem 12.21, then the columns
of thed x d matrices

give m mutually unbiased bases fa¥.

Example 12.74For the three MUBs fof2 of Example 2.18, i.e.,

sl b =l el Al

the Hadamard matrices of Theorem 12.21 (which are all etpritpare

H 11 H 11 ith H 1 LN 1 (1+il—i
1= ) 2= ,  WI 23= —=HoH3=— .
1-1 i i V2 V2 \1-i14i
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12.21 Examples of MUBs

Let F be thed x d Fourier matrix as defined by (2.5), i.e.,
Fi .= ™, ke Zqg, w=et.

The columns of are an orthonormal basis f@l°. SinceF has entries of constant
modulus, this basis is mutually unbiased to the standarig bgs. This still holds
if the rows/columns oF are multiplied by unit scalars. In this way, we seek further
mutually unbiased bases. Suitable scalars can be desamibemins of the diagonal
matrix R of §14.7, which is given by

Ric = Ut ey, jkeZq, pi= e (12.61)
This matrix plays a key role in the description of the know@$&(see Chapter 14).

Theorem 12.22 L et F be the d< d Fourier matrix, R be the & d diagonal matrix
given by (12.61), and define orthonormal bases by

&:={e}), B :={RFe}.

Then for¢,m e Zy, the following pairs are mutually unbiased bases

1.{%,, &Y.
2. {By, B}, L—ME T

In particular, for d a prime &, %y, ..., AB4_1 are d+ 1 mutually unbiased bases.
Proof. We have already observed th&; and& are mutually unbiased, since

1
NGk

To show that#, and %y are mutually unbiased, we require

(RFex.€))| = |(RF) k| =

|(R'Fex, R"Fej)| = |(FIRMF) | = a:=/(—meZyg,

1
\/67
i.e., the matrixF ~'R?F, a € Zq, has entries of constant modulus (&t 0). In

other wordsH, := vdFRF is a Hadamard matrix. This can be done by a direct

calculation using Gauss sums (see Exercise 12.19), orlaw/fol
A calculation (see Exer. 12.19) with Gauss sum shows that

(FI1RF) jk = 9 Ve I KFIRF) o (12.62)

SinceF ~1R8F is circulant (it is diagonalised by the Fourier matrix),sthinplies
that it has entries of constant modulus wizge a unit (and so generatg&g). O
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Example 12.75For d = 3, the diagonal matrix iR = diag(1, w?, w?), w = €3 .
Thus four mutually unbiased bases @t are given by the standard basis, together
with the columns of the matrices

11 1 111 11 1
1 1 1
F=—|lwa?|, RF=—Zl?1low|, RF=—F|waw? 1
7 2 \@w ) \@w
1w w W wl w 1 o?

Example 12.76For d = 6 (which is not a prime power), any pair of (cyclically)
consecutive base%,...,%s are mutually unbiased. Therefo# together with
any consecutive pai#;, %j1 givesthreemutually unbiased bases faP.

A long standing open question is tMdJB problem
Do there exist more than three mutually unbiased bas€§Mm

There are various constructions f- 1 MUBs for CY whend is a prime, or a
prime power (see [GR09]). All of these constructions aresas a construction of
[CCKS97] based osymplectic spreadandZ,—Kerdock codeswhich gives many
projectively unitarily inequivalent sets af+ 1 MUBs for CY, whend is anodd
power of two We now give the construction of [WF89] (also see [KR04]).

Example 12.77Letd = p" be an odd prime poweFy be the Galois field of ordet
(viewed as an extension @f,), with field tracetr : Fqy — Zp. Defined x d matrices
V, = 1 [wtr<a12+1k)]

vd

Thenl, V,, a € Fy, are the synthesis mapsa#- 1 mutually unbiased bases f6f'.
Ford = p > 2, the field trace is the identity, and so the matri¢ggare given by

j keFy? acFy.

Va=R?®F,  acZqg,
which are the bases of Theorem 12.22 (since 2 is a unit).

Example 12.78Let d = 2" be an even prime power, an@ be the Galois ring
GR(22,n) with Teichniiller set.7, and trace tr % — Z4. Defined x d matrices
by

Wa_i[itr(aszijk)]

vd

Thenl, W, a€ %, are the synthesis mapsaf- 1 mutually unbiased bases f6F.

j:keTn?

The examples of this section can be viewed as the eigengagitorthogonal (in
the Frobenius inner product) commuting (up to a scalaramypitatrices, e.g., see
[BBRV02], [KR04], [GR09], Exer. 14.17 and Theorem 12.22)
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Notes

There is currently considerable activity on determiningnestes of the maximal
numberM(d) of real equiangular lines iiR® (see§12.8 and Table 12.3), e.g.,
[Gre16] reduced the bound for equiangular lineR#¥ from 48— 61 to 48— 60,
then [SD17] improved it to 54- 60, [BY14] give bounds orM(d) obtained by
semidefinite programming, and [Buk16], [BDKS16] give asyatic estimates i
for when the angle is fixed. Maximal relative projection constants and equidag
tight frames are studied in [FS17].

There are various internet sites with lists of equiangufgittframes (also see
[FM15]), and the associated geometric structures, sudliffesence setsSteiner
systemgsstrongly regular graph&ndHadamard matricesAn excellent resource is
the talks and follow up preprints on the webpage of the wasgSystems of Lines:
Applications of Algebraic Combinatoricgganised by Bill Martin.

Thanks to Alexander Barg, Peter Cameron, Simon Foucart;, Gegaves, John
Jasper, Ferenc 8lt6si and Wei-Hsuan Yu for many insightful discussions.

Exercises

12.1.Show that the dimension of the real vector spacé »fd Hermitian matrices
is 2d(d + 1) whenF =R, and isd? whenF = C.

12.2.Suppose tha(tPj)']?:1 are the projections onto a set of equiangular line&%in
d > 1, with constan€ = a, and the identity can be written &s= y{_; ¢;P;.
(a) Show that;j = 4, vj.
(b) Show that
n(1—da?) =d(1—a?),

and hencer? < J,

12.3.Suppose thatf;) is a finite normalised tight frame ofonzerovectors forFd
(d > 2) which satisfy the equiangularity condition

B/
511 el

Show that( f;) is an equal-norm frame, i.e., it is an equiangular tight fram

< > =C, j#k

12.4.Show that the 28 unit vectors of (12.6) are equiangular.

12.5.Let @ = (f;) ben unit vectors inR2. Show that (12.3) can be sharpened to
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m n—2
Mo (D) 1= - > — —_—
Moo (D) rgg(x|<fj,fk>|_cos<n)> 2n=1)’ n>3

with equality if and only if thef; are the firsh vertices of the regularr-gon (up to
multiplication by=+1), i.e., they given equally spaced lines iR?.

12.6.Show that if® = (f;) is a unit-norm tight frame ofi vectors forF which
minimises
Mo (P) :=max|(fj, f)|,
(@) 1=max|(fj, )

then so is the complementary tight fratée= (g;) for "9 (scaled appropriately).

12.7.Let @ be the nontight equiangular frame of five vectorsidrgiven byl the
5—cycle (se¢12.13).

(a) Calculate the minimal angle between the five lines giwe®b®, and@can

(b) Show the vectors i lie on five of the six diagonals of the regular icosahedron.
Remark:Since the solution to the Grassmannian packing problemverlifies in
R3is given by five diagonals of the regular icosahedron (see§@8]), we conclude
that @ is anontightGrassmannian frame.

(c) Show that®®@"is the harmonic frame given by the fifth roots of unity.

Hint: The vertices of the regular icosahedron are given by thdacpelrmutations

of the vector(0,+1, +c), wherec = 1*—2‘/5 is thegolden ratia

12.8.If a (nontight) sequence of unit vectors defines a set of equikar lines, then
does the dual frame define a set of equiangular lines?

12.9.Suppose thatv;) is a set ofn flat equiangular lines (see Proposition 12.1).
Let A be the Gram matrix of the rank one orthogonal projectiang, .. ., vaV;, and
e €],...,dq€e; (with the Frobenius inner product), i.e.,

A <a23+(1az)|n },J)j I— .

1

(a) Row reduceé to an upper triangular matrig (to determine its rank).
(b) Show thanh+d — 1 <rank(A) < n+d, and® is tight when rankA) = n+d—1.

12.10.Let (va ) be the Steiner equiangular tight frame of Theorem 12.4 gien
a (2,3,v)-Steiner systen® on points? (a Steiner triple system), and Hadamard
matricesH®, a € #. Show that the vectors

(Va,jacy 1<j<r+1U (Wp)1<r<v i1

given by (12.17) and (12.18) form an equiangular tight fréoné&? ¢ C” & C, with
anglea = ;.
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12.11.(Conference matrices) Let = iC be ann x n complex signature matrix with
off diagonal entriesti. HereC has zero diagonal and off diagonal entriek.

(a) Show thaC = —CT, i.e.,C must be skew—symmetric.

(b) Show that> gives an equiangular tight frame ofvectors forCY if and only if
C'C = (n—1)I, i.e.,Cis skew—symmetric conference matrix, where 2d.

12.12.L et C be a skew—symmetric conference matrix of gize 1 in the standard

form
0 1*
C= , 1:=(11,...,1).
-1A

These exist fon = 2¢— 1 (Example 12.63) and = p™ an odd prime power with
n=3 (mod 4 (with Athe Seidel adjacency matrix (12.64) of the Paley digraph).
(a) Show thai satisfiesA? = J — nl andAJ = JA= 0, where] = 11*.

(b) Show that thex x n matrix

1

—— (£
Vg =Y
is the signature matrix of an equiangular tight framenofectors forCY, where
d="! (n=2d=1).

(c) Show thats + {1, { = ﬁ(ﬁi + 1), is ann x n complex Hadamard matrix.

+iynA) (12.63)

12.13.Letg= p™=4m— 1 be a (necessarily odd) prime power. [Sdie the set of
all nonzero squares in the Galois field @F; i.e.,

S:= {¥*: x€ GF(q),x # 0}.

This is a(4m—1,2m—1,m—1)-difference set fo6 := (GF(q), +) = Z, i.e., gives
an equiangular harmonic frame af¥- 1 vectors forC*™* (by Theorem 12.3).
Denote the nonsquares@by N := G\ (SU{0}). Theq x g matrix given by

Ak=91 j-kes (12.64)
-1, j—keN,

is the Seidel adjacency matrix of the Paley digraph.

(a) Show thaBuU {0} is a(4m— 1,2m, m)—difference set foG.

(b) Show thaN andN U {0} are difference sets fd.

(c) Show that there are equiangular tight frames mf-41 vectors forC2™1 and
C?™ for which the inner products between their vectors have ateon real part.
(d) Show that there is an equiangular tight frame mifvectors forC2™.

12.14.Let 5 be the reduced signature matrix of an equiangular tightérafm >
d+ 1 vectors forRY, which corresponds (by Theorem 12.12) to a strongly regular
graph
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3k—n k 1 n d(n—1)

5 op) k=g g

srg(n—1,k,
Show that the complementary equiangular tight frame etctors forR"9 has
reduced signature matrix>, and so is given by the complementary strongly regular
graph, which has the parameters

2n—3k—-6 n—k—-2

~1,n—k-2 :
Srqn 7n ) 2 ) 2 )

12.15.The Gramian matrix of an equiangular tight frame ofunitvectors forC¢
satisfiesd@? —nQ = 0. Show that this implies

rankd Q@ , —nQu_r) <T.
whereQy,_; is any principal submatrix o of sizen—r,0<r < n.

12.16.Let G be the Gramian of an equiangular tight framenafnit vectors forC¢,

andU be then x n matrix

U=l —296.
n

(a) Show thatJ is Hermitian, unitary, with constant diagonal entries 2% and
constant modulus off diagonal entries.

(b) Suppose that) is ann x n Hermitian unitary matrix with constant diagonal
entriesA =1— 2% € [—1,1] and constant modulus off diagonal entries. Show that

G:= 24 (I U)
is the Gramian of an equiangular tight framenainit vectors forC9.
Remark:A matrix B is unistochastidf it has the formBjx = |Uj«|?, for U unitary.
Such &B is bistochastiqits rows and columns sum to 1). The above correspondence
between equiangular tight frames and unistochastic negtridth constant diagonal
and constant modulus off diagonal entries is considereaip].

12.17.Let (vj) be a unit norm tight frame af vectors forf.
(a) For 0< p < 2, show that

( —n)%

ZZ|VMVK |p< CEn =

with equality if and only if(v;) is an equiangular tight frame.
(b) For 2< p < o0, show that

(% —n)?

ZZ“’DVK _m+na
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with equality if and only if(v;) is an equiangular tight frame.
(c) Show that forp = 2 equality holds in the inequalities of parts (a) and (b).

12.18.Let H; andH, be d x d (complex) Hadamard matrices. By (12.58), these
are given by pairs of MUBs fo€¢ with synthesis operatofsy, Wi] and [V, Ws).
Suppose that these two pairs of MUBs are projectively uhjtaquivalent up to

a reordering which maps the respective bases to each athethere is a unitary
mapU, unitary diagonal matriced; = diag(aj), N> = diag($j), and permutation
matricesPy, Pr, with

PsA
U [V, W] = [V2, W] ( ! o1 ) . (12.65)
T/\2

(a) Show that the condition (12.65) is equivalentHp and H, being Hadamard
matrix equivalent.

(b) Use the fact that a pair of MUBs fdt® is determined up to projective unitary
equivalence by its frame graph and the nonzero 4—produasiftcycles span the
frame graph) to show th#&t; andH, are Hadamard matrix equivalent if and only if

(H1) jk(H1)ke(H1)em(H1)mj = (H2) 0, tk(H2) ok, 1¢(H2) o0, tm(H2) om 7,
for some permutationg, T € §. In particular, the multiset
{HjkHkeHemHm; : 1 < j,k ¢,m< d}
must be the same for all equivalent Hadamard mattites

12.19.Gauss sumd etF andRbe given by (2.5) and (12.61), aad:= Z; be a unit.
SinceF ~1R?F is diagonalised by the Fourier matifi it is a circulant matrix.
(a) Show that the entries 6 R2F aregeneralised Gauss suis.,

1 c-1 o7 n2
(FIRF)j = 55G(aad+2(k—).2d), G(ab.c):=y ew@mon.
n=
(b) Letb be the multiplicative inverse of a urtite Z;;. Show that
207 3k-?G(2a,0,d),  dodd;

G(a,ad+2(k—j),2d) = I
(8,ad+2(k—),2d) {u‘ (5+ak-1)’G(a,0,2d), deven

(c) Since 2 is a unit ford odd, anda is odd ford even, the formulas for classical
Gauss sums give
IG(2a,0,d)| =vd, dodd  |G(a0,2d)|=+v2v2d, deven

Use this to prove that the entriesf 'RAF have constant modulus.



Chapter 13
Tight frames generated by nonabelian groups

If Gis a finiteabeliangroup, then there arefaite number of tightG—frames, i.e.,
the harmonic frames (sédl). If G is nonabelian then there is amncountable
number of unitarily inequivalere—frames (see Proposition 10.1). To illustrate this,
consider the smallest nonabelian grdbig- D3 = (a,b) = S3, the dihedral group of
order 6, acting ofiR? as unitary transformations via:

a = rotation through%’ﬂ b = reflection in thexaxis (13.1)

Then (see Fig. 13.1), for each of the unit vectays= (cos8,sinf), 0< 6 < §, the
tight Ds—frames(gvi )gep, are unitarily inequivalent (since their angles differ).

Fig. 13.1: The unitarily inequivalent tigids—frames given byyg, for 6 =0, 15, 7.

Here we study the tight—frames(gv)gcc for G nonabelian by:

e Showing thaigv)gec corresponds to an element of the group algél@a

¢ Putting additional restrictions afgv)gcc to obtain &finite set ofG—frames, e.g.,
thecentral G-frames and thhighly symmetric Gframes.

¢ Investigating nonabelian grouswhich come as projective representations of
nice groups. These give interesting tight frames, e.g.thallknown SICs are
G-frames for a projective representation of an abelian gfeagsX).

331
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13.1 The identification of theG—matrices with the group algebra

Let G be a finite group. By Corollary 10.2¢)g¢cc is a normalised tighG—frame
if and only if its Gramian is &—matrix which is a projection. To understand such
projections, we now consider the structure of the algeb@-ahatrices.

Definition 13.1. Given a functiornv : G — C, letM(v) be theG—matrix
M(v) := [v(g*h)]ghec. (13.2)

The group algebra CG of G, is the algebra obtained from the complex vector
space with basis the elements®@fand the multiplication given by extending the
multiplication inG linearly.

Proposition 13.1.(G—matrix algebra) Let G be a finite group. Then the G-magrice
form an algebra, i.e., the sum and product of G—-matrices @&@rmg G—matrix. This
algebra is isomorphic to the group algeb@G, via the map

m:M(v) v(9)g. (13.3)
— ggc

Proof. Clearly,M is an injective linear map fror€® onto theG-matrices, which
therefore form a vector space. The producGeinatrices is &—matrix since

M(WM(u) =M(vsp),  (Vvxp)(g) = h%\/(gh)u(h*lh (13.4)

and so thé—matrices form an algebra.
Letey: G — C, g € G be the standard basis vectors @ft. In view of the natural
vector space isomorphism betwe&fi andCG, it follows that

g— M(gy), geG (13.5)

gives a vector space isomorphism betwé&&h and theG—matrices. Further, this is
an isomorphism of algebras sinbiey, )M (ey,) = M(ey, * €g,) Where

(egl *egz)(g) = thegl (gh)egz(h_l) =€y (gggl) = €010, (9 = €g1 *€g, = €g10,-

Finally, we observe that the inverse of this isomorphism%L3 (13.3). ad

The corresponding element of the group algebra for the gmeally spaced unit
vectors viewed as a&—frame was calculated in Example 10.5.
We observe that the Hermitian transpose @Gamatrix is given by the formula

M(v)' =M(T),  ¥(g) = V(g D). (13.6)

Next we characterise the Gramians of the normalised Ggtitames when viewed
as elements of the group algebra via (13.3).
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13.2 Tight G—frames as idempotents of the group algebra
We now show that:

The normalised tightG—frames, i.e., th&s—matrices which are orthogonal
projections, correspond to idempotents of the group alELy.

Proposition 13.2.(Characterisation) The normalised tight G—fram@s= (@)gcc
are in al-1 correspondence with the elements-[y ;cqg of the group algebr&®G

satisfying g1 =Cg, Vg€ G, and g = p, i.e.,

%Chch—lg =Cg, Vg e G, (13.7)
he

given by
P=Gram(®) =M(v) — p=> v(9)9, (13.8)
g

wherev(g) = (@, @) = (991, ¢1).

Proof. Here (13.8) is the correspondenge- P of Proposition 13.1. Sinc® is a
normalised tight frame if and only if its Gramian is an ortbagl projection matrix
(Corollary 10.2), it suffices to determine the conditionsp# 3 4cqg € CG which
ensure thaP is an orthogonal projection, i.e?* = P, P2 = P. By (13.6), the first
condition is thaty = C,1. Since therr of (13.3) is an isomorphism of algebras, the
second condition is that

=35 5 onlhmhr= %ng: p.
ge

h1€GhyeG

This can be rewritten as (13.7). O

Example 13.1Let G = C3 = (a) be the cyclic group of order 3. The first condition
givescy € R (this always the case) amg, = C;. The second condition (13.7) is that

C% +CaCy2 +C42Ca = C1, C1Cq+CaC1+ ng =Ca, Ci1Cp2+ cﬁ + C;2C1 = Cg2.

Solving these equations gives the following six choicegxor

0, %(1+a+a2), %(1+wa+w2a2), %(Z—wza—oo %), %(Z—a— %), 1

The ranks of the corresponding orthogonal projecti®ase Q1,1,2,2 3.
Example 13.2The SIC of (1.7) viewed as@-frame forG = (S, Q) corresponds to

S V(@)9= ;55 (V3 +5+Q-iSQ — V3(-1) = (=9) - (- Q) +i(~Sw)).
[¢]
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13.3 Characters of nonabelian groups

The (linear) characters of an abelian group generalisellasvi
The character of a representatiop : G — GL(¢) of a finite groupG (or the
FG-modules?) is the mapx = xp : G — C defined by

X(g) :=tracep(9)).

Thedegreeof x is ded x) := dim(.#). A character is said to biereducible if the
corresponding representation is irreducible. The chargcof G satisfies

e X is constant on the conjugacy classe&of

o X(@ ) =x(9).
e x(1) =deqx)=dim(sZ).
Characters are important in study@G—modules, in particular

e CG—modules ar€G—isomorphic if and only if they have the same character.
e If x is a character o6, then is a character of.

The following example motivates the classoeitral G—framegsee§13.4).

Proposition 13.3.Let W be an irreducibleCG—module of dimension d. Suppose
that there is a unitary action of G o’ =W9 =W @ --- ©W (CG-isomorphism).
Then all normalised tight G—frameB for s are unitarily equivalent, with

P =Py = Gram(®) = [v(g M)gnes.  v(9) = Xé1|>

X(9), (13.9)
wherey is the character of W.

Proof. Without loss of generality, assume the actmonW is unitary, and that the
unitary action o’/ =W is given by

g- (Wi,...,Wg) := (P(Q)W1, ..., P(9)Wq).
LetV; be the absolutely irreducible subspace of vectors
vj=(0,...,wj,...,0), wj €W,
which are zero in all but th¢-th coordinate (and the zero vector). Clearly, these are
orthogonal, ands; : Vj — W : vj — wj is aCG-isomorphism.

Letv=y;v;j € ®;V;. By Theorem 10.8¢ = (gv)qcc is @ normalised tight frame
for s if and only if

(0}V}, OkVk) = (Wj,Wk) =0, j#k

Thus thev : G — C defining the GramiaR of the G—frame® is given by
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o= -y g Fore- 7
d|m() x(1)
- & tracgp(g)) = IS =7 X(9)

O

By Theorem 10.6 (or from the proof of Proposition 13.3), iidas that the
unique normalised tigh-frame @ for # =~ W9, W an irreducibleCG-module of
dimensiond and charactey, can be realised by

D=0, = X|él|)(p(g))gee, (A,B) = tracg AB), (13.10)

wherep : G — % (CY) is a unitary representation equivalenitb

Example 13.3Let G = D3 = S5 be the dihedral group of order 6 (see Example 10.3),
and order its elements 4 a2, b, ab, a?b. An irreducible representation &f3

p:Ds— % (C? cC¥2~Ct

with charactery = (2,—1,—1,0,0,0) is given by

_1_ w W?
10 0 ® 0 0 5 w? 0 0
p(1)= ~| |, p@)= ~ , pa)= ~ ;
01 0 0 w? 0 0 w 0
1 W? W
0] 0 0
01 1 0w W 5 0 w? w?
p(b) = ~ ) p(ab) = ~ ) p(a b) = ~ )
10 1 w? 0 w? w0 W
0 0 0

wherew = €% . Thus from (13.10) we obtain the normalised tight-frame

1 w w 0 0 0

(Di(o 0’0717w7w2)
VENE 1] |«?| |w
1| |«?| |w]| [0] |O 0

for C*, which hasP = Gram(®) = [ x(97h)]g hep,-
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13.4 Central G—frames

TheG—frame of Proposition 13.3 with Grami&h= [v(g‘lh)]gﬁhee has the property
thatv : G — C is aclass function i.e., is constant on the conjugacy classe&of
The irreducible characters form a basis for the vector sphchkass functions ofs,
andv is a class function if and only if

EGV(g)g € Z(CG), (13.11)
ge

whereZ(CG) denotes the centre of the group algeb@a

Definition 13.2. A G—frame® = (¢)gec is said to becentral if v : G — C defined
by
v(9) = (@, @) = (901, @)

is a class function.

In view of Proposition 13.3 and (13.11), each of the follogvtonditions on a
G—frame® with Gram(®) = [v(g~1h)]qhers are equivalent to it being central

v is a class function.

Ygec V(9)g € Z(CG).

Gram @) is in the centre of the algebra of group matrices.
The symmetry conditiofigv, hv) = (gw hw), Vg,h € G, Yww € ®.

For G abelian, allG—frames are central (the conjugacy classes are singletons)
and so the centr&@b—frames are a generalistion of the harmonic frames.

We will show (Theorem 13.1) that there are a finite numbergiittcentralG—
frames (for a givers). To this end, consider the homogeneous normalised tight
centralG—frame of Proposition 13.3, which has Gramian

Py := 5§ x (@ ) ]gnes = 45 M(x), (13.12)

wherey is an irreducible character . Sincey is a class function, the idempotent
px € CG that it corresponds to (via Proposition 13.2) is in the aeofrthe group
algebra, i.e.,

Py == )%?ggcx(g)g € Z(CG). (13.13)

Moreover, for different characters, these homogendddsames are orthogonal
(Theorem 10.7), and so the product of their Gramians is 2egmfna 5.1), which
gives

PxiPx =0 Xj # Xk- (13.14)

Thus, if x1,..., Xr are the irreducible characters Gf then{py; }1<j<r is a
basis of (orthogonal) idempotents BfCG).
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13.5 The classification of central tightG—frames

The central tightG—frames can be characterised in terms of the Gramian.

Theorem 13.1.(Classification) Let G be a finite group with irreducible chaters
X1,---,Xr- Then® is a central normalised tight G—frame if and only if its Grami
is given by

Gran(dJ):%PXj =M(%Xié|l)x,-), (13.15)

for some JC {1,...,r}, where R is defined by (13.12), and M by (13.2).

Proof. The two formulas given for Graf@) are equal. Sinc®y; Py, =0, j # K,
the first gives the Gramian of a normalised tightframe, and this is central (by
the second formula). Thus, it suffices to assume ¢hat a central normalised tight
G-frame, and to show th&t:= Gram(®) = M(v) is given by (13.15).

Since @ is central,v is a class function, and so the idempotent y,v(g)g
corresponding t® is in Z(CG). Write p in terms of the basi§p; }1<j<r, pj := py;
for CG

p=> ajp;, ajeC.
]

Sincep is an idempotent, (13.14) gives

pz:ZgaJakmezafpj =p=Yajpj = af=aj
J ] ]

Henceaj € {0,1}, andp = ¥ jc; pj, whereJ := {j : aj = 1}. We therefore have
P=mrlp)=rr (T py)= Py

O

The G—frame® of Example 13.3 is a central normalised tiddg—frame forC*
(by construction). Excluding the frant®)gcc, there are six others. More generally:

For a given finite groug with r distinct irreducible characters there afe-2L
nontrivial central normalised tigl@—frames (up to unitary equivalence).

Theorem 13.1 leads to the following count.

Corollary 13.1. Suppose there is a unitary action of G on the complex spéte
Then either

1. There is no G—frame fa#Z (7 is notCG—isomorphic to a submodule 6fG).
2. There is one tight G—frame fo¥’ (which is central)
3. There are uncountably many tight G—framesr(none of which are central).
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Proof. Interms of the the homogeneous decompositin= Gy W of (10.28),
the three cases are

1. ay > dim(W), for someW (apply Proposition 10.4).
2. aw € {0,dim(W)}, for all W (apply Proposition 13.3).
3. 1< ay < dim(W), for somew (apply Proposition 10.1).

In the second casé,= {j : xj = cha(W) anday = dim(W), W € #'} in (13.15),
where chafW) is the character diV. O

The character of#’ can be determined from arf@~orbit which spansz’.

Proposition 13.4.Let P= M(v) be the canonical Gramian of a G—frame faf’.
Then the charactey of the representation is given by

= h~1gh).
X(9) h;\/( gh)

In particular, if the G—frame is central, thep = |G|v.
Proof. By Corollary 10.3, we can assume that tBeframe is(Pey)gec, With
9(Pen) =egh,  H =ranP).

Since(Pe)nea is @ normalised tight frame, the trace formula (Exercis@@glves

X(@) =3 (gPa,Pe) = 3 (Peyn,en Z Phgn= 3 v(h~'gh).

heG heG heG

If v is a class function, them(h~1gh) = v(g), and we gex(g) = |G|v(g). O

For the orthogonal projectiorf3, of (13.12) given by irreducible charactexs
the conditiorPf = Py, and the orthogonality relation

PXj ID)(k :Oa XJ #Xka
can be expressed using (13.4) as

G|
«X = ——X, 13.16
X*X X(l)x ( )

Xi * Xi)( éXJ (ghx(h™) =0, VgeG (Xj# X)- (13.17)

These formulas for the convolution of irreducible charestEe well known. The
special casg =1 in (13.17) gives the orthogonality of characters (11.8), i

(Xi» Xi) : |G| %x, ) Xk(h) = Ojk. (13.18)
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13.6 The idempotents and the homogeneous decomposition

The (orthogonal) idempotengs, of (13.13), or, more precisely, the idempotents

x(1)

=222 x(ghHge z(CG). (13.19)
‘G| ge

Ox == Px

play a very special role in the homogeneous decompositiom @G—moduleV
(Lemma 10.2). FoW an irreducibleCG—module with charactey, we recall the
homogeneous componeitV is

Hv (x) = Hv(W) == XZ X.

X=W

Let G denote the irreducible characters®f We now state (and prove) the well
known formula for the homogeneous components.

Theorem 13.2.Let G be a finite group, and V bel@G—module. Then the direct sum
decomposition of V into it homogeneous components is given b

V=V, (13.20)
xeG

i.e., H/(x) = qyV, where the sum is orthogonal if the action of G on V is unitary

Proof. Let W be ad—dimensional irreducible with charactgr We will first show
that
QW =W, Yw e W. (13.21)

For this, we can assume that the actiorCois unitary (Corollary 10.1). As in the
proof of Proposition 13.3, choosa, ...,Wgq € W so that(gv)geg, V= (W1,...,Wq)
is a central normalised tigi@—frame forw¢, i.e., (gv,v) = %x(g). Herew; can
beanynonzero element &, up to a scalar multiple. We calculate

X1 1
ayVv = X(@ )gv="> (g v,v)gv=
V=2 2.

= (v, gv)gv=v.
2.6 2 2

ge
Taking the first component givegw; = w1, which gives (13.21).
As in Lemma 10.2, writ& as a direct sum
\Y/ =V169V2€B--~EBVm7

of irreducibleG—invariant subspaces (which are orthogonal if the actiamitary).
Using the propertieq)z( = Oy anddy;dy, = 0, Xj # X« it follows thatzxeé gy =1
(apply ¥ y gy to the irreducible submodul&® of CG), which gives (13.20). O
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13.7 Anillustrative example

We now return to our motivating example of the nonabeliarugi® = D3 = (a, b)
of order 6 acting ofR? via (13.1), i.e.,

_1 1.3 10
a:= 7 33 . b= . (13.22)
-3V3 -3 0-1

The conjugacy classes & are {1}, {a,a’}, {b,ab,a’b}. Since the action of is
irreducible, the orbit? = (gw)gcs of any vector

w::;(x>, ¥y =1

y
is a normalised tight frame, with Gramian t@ematrixP = M(v), given by

V=3 v@=-3 V@)= vO=3-3

Wik

v(ab) = X — Zoxy+ gy, v(ah) = —px*+ Lxy+ gy
It is easy to verify (13.7) holds, e.qg., fgr= 1, we have

v(1)2+v(a)v(a®) +v(a®)v(a) + v(b)?>+ v(ab)® + v(a’b)? = %(x2+y2)2 =v(1).

From Proposition 13.4, we can determine the chargctrthe representation
x()=6v(1)=2  x(a)=x(a")=3v(@)+3v(a*)=-1,
x(b) = x(ab) = x(a’b) = 2v(b) + 2v(ab) + 2v(a’b) = 0.

With the order 1a,a2,b,ab,a?b, the characters db are

1 1 2
1 1 -1
1 1 -1
_ _ . 13.23
xi=10 X2 | 4| X3 0 ( )
1 -1 0
_1_ _71_ _O_

Thus we can deduce froRithat the action 06 is irreducible withx = x3. With gy,
the idempotents of (13.19), Theorem 13.2 giggd/ = qy,V =0,0y,V =V, i.e.,

| +a+a’+(b+ab+a’h)=0,  2(2l —a—a?+0(b+ab+a’h)) =1.

wherea andb are defined by (13.22).
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13.8 The highly symmetric tight frames

For the irreducible action o = D3 on R? given by (13.1) there are uncountably
many inequivalenG—frames (see Figure 13.1). None of these are central, diece t
only centralDs—frame forR? is the one obtained by taking the charactersnd x>

of (13.23), which results in three copies of an orthogonaihaNe would like to
think of the six equally spaced unit vectdi® = §), which has a larger symmetry
group than the others, as beingzaframe worth singling out. This leads to the
notion of ahighly symmetridrame.

Definition 13.3. A finite frame @ of distinct vectors ishighly symmetric if the
action of its symmetry group Sy(®) is irreducible, transitive, and the stabiliser of
any one vector (and hence all) is a nontrivial subgroup wfiiids a subspace of
dimension exactly one.

We recall that the action of the symmetry group of a finite fedsgiven by (9.1).
If @ is a highly symmetric frame, then (by the orbit size theorem)

| Sym(®@)| > |@].

As defined, a highly symmetric frame hdistinct vectors, and so it may not be a
group frame (Theorem 10.4) unless the vectors are repeatad fixed number of
times, e.g., itis naturally a Syf®)—frame.

Since a frame is highly symmetric if and only if the canonitight frame is, it
suffices to consider only the highly symmetric tight framBse key features of the
class ofhighly symmetric tight frameare:

There is dinite number of highly symmetric tight frames nfvectors forCY.
They can be computed from the representations of abstragpgr

Itis possible to determine whether or not a given tight frasrteghly symmetric.
Some harmonic frames are highly symmetric tight frames.

The vertices of the regular complex polytopes are highlyragtnic tight frames.
All finite reflection groups give highly symmetric tight fras.

There are no highly symmetric frames ot (by definition), so we let > 1.

Example 13.4(Equally spaced vectors) The three equally spaced unibketR?

are a highly symmetric tigl€s—frame (each vector is fixed by the reflection through
the line it lies on). The six equally spaced unit vectors anggaly symmetric tight
Ds—frame, as discussed above. More generallyntiqually space unit vectors are
a highly symmetric tigh€,~frame, and, ,—frame also, when is even.

Example 13.5(Harmonic frames) The standard orthonormal bdsjg for Fd is
not a highly symmetric tight frame, since its symmetry grdixes e; + - -- + €4
(and so its action is not irreducible). On the other handvirices of the regular
d—simplex always are (the three equally spaced vectors isdbed = 2). Since
both of these frames are harmonic, we conclude that a hightyreetric tight frame
may or may not be harmonic.
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13.9 The construction of highly symmetric tight frames

We now show that up to similarity:

There is a finite number of highly symmetric framesofectors forFd.

Theorem 13.3.(Finiteness) Fix > d. There is a finite number of highly symmetric
normalised tight frames of n vectors f8f (up to unitary equivalence).

Proof. Supposeb is a highly symmetric normalised tight framero¥ectors ford.
Then it is determined, up to unitary equivalence, by theesgntation induced by
Sym(®), and a subgroul which fixes only the one—dimensional subspace spanned
by some vector ip. There is a finite number of choices for Sga) since its order
isatmosn(n—1)---(n—d+1) (Exercise 9.2), and hence (by Maschke’s theorem) a
finite number of possible irreducible representations h&sd is only a finite number

of choices foH, it follows that the class of such frames is finite. O

This yields the following algorithm, which can be implemeatin a symbolic
algebra package such Bgma(see the worked example that follows). We denote
thestabiliserof v by Stalfv) = Stali(v) :={ge G:gv=v}.

Algorithm: To construct all highly symmetric tight frame® of n vectors inf¢.

1. Start with an abstract group Grhis corresponds to Syf®) or an appropriate
subgroup, so thg6G| dividesn! andn < |G| <n(n—1)--- (n—d+1).

2. Take all faithful irreducible representations: G — GLy(IF).

There is a finite number of these, and they can be computed.

3. Find (up to conjugacy) all subgroups H pfG) which fix a subspacsparv},
v# 0. Then{gv}gcc is a highly symmetric tight frame dG|/ Stal{v) vectors.
No other subgroups of St@h need be considered.

4. Determine which of the highly symmetric tight frames olgdimre unitarily
equivalent (up to a reordering).

Example 13.6(Magma calculation) LetG be the solvable groug18,3> , for
which Magmagives the presentation

G=(01,02,03: 0 = 03 = 03 = 1.0y "0s01 = &3)-
The representations & overC can be computed:

G:=SmallGroup(18,3);
r:=AbsolutelylrreducibleModules(G,Rationals());

There are six of dimension 1, and three of dimension 2, thiediven by

rho:=Representation(r[7]); rG:=ActionGroup(r[7]);
a:=rG.1=rho(G.1); b:=rG.2; c:=rG.3; sg:=Subgroups(rG);
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01 w 0 w? 0
a=pla)={, | b=p@=| = o] c=pl@={ |

wherew = e%'. The subspace fixed by a (nontrivial) subgrddpgiven by sg
can be found by the commamtullspaceMatrix(M-Id) , WwhereMis a block
matrix of generators fad andld is the corresponding identity block matrix. Thus,
we obtain two highly symmetric tight frames:

6 vectors: v=v;=(1,0), Stakv1)=(bc),
9vectors: v=wvp,=(1,1), Stalw)= (a),

which are a cross and a cube (see Example 13.10). These amelyheighly sym-
metric tight frames we obtain, since the eighth represimtas not faithful, and
p(G) is the same for the seventh and ninth.

Example 13.7There are no highly symmetric tight frames of five vectorsCh
Such a tight frame would have a symmetry group of order a pialtf 5, which is

at most 54-3 = 60. A computer search over all groups in this range show®ther
is no such frame. By way of contrast, the tight frame of fivetoesin C2 with the
largest symmetry group is the vertices dfigonal bipyramid which has symmetry
group of order 12 (see Example 9.12).

13.10 Complex polytopes and finite reflection groups

Then equally spaced unit vectors can be viewed as the verticee oégulan—gon.
We now investigate the highly symmetric tight frames whicme as the vertices
of (regular) complex polytopes (which include thegon and the Platonic solids).
The main idea is that by imposing enough regularity (symiegmust map flags to
flags), the symmetry group is generated by (complex) reflestiwhich leads to a
complete classification via the symmetry group.

A transformationg € GLy4(F) is a compleX) reflection (or pseudoreflectior)
if it has finite orderm and rankg— 1) = 1, i.e.,g fixes a hyperplan&l, and maps
somev — wv wherev ¢ H is nonzero andv is a primitive m—th root of unity.
The terminology and geometric motivation comes frifhwith w = —1. A finite
subgroup ofGLy(TF) is areflection group if it is generated by its reflections.

Frames are sequences of vectors (points), whereas podytapeh as the Platonic
solids, have points, lines (through points), and faces;Tdéte technical definition (to
follow), specifies thes@¢faces(j =0, 1,...) as affine subspacesBY, together with
some combinatorial properties motivated by the da3eOf course, such a face is
the affine hull of the vertices it contains, and it is convaehi® move between the
two. For complex spaces, a line (1-face) may contaimethan two points, which
challenges one’s intuition.
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Definition 13.4. (see [Sch04]) Adl—polytope—configurationis a finite family &7 of
affine subspaces @ of dimensiong = —1,0,1,...,d, calledelementsor j—faces
ordered by inclusior, which form lattice with the properties

() If Fji_1 C Fjy1 arej—1 andj + 1 faces, then there aa leasttwo j—faces
contained between them. (Modified diamond condition)

(ii) If F C Gare faces, then there is a sequence of fecedHo CHy C --- CHx =
G with dim(H;) = dim(F) + j, ¥j. (Connectedness)

For brevity, we call such & a complex polytope We now follow the usual
practice and translate? so that the barycentre (average of the vertices) is zero.
This allows the vertices to be thought of as vectors, andresghat the affine maps
of the vertices to themselves are linear (and ultimatelyauy).

Definition 13.5. Thesymmetry group Sym(#?) of ad—polytope—configuratiory”
(with barycentre 0) is the group of€ GL4(F) which map the elements o# to
themselves.

In particular, if @4 is the points (vectors) o, then Syni<?) is a subgroup of
Sym(®) (viewed as linear transformationsBY).

Definition 13.6. A flag of d—polytope—configuratior?? is a sequencé& of faces
with

F=(F_1,F,Fi,...,F), F.1CRCF C- - CHy, dim(Fj)) =j, Vj,
and 2 is regular if Sym(2?) is transitive on the flags of?.

Shephard [She52], [She53] showed the symmetry group of @laregomplex
polytope is an irreducible reflection group, and classifiddsiach polytopes via
their symmetry groups. More precisely, IBt be a flag of a regular complex
polytope &, andc; be the centre of thg—faceF;, i.e., the average of its ver-
tices. Then there are generating reflectiofis. ., rq_1 for Sym(2?) wherer; fixes
Co,--.,Cj—1,Cj+1,...,Cq4 and mapsF; to anotherj—face, i.e.r; mapsF to a flag
which differs only in thej—face.

A parabolic subgroup of a finite reflection groujs C GL4(F) is the pointwise
stabiliser of a subsat c F9. Steinberg’s fixed point theorem ([Ste64]) says that a
parabolic subgroup is a finite reflection subgroup.

Theorem 13.4.The vertices of the regular complex polytopes are highlynsgtric
tight frames. In particular, the vertices of the regular qaex polytopes can be
constructed from their abstract symmetry groups (whichaios the corresponding
reflection group).

Proof. Let &2 be a regular complex polytope, adel= @4 be its vertices. View
G = Sym(®) as a subgroup oBLy(F). ThenH = Sym(#) is a subgroup o6,
which is irreducible and transitive on the flags, and in gattir is transitive on
the vertices®. Thus, @ will be a highly symmetric (tight) frame provided that
Staly (v) C Staly(v) fixes a space of dimension exactly one for eaeh®.
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Fix a vertexv € @. SinceH is a reflection group, Steinberg’s fixed point theorem
implies that Sta3(v) is the group generated by all the reflections which/fii F
is a flag withFy = {v}, then thed — 1 generating reflections,...,rq_1 fix v, and
so the subspace fixed by them all is one-dimensional (and &meparv}). Thus
Stalg (v) fixes only spafiv}. O

Corollary 13.2. If G € GLy4(F) is anirreducible finite reflection group, thégv)gec
is a highly symmetric tight frame fdf9 if and only if H= Stak(v) is a maximal
proper parabolic subgroup.

Proof. Since the parabolic subgroups are generated by reflecaodsteflections
fix a hyperplane, the st fixed by a maximal proper parabolic subgroup must be a
one—dimensional subspade= sparf v}, v # 0. O

In [ST54] (cf. [LTO9]) all finite reflection groups were clafisd. Essentially, they
appear as the symmetry groups of “semi—regular’ compleytppés. In the next
subsections we outline the highly symmetric tight framescivitan be obtained
from the (imprimitive and primitive) finite reflection grosp

13.10.1 Imprimitive groups (ST 1-3)

A representation of onF9 is imprimitive if F9 is a direct sunF =Vi @ - - - & Vi
of nonzero subspaces, such that the actid® of F¢ permutes th¥/, otherwise it is
primitive . The Shephard—Todd classification of timprimitiveirreducible complex
reflection groups consists of three infinite families (ST lg¥en by the groups
G(m, p,d), wherem> 1, p| m, and

|G(m, p.d)| = mf'd!/p.

These are available Magmavia ImprimitiveReflectionGroup(m,p,d) ,
and can be constructed (cf. [LT09]) as a group of unitarydfamations

G(1,1,d) = (ra,rz,...,rg-1),

G(m,m,d) = (s,r1,r2,...,rd-1),

G(m,1,d) = (t, f1,r27 S Fd-1),

G(m,p,d) = (s,tP.ry,rp,...,rg_1), 1l<p<m p|m

whererj swapse;j ande;j, 1, t is the reflectiore; — wey, w = ezﬁm, ands=t"1rt,
ie.,

01 w 0®
n=1[10 |, t=] 11|, s=|lwo0 |, (13.24)
| | |
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wherel is the identity matrix of sizel — 2. The three infinite families are:

ST1: G(1,1,d+1) = S441 acting on thed—dimensional subspace of vectors in
F9+1 which are orthogonal te; + - - - + €g1.

ST2: G(m p,d),md>1,p|m (mp,d)+#(22,2) acting onCq.

ST3: G(m,1,1) = Zy, acting onC.

There are no highly symmetric tight frames f6r so only ST 2 and ST 3 can
give highly symmetric tight frames. We now give some indieaexamples.

Example 13.8(m-distance tight frame) Le® = G(1,1,d + 1) = S, act on the
d-dimensonal subspac# = (ey +--- +€q.1)" of F4+! via e = e4j, and

Wmi=e + - +6en— (em+1+"'+ed+1)> 1<m<d.

m
dri-m
Then| Stabiwm)| = m!(d+1—m)!, S0 @, := {gWm }gec is @ highly symmetric tight
frame of (%"1) vectors for thed—dimensional space?, with Sy;1 C Sym(®p).
These are the only possibilities. This frardg, is the standard m—distance tight
frameof §12.16. Form = 1, we obtain the simplex with vertices given 4. For
the other cases, the vectors ®f, are the barycentres of tHen— 1)—faces of this
simplex, and saby is also a simplex. The special case= 2, d = 3 gives the six
vertices of the octahedron (which have symmetry gréup Z,).

Example 13.9(28 equiangular lines iR") The special case of Example 13.8 where
G = G(1,1,8) acts on the vector

v=3w,=(3,3,-1,-1,-1,-1 -1,-1).
gives an orbit of 28 vectors iR’ which are an equiangular tight frame.

Example 13.10(The generalised cross and cube) Get G(m,1,d), |G| = d!n',
and
Vg =€+ - +6&, 1<k<d.

Thenv has| Stal{vi)| = k! (d — k)!m?K, and so its orbit gives a highly symmetric
tight frame of(ﬁ)mk vectors forRY. These are the only possibilities.

The extreme cases are thgeferalised cross(k = 1) andcube (k = d), which
are regular complex polytopes. These terms originate flmrcasen=2,d = 3,
where we have thectahedror(6 vertices), theuboctahedror12 vertices), and the
cube(8 vertices), respectively, ad= G(2,1,3) is Oy, (thefull octahedral group.
Form=2,d = 4 (see Figure 13.2), the polytopes are llexadecachorofiL6-cell)

(8 vertices),octaplex(24—cell) (24 vertices), rectified tesseracf32 vertices), and
tesserac{16 vertices).

The cross and cube are harmonic frames, generated by the syofroups

<rlr2"'rd71t>, <q17"' 7Qd>7

whereqj = (r1r2~~~rj,1)*1t(r1r2~-rj,l) is the reflectiore; — we.
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Fig. 13.2: Symbolic projections of the cross (hexadecachHand cube (tesseract) &f*.

The imprimitive reflection groups of the ST 2 family can betads(see [LT09]),
e.g.,
G(m,p,d)<G(m1,d),  G(mp,2)<G(2m 2 2).
Hence, a highly symmetric tight frame obtained from an immitive reflection
groupG may be asubsebf one obtained for a larger imprimitive reflection group.

Example 13.11(Nested irreducible reflection groups) Let
G=G(22d), d>2 |G| =29"1d!  (Coxeter grouDy).

There are highly symmetric tight frames given by the orbfts;cande; + - - - + &4.
The first of these is the cross, which has a symmetry grougiddr@anG, namely
G(2,1,d). The second is thdemicube a subset of half the vertices of the cube,
which has symmetry grou@(2,1,d).

13.10.2 Primitive reflection groups (ST 4-37)

There are 34 (exceptional) finite reflection groups in thepBhed—Todd classifica-
tion. Their numbers and rank (the dimension of the spacedhtgn) are

ST 4-22 (rank 2) ST 23-27 (rank 3) ST 28-32 (rank 4)
ST 33 (rank5) ST 34-35 (rank 6) ST 36 (rank 7) ST 37 (rank 8)

Magmacalculations (see Tables 13.1 and 13.2) indicate the fatiglwehaviour:

e There are highly symmetric tight frames given by each piimiteflection group
(Theorem 13.4). Some are not the vertices of a regular conpallytope.

e These highly symmetric tight frames are not harmonic.

e They may or may not b&—frames (of distinct vectors).

e They have a small number of angle moduli.

We now highlight a few examples (with indicatiagmacode).
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Example 13.12(ST 23). All highly symmetric tight frames obtained from kag
reflection groups are group frames (of distinct vectorsjs hnot the case in higher
dimensions. LeG be the Shephard—Todd group 2G| = 120, for whichMagma
gives the generators

-1 00 13i(v5+1)0 100
g=|3+5+1)10[, @®=|0 -1 0. G=[(011],
0 01 o 1 1 00-1

which arenot unitary matrices. We obtain three highly symmetric tighinfies:

12 vectors: v=(v5-1,0,2),
20 vectors:  v=(v/5+3,0,2),
30vectors:  v=(1,1,1),

which are the vertices of theosahedrondodecahedronandicosidodecahedran
The first of these is a group frame (fot2,3> ), and the other two are not.

Example 13.13(24 vectors inC?). There are five regular complex polygons with
24 vertices. Their (flag to flag) symmetry groups are

ShephardTodd(6) =<48,33> | ShephardTodd(6) =<48,33> |,
ShephardTodd(5) =<72,25> , ShephardTodd(8) =<96,67> ,
ImprimitiveReflectionGroup(12,1,2) =<288,239> .

The four obtained from the primitive groups aret harmonic. The fifth frame is a
generalised cross, which is harmonic.

In addition to these, there is a highly symmetric tight framh@4 vectors (which
is not a polygon) that can be obtained from the group

G:=ShephardTodd(12)=<48,29> , G = (01,02,03),

1 0¥—w —*+w 1{wP—w wP—w 0 —w
O1'=5 , Qei=5 , O3.= .
2\ Pt w-witw 2\ —w -t w w 0

and the vectov = (1, w®), wherew = e¥. Similarly, this frame is not harmonic.

Let n be the number of vectors in a frang with s angles Ang®), andk be
the order of the group of scalar matrices which n@po @. Then the estimate of
Theorem 12.20 implies that

_JETHEED), 0eAng(@);
n<b:= k{([”sl)z’ 0 Ang(®). (13.25)

S
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The following tables list the highly symmetric tight framefn vectors forC®
given by the complex reflection groups ST 4-37, as calculiatfBW13]. In these
we list the “small group library” number (when possiblek thoundb of (13.25) on
the number of vectors (heré)(denotes the number of lines when it is sharp), the
number of angles, and the groups for which it is group frame with distinct \azst
(when possible).

Table 13.1: The highly symmetric tight framesrofectors inC? given by the primitive reflection
groups ST 4-22. Here (P) denotes a non-starry regular complgtope.

ST d order n b s group frame

4 2 (24,3) 8 (P) 8 (4) 1 (8,4)

5 (72,25) 24 (P) 24 (4) 1 (24,3), (24,11)

6 (48,33) 16 (P) 16 (4) 1 (16,13)
24 (P) 24 (6) 2 (24,3)

7 (144,157) 48 48 (4) 1 (48,47), (48,33
72 72 (8) 2 (72,25)

8 (96,67) 24 (P) 24 (6) 2 (24,3), (24,1)

9 (192963 48 (P) 48 (6) 2 (48,4), (48,28), (48,29)
96 (P) 160 4 (96,67), (96,74)

10 (288 400 72 (P) 72 (6) 2 (72,12, (72,25)
96 (P) 144 3 (96,54), (96,67)

11 (576,5472 144 144 (6) 2 (144,69), (144,121),

(144122

192 288 3 (192 876), (192 963
288 480 4 (288 400), (288638

12 (48,29) 24 40 4 (24,3)

13 (96,192 48 80 4 (48,28), (48,29)
48 48 (6) 2 (48,28), (48,33

14 (144122 48 (P) 72 3 (48,26), (48,29)
72 (P) 120 4 (72,25)

15 (288903 96 144 3 (96,182, (96,192
144 240 4 (144,121, (144,122
144 144 (6) 2 (144,121), (144,157)

16 (600,54) 120 (P) 120(12) 3 (120/5), (120 15)

17 (1200483 240 (P) 240 (12) 3 (24093), (240 154)
600 (P) 1440 8 (600, 54)

18 (1800328 360 (P) 360(12) 3 (360,51), (360 89)
600 (P) 900 5 (600 54)

19 (360Q *) 720 720(12) 3 (720,420, (720,708
1200 1800 5 (1200483
1800 4320 8 (1800328

20 (360,51) 120 (P) 180 5 (120 5)

21 (720,420 240 (P) 360 5 (24093)
360 (P) 864 8 (36051)

22 (240,93 120 288 8 (120 5)
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Table 13.2: The highly symmetric tight framesrofectors inC9, 3< d < 8, given by the primitive
reflection groups ST 23-37. Here (P) denotes a non-starrjaregomplex polytope.

ST d order n b s group frame
23 3 120 12 (P) 18 1 (12,3)
20 (P) 72 2 -
30 300 4 -
24 336 42 120 3 (42,2)
56 450 4 -
25 648 27 (P) 27 (9) 1 (27,3), (27,4)
72 108 2 -
26 1296 54 (P) 54 (9) 1 (54,8), (54,10), (54,11)
72 (P) 108 2 -
216 1350 4 (216,88)
27 2160 216 1350 4 -
270 1890 5 -
360 9720 8 -
28 4 1152 24 (P) 80 2 (24,1), (24,3), (24,11)
96 9408 6 (96,67), (96,201),
(96,204
29 7680 80 160 2 (80,30)
160 800 3 -
320 7840 5 (320,1581), (320,1586
640 251680 10 -
30 14400 120 (P) 1400 4 (120,5), (120,15)
600 (P) 1109760 15 (600,54)
720 3032400 18 -
1200 78330560 32 -
31 46080 240 800 3 -
1920 145200 9 (192Q )
3840 3162816 16 -
32 155520 240 (P) 240 (40) 2 -
2160 28224 6 -
33 5 51840 80 450 2 -
270 450 2 -
432 31752 5 -
1080 138600 7 -
34 6 39191040 756 * * *
* * *
35 51840 27 441 2 (27,3),(27,4)
72 252 2 -
216 213444 6 (216,86), (216,88)
720 232848 6 -
36 7 2903040 126 * * *
* * *
37 8 696729600 240 * * *

*
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13.11 Projective representations

The four equiangular vector® = (v, Sv Qv, SQv) in C2 of (1.7) arenotthe orbit of

a group of order four. Indeed, if this was so, then they wowdlharmonic frame

(as all groups of order four are abelian), and hence have proeucts inQ(i).
Nevertheless, sinc®S = —SQ, the groupH generated bys and Q contains

the scalar matrix-I, and so isH = {+I,+Q,+S +SQ}. Thus, we can think of

@ as aH-frame (with vectors repeated), or as the orbit of the ptyje@ction of

G =H/{—1) = Zy x Z (for which the vectors are only defined up to a unit scalar

multiple). The natural way to describe these equivalenwpints is viaprojective

representationsf theindex group GWe will see that:

e For a given projective representation@there is a canonical choice fét.
e A projective representation @ can be calculated from the representationd of
e Many sets of equiangular lines come as projective orbitsrefliicible actions.

Let G be a finite abstract group. projective representation of G on a finite
dimensional vector spacg& (overF) is a group homomorphism

_GL)

pp:G— PGL(Y): c

C:={ceF:c#0}. (13.26)

HerePGL(¥) is theprojective linear group, i.e., the group invertible linear trans-
formations up to a nonzero scalar. The theory of representfse€10.1) extends
in the obvious way. In particular, by an appropriate choit@oer product on?’,
the action of a projective representation can be taken taumyni

Example 13.14The matrices of (1.7) give a projective unitary represéomaof
Zo X Zp Via )
G = Zy x Zy — PU(C?) : (j,k) — [FQY],

where PU(FFY) is the projective unitary group, i.e., the quotient of the unitary
group by the subgrou@ of unit modulus scalar matrices, afl Q] = SIQ*C.

We now explain how a projective representation of a finitaigi@ on F9 can be
associated with a finite group € GL(FY). Let Eq be any matrix inpp(g) We recall
that pp(g) is the set of all nonzero scalar multiples®f The factpp(g) has finite
order, i.e.E'g‘ = cl for some nonzero scalaydoes not imply thaEg has finite order.
This can be rectified by using the key observation:

There areexactly dscalings ofEq € GL(CY) which have determinant 1, i.e.,

wl

= j=0,1,....d-1 13.27
Eg det(Eg)l/d Ega J ) ) 9 ( )

where detEg)Y/? is any fixedd—th root of detEy), andw := e .
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13.12 The canonical abstract (error) group

Let Eg denote any of thd scalings of (13.27), so that
detBg) =1, VgeG.

Then thed|G| matricesH := {w/Ey: j =0,...,d—1,g € G} are distinct. Moreover,
they form a group, since

égéh = V’\\/g’hégh. Vg, he G,
for somewj , € C, and taking determinants of this gives
1=Wg, = Wgne{lww? .. o'} vgheG.
Thus, we arrive at the following definition.

Definition 13.7. Let pp be an irreducible projective representatiorGobn C¢, and
Eg € pr(9), 9 € G. Then associatecanonical error group is

H:={wE:j=0,..,d-1,g€G},

and the abstract version of this group is calleddaronical abstract error group.
We will call G theindex group of H, andd is rank.

Since conjugation preserves the determinant, it followas ¢quivalent projective
representations have the same canonical abstract erug.gro

The actionp of the canonical error groufd on CY is irreducible. Hence if this
action is taken to be unitary, then (by Theorem 10.6) theamyitatricesEg)gecc
are an equal-norm tight frame fity(C), i.e.,

d
A= = S (AE)E;,  VAeMy(C). (13.28)
|G| gge< g> g ( )

Moreover, by (13.10), the tight fram@(h))nen is acentral group frame
The canonical error groud is (particular)central extensiownf G. It has centre

Z(H) = (wl) = Z4g,

since if a matrix commutes with the spanning sequeigggec for My(C), then it
commutes with all oMy(C), and therefore is a scalar matrix (Schur’s lemma). Thus
a groupH can be a canonical (abstract) error group for at most onerdiioed.
Further, the index grou@ of a canonical (abstract) error grotiis given by
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13.13 Nice error frames

In applications, it is convenient to describe a projectiepresentatiomp of G in
terms of unitary matricedeg) gc, WhereEg € pp(Q). A sequencéEg)gec Of unitary
matrices gives a faithful unitary projective represewotatif G if and only if

1. E; is a scalar multiple of the identity and no otheEy is.
2. EgEnh = WgnEgn, Vg, h € G, wherewg, € C.

Moreover, by Theorem 10.6, this projective representasiameducible if and only
if (13.28) holds. By Theorem 6.1, this irreducibilty condit can be written as

3. tracdEy)|2 = |G|
gé\ Eg

For G a group (of orde> d?), a sequencéEy)gec of unitary matrices iMg(C)
is anice (unitary) error frame with index group G if it satisfies 1,2 and 3 (above).
Our discussion gives:

Proposition 13.5.Let G be a group andEg)gec be unitary matrices in M(C).
Then the following are equivalent

1. (Eg)gec is a nice error frame for M(C).
2. g— Eyis a faithful irreducible projective representation of Gaggree d.

In this case, the action of the canonical error group H ©f is a special unitary
faithful irreducible ordinary representation of the cancal abstract error group of
degree d.

Above (and to follow) we write the projective representatm of (13.26) as
g+~ Eg, with the understanding th&, < pp(9).

Example 13.15(Nice error bases) WhejG| = d?, the condition 3 of a nice error
frame reduces to

3. tracgEy) =0,0#1,9€G.

i.e., (13.28) is an orthogonal expansion. In the field of dquamerror correcting
codes, an orthonormal expansion fdg(C) is called aerror operator basis and
anice (unitary) error basis, if the matrices come from a projective representation
(and are unitary) [Kni96a]. These were then generalisedc®error frames.

Example 13.16ThePauli matrices (used to study spin in quantum mechanics)

01 0—i 10
010X:<10), azay:(i 0), 0302:<01>, (13.29)

together with the identity, are a nice error basis for the2matrices, with index
groupZy x Zy. They have determinantl1, and generate the grous{i6,13> of
order 16. The group generated by just the reflectimnand oz containstio,, and



354 13 Tight frames generated by nonabelian groups

is thedihedral group<8,3> . The canonical error group for the nice error basis
{l,01,02,03} is
H = (ig1,i00,i03),

which is thequaternian group<8,4> .
We now specify which nice error frames are considered to haitalent”.

Definition 13.8. Nice error framegEg)gcc and(Fn)nen for Mg(C) areequivalent
if there is bijectiono : G — H between their index groups, scaldtg)gec and an
invertibleT € Mq(C), such that

Fog=CgT EqT, VgeG. (13.30)

This is more general than theguivalenceof projective representations, where
G = H, and reindexing of the elements (#g)gcc is not allowed.

Proposition 13.6.Equivalent nice error frames have tlsamecanonical abstract
error group, and (in particular) the same index group.

Proof. Suppose nice error framéEg)gec and (Fn)nen for Mg(C) are equivalent.
Then (13.30) scales to

Fog=T 1(E4Ey)T, Vg e G,

wherecg € {1, w, &?,...,w%1} (by considering determinants). Thus the canonical
error groups are conjugate vig and so are isomorphic. Since the index group is
the abstract error group factored by its centre, the nicer érames also have the
same index groups. O

Example 13.17Ford = 1, the only canonical abstract error grougis= 1.
Example 13.18A nice error basis (projective representatiorZgfx Zq) is given by
G = Zg x Zg > Ma(C) : (j, k) — E(j ) = S Q,
whereSis thecyclic shift matrix and isQ themodulation matrixgiven by

(9jk == O k+1, (Q)jk = w Ojk, W:= e

This is the only nice error basis (up to equivalenceMg(C) with index groupG =
Zg x Zq (cf. [BK73]). This nice error basis (which generalises tlailPmatrices)
plays a key role in the construction of SICs (see ChapterI149.known as the
Heisenberg nice error basis

In §13.15, we outline howall nice error frames can be constructed usitagma
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13.14 Tensor products of nice error frames

Nice error frames can be constructed (and also decongtijustea tensor products.

Proposition 13.7.Let(Eg, )g,cc, .(Fg,)g,cG, b€ nice error frames for ] (C),Mg, (C).
Then their tensor product

(Eg,® FQZ)(91792)€G1 xGy

is a nice error frame for M,q4,(C). In particular, a product of index groups is an
index group. Moreover, the canonical error group is

H={w(h®h):0<j<d-LheH,hecH), w=e%, d:=dd.

where H,H, are the canonical error groups of the nice error frames.

Proof. In view of Proposition 13.5, the first part follows from thestatheory of
(projective) representations. Alternatively, it can befied directly, e.g., the tensor
product satisfies condition 3 of the definition of a nice ebasis since

S |tracdEy ®Fg)[P =Y S |tracqEy, ) traceFy, )|
(91,92)€G1x G a1 02

= (3 ItracdEy,) ) ('Y |traceFy,)|?) =[Gl H| = G x H].
91 92

The tensor product grouid; ® Ho consists of scalar multiples of eaély, ® Eg,,
with determinant 1, but may not contain dl-roots of unity (ifd; andd, are not
coprime), and so we add these. ad

Corollary 13.3. A product of index groups is an index group, and in particuér
product of index groups for nice error bases is an index grfmu@ nice error basis.

Example 13.19Let K be a finite abelian group of orddr SinceK is a product of
cyclic groups, it follows by taking tensor products of theis¢amberg nice error basis
(Example 13.18) tha® = K x K is the index group of a nice error basis fdg(C).

It can be shown (Theorem 13.5) that:

A nice error frame can have an abelian index group only if & isice error
basis.

Example 13.20Taking the tensor product of the two nonabelian index grdops
d = 4, with the (abelian) index group far= 2, gives two nonabelian index groups
ford=8,i.e.,

<16,3> x<4,2> =<64,193> | <16,11> x<4,2> =<64,261> .
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13.15 Computing all nice error frames

Finding the centre of a finite groud and its irreducible representations are fast
calculations, and a representation can always be madewriitaus the following
characterisation of abstract error groups gives rise t@aetisal algorithm for their
calculation, and hence that of the nice error frames thesespond to.

Proposition 13.8.A group H is a canonical abstract error group if and only if

1. Its centre ZH) is cyclic of order d.
2. It has a faithful irreducible ordinary representatiqm of degree d, which is
special, i.e.deth) =1, vhe H.

In particular, for d > 1 all canonical abstract error groups are nonabelian.

The nice error frame given by such a representatigii$qcc, where

G:= ZH)’ Eg € p(9).

It remains only to determine which of these are equivalenthis regard, we have:

Proposition 13.9.(Equivalence) Ifo : H — My(C) is a faithful irreducible special
unitary ordinary representation of H, then so is

po :h— p(oh), o € Aut(H),

whereAut(H) denotes the automorphisms of H. These give equivalent noe e
frames, even though the representations may not be eqotwaleeno is an outer
automorphism.

Proof. Since any given automorphism of H fixes the centr&(H), it induces an
automorphismog € Aut(G) on the index grougs = H/Z(H). Thus a nice error
frame (Fg)gec for po is reindexing of one fop, since

Fg'=po(9) =p(0g) =p(0c(9)), VgeG.

If o is an inner automorphism, i.ezh = k~thk, for somek € H, thenp andp, are
equivalent ordinary representationstbf since

pa(h) = p(k~ 1K) = p(k) (M (K.
O

In practice, the action grougs(H) of the ordinary representatiopsof a given
H calculated ifmagmawith the command

AbsolutelylrreducibleModules(H,Rationals());

are often the same monomial group.
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13.16 Examples of nice error frames

In [WC15], lists of nice error frames were produced using Bsijion 13.8, i.e.,
Algorithm: To construct all rankl abstract error groupd of a given order.

1. Find all groupdH (of the given order) with a cyclic centre of order
2. Find the faithful irreducible (ordinary) representas of H of degreed.
3. Determine whethep is special, i.e., déh) =1,vh e H.

Table 13.3: The canonical abstract error grobpand index groups for the first few nice error
frames which are not basesgd < 4.

d=2 d=3 d=4

H G H G H G
121) (6.1) (36,11) (12.3) (80,28  (20,3)
(16,9) (8,3) (54,8)  (18.4) (96,157  (24,8)
(20,1) (10,1 (633)  (21,1) (96,215 (24,14)
(243) (123 (72,42 (24,12) (128523  (32,27)
(24.4) (12,4 (81,9) (27,3 (128545  (32,24)
(28,1) (14,1 (10815) (36,9) (128749  (32,34)
(32,20) (16,7) (10822) (36,11) (128782  (32,31)
(36,1) (181) (117.3)  (39,1) (128864  (32,6)
(40,4) (204 (14468) (48 3) (128880  (32,9)
(44,1)  (22.1) (16214) (54,5) (1281750 (32,27)
(48,8) (24,6) (1714) (57,1 (1281799 (32,28)
(48,28) (24,12) (1898) (63 3) (1282146 (32,39

Example 13.21(d = 2) In view of Proposition 13.5, all canonical abstract error
groups ford = 2 are given by theADE classificationof the finite subgroups of
SLy(C) [Ste85]. Thegeneralised quaternian groupor dicyclic group of order 4
(n> 1), which is generated by the matrices

wn O 0-1 o
CR N e

gives an infinite family of rank 2 of abstract canonical egmyupsH . These account
for all rank the 2 abstract canonical error groups in Tabl& 1&xcept for

H=<24,3>  G=<12,3> | H =<48,28> , G=<24,12> .
which come from the Shephard—Todd reflection groups withbenn4 and 8.

From Table 13.3, we observe that index groups may be repéatdifferent
dimensions.
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Example 13.22(Repeated index groups) A growp may be the index group for
nice error frames in more than one dimensayre.g.,G = <12,3> is the index
group for a nice error frame fdvl,(C) (H = <24,3> ), and also one foM3z(C)
(H =<36,11> ).

None of the index groups in Table 13.3 are abelian. Indeesic basults from
character theory imply the following.

Theorem 13.5.(Abelian index group) A nice error frame can have an abeliaeix
group only if it is a nice error basis.

Proof. Suppose thaltl is the canonical abstract error group of a nice error frame,
and thaty : H — C is the character of a faithful irreducible representatiathw
deq x) = x(1) = d. Recall that theentre of a charactey : H — C is the subgroup

Z(x)={heH:|x(h)|=x1)},
and that ify is irreducible then

2(x)
ker(x)

- Z(k;(x))v ker(x) :={heH: x(h) = x(1)}.

Since the representation is faithful, kg) = 1, and so this becomes

Z(x) =Z(H).

Thus the index group i& = H/Z(x), by Theorem 2.13 of [Isa06], i& is abelian,
then
Gl =[H:Z(x)] = x(1)* = d*

O

The nice error bases (see Tables 13.4 and 14.1) play a protriole in the
construction of SICs. These may or may not have an abeliaxigtbup. It follows
from Example 13.19, thab = K x K is the index group of a nice error basis for
every abelian groug.

Example 13.23(Inequivalent nice error bases) For= 8, there are 47 canonical
abstract error groups, and only 42 index groups (see Tablg.14 particular, there
are three canonical abstract error groupsder <64,67> , and hence at least three
inequivalent nice error bases with this index group. Moegptwo of these give rise
to SICs, and one does not.
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Table 13.4: Nice error bases fdr< 14, d # 8. HereH is the canonical abstract error groépjs
the index group, andic indicates that a SIC exists numerically.

d d
1 < 1) <1, 1) = 74 sic 12 <1728 1294 <144 68) sic
2 (8,4 (4,2) = 75 sic (17282011 (14492
3 (27,3 (9,2) = Z2 sic (17282079 (144,101 = 72, sic
4 (6419) (16,2) = ZZ sic (17282983 (144,132
(64,94) (16,3 (172810718 (14495
(64,256  (16,11) (172810926 (144,100)
(64,266  (16,14) (172811061 (144,102
5 (1253) (252) =ZZsic (172813457 (144,136
6 (21642 (36,11) = Z3 x A4 SiC (172820393 (144170
(216.66) (36,13 (172820436 (144172)
(21680)  (36,14) = ZZ sic (172820556 (144,177)
7 (3433) (49,2) = ZZ sic (172820771 (144,179
9 (72924 (812 = Zz i (172830353 (144,184
(72930) (8L 4) (172830562 (144,189
(729,405 (81,9) sic (172830928 (144,193
(729489 (81,12) (172830953 (144,194
(729503 (8L 15) — (73 x Z3)? (172831061 (144,196) ,
10 (100070) (100,15 (172831093 (144197) = (Z2 x Zs)
(100084) (10016) — Zf, sic 13 (21973 (1692) = Zi5 sic
11 (13313) (1212) =73, sic
Notes

Relaxing the condition of irreducibility givessiable isogon(see [MVW16]).

Exercises






Chapter 14
Weyl-Heisenberg SICs

The maximal number of equiangular vectors (linesythis less than or equal t?
(Theorem 12.2). The corresponding bound%d(dJr 1) for real equiangular lines
in RY is rarely attained (only fod = 2,3,7,23). There izompelling evidencior

Zauner's conjecture (1999)here ared? equiangular lines i©9 (for all d).

This was given in Zauner's 1999 thesis (see [Zaul0]), andtencstated in

stronger forms which give a specific structure for the lireesg group frame). These
lines will be calledSICs(see§14.2), and their existence is also known as tH&C
problem The evidence for this conjecture (which is steadily insieg) includes

SICs have been constructedmericallyfor all d < 121 (to 8000 digit precision),
and for a handful of other dimensions upde- 323.

SICs have been constructadalyticallyford =2,...,16,19,24, 28 35,48 [SG10],
and most recently fod = 17,18 20,21,30,31, 37,39,43 [ACFW16].

We now outline the detailed structure of SICs, using theofwilhg road map:

SICs aregroup covariant i.e., areG—frames for a discrete Heisenberg group.
This reduces their construction to findindiducial vector(generating vector).
TheClifford group(normaliser of the Heisenberg group) maps fiducial vectors t
fiducial vectors.

Fiducial vectors have certain symmetries, in particulaythre eigenvectors of
the Zauner matrix of order 3 (orM; in some special cases).

The field given by the triple products defining a SIC has a siév&alois group.

It inducesGalois symmetriesf SICs (this is part proved and part conjecture).

Before reading the remainder of this chapter, please beegarn

@ The SIC problem is very addictive.

361
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14.1 Maximal sets of complex equiangular lines and vectors

Suppose thafv;) is sequence af = d? unit vectors inCY which gives equality in
the lower bound (6.22) for the second frame potentia ), i.e.,

o 203 d?(d? - 1)
ZZKVJW' g O JZ Vi = G571 ~ 9= gz

By the variational characterisation (Theorem 6.1),
;\<vj,vk>|2 > %(dZ)Z—dZ =d*—d? (14.1)
]

with equality if and only if(v;) is a tight frame. By Cauchy—-Schwarz,

d?(d? 1)
; 2 2(d2 — . _J4du =4 3 2
JZ [{vi v < y/d*(d* - 1) J; (v, vig|* = a+1 =d°—d-,

so by (14.1) there must be equality, i.8vj,)|? = C, whereC > 0 is constant.
Thus(v;) is an equiangular tight frame f@9 with the maximal possible number of
vectors (see Theorem 12.2).

This condition on the vectorg can be expressed in terms of the associated lines
Cvj, and the rank one orthogonal projectid®s= v;v;, which satisfy

(Pj,R) = tracgPjR;) = tracgVjV;ViVi) = tracgViVieviv;) = | (v}, i) |°.

We now give some of these characterisations.

Proposition 14.1.Suppose thatvj) is d? unit vectors inCY, and R := vjVvj. Then
the following are equivalent

1. (v;) is a equiangular tight frame foEd.

2. The linegCv;) are equiangular.

3. v v lP = g, i # k.

4.(P,R) = giy, 1 # k.

3
5.3 Sklvi vl = &
3

6.5 yk(P,R)? = &5

7. (vj) is a complex2, 2)—design.

8. (P;) is a complex projective2, 2)—design.
Proof. If (v;) is an equiangular tight frame withvj, v)|?> = C, j # k, then (2.10)

gives
1

d+1
Thus the equivalences follow from the previous discussiom the definition of
(2,2)—designs (seg6.9). O

(d*—d)C=d®-d?) — C=
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14.2 SICs

The “rank one quantum measurements) corresponding tal? equiangular lines
in CY have applications in quantum mechanics, e.g., in quantata simography.

Definition 14.1.A SIC!, SIC-POVM, or symmetric informationally complete
positive operator valued measurefor CY is d? rank one orthogonal projections
(Pj) onCY, which satisfy the condition

i 1 .

For an explanation of the quantum physic underlying thisnitedn see§14.3.
The space ofl x d matrices (linear operators on the Hilbert spa¢e= C%) can be
expressed in terms of these rank one Hermitian matrices:

Proposition 14.2.If (P;) is a SIC forCY, then

1. (P) is a basis for the real vector space of Hermitian matrices.

2. (Pj) is a basis forC*4.

3.(F— %I) is an equiangular tight frame for the traceless Hermitiantrices.
4. (P — %I) is an equiangular tight frame for the traceless matrice€ 9.

Proof. By Theorem 12.2 thd? matrices(P;) are linearly independent (ovérand
henceR), and so form a basis for the Hermitian matrices &d9. The matrices
P, — 11 are traceless, wittP; — 31, R.— 31) = (P, R) — &, and so are equiangular.
In addition, they are a tight frame for tijd? — 1)—dimensional spaces of traceless
matrices asserted, as the variational characterisatid) {6 being a tight frame
holds, via the calculation

dz(l—é)er(d“—dz)(dJlrl—;)Z:(d(;:)ldzzdzl_l(dz(l_;))z-

Here we usedP},R) = g1, j # kand(P},P}) = 1. 0

Remark 14.1The equiangular tight framéP; — %I) above is thed? vertices of a
regular simplex in gd? — 1)—dimensional real space. Indeed (see Exer. 14.2), the
rank one orthogonal projectioms* (or unit vectors € C9) giving a SIC are mapped

to the traceless Hermitian matrices with unit norm (calleeiRBloch spherewhen

d = 2) by the map
[ d 1

Since their image (the vertices of a regular simplex) hasnsgtry groupS;, it is
expected that SICs should also have symmetries. This issbmuhby the known
constructions. Unfortunately, SICs can only be found byingkhe preimage of
certainregular simplices under (14.3), as it is not ontodas 2.

1 Vectors(vj) satisfying 1,2,3,5,7 of Proposition 14.1 are also known as SICs.
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14.3 Quantum measurements

Much of the literature on SICs comes from quantum mechamibich uses Dirac
notation). | now outline the physical interpretation of Sl@s kindly explained to
me by Marcus Appleby).

The Dirac or bra—ket notation consists of thédra (w| and theket |v) which
combine to give théra—ket (w|v). We illustrate this notation:

mathematics w*={-,w) v (vyw) =w'v VW g
bra—ket U V) wiv) = (W) Ivwl feg) = 1))

In particular, our inner products are linear in the first &ate, and the bra—ket is
linear in the second variable.

The stateof a quantum systeraf dimensiond is described by @ x d positive
semidefinite matrixp with tracd p) = 1 called adensity matrix. A measurement
is described by positive semidefinite matriggs. .., E, with 3 ;E; = I. The (Ej)
are called apositive operator valued measur§POVM). Theprobability distri-
bution for obtaining the measurement outcoi®r a statep is tracepE;).

e For many measurementg;), e.g. spin and energy, there are infinitely many
states which give some fixed probability distribution.

e There aresomemeasurements for which the probability distribution fixae t
state — these measurements are said iofoemationally complete.

¢ Informationally complete measurements can be used totindestate statistically
(quantum tomography).

¢ Aninformationally complete POVM must have at led$toperators. It is said to
be minimally informationally complete if it has exactlyd? operators.

If (P}) is a SIC forCY, sayP} = vjvj, then(vj) is an equiangular tight frame for
€Y, and the frame expansion can be written as

1
]

Thus the operators

. 1

Ej =3P
are a
Symmetric Informationally Complete Positive Operatorni¢al Measure

where the ternsymmetriaefers to the fact thafE;, Ex) takes just two values, i.e.,

1 ; .
21’ 17k
1

<Ej,Ek> = trace(Ej Ek) = { K
] =K

a2

This explains the origin of the term SIC-POVM (SIC).
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14.4 Group covariance

All known SICs forC® have a grougovariance propertyi.e., they are abl—frame.

e The groupH can be the discrete (Weyl-)Heisenberg group, except wher8,
where it can also be a product of such groups fortHbggar lines(see§14.6).

e The Heisenberg group is a projective representatidd efZqy x Zq, i.€., a nice
error basis with index grou@. Other nice error bases (with possibly nonabelian
index groups) give rise to SICs, but these SICs are groupriemtavith respect
to the Heisenberg group (or are the Hoggar lines).

e Ford prime, the only group covariant SICs are for the Heisenbesgm[Zhu10]
(there might be SICs which are not group covariant).

e TheClifford group(normaliser of the Heisenberg group) maps Weyl-Heisenberg
SICs to Weyl-Heisenberg SICs.

By definition, a SIC or set of equiangular lines is a projextibject. To describe
the SICs forC® which are the projective orbit of a given vector (line) under

p:G— PU((Cd) (projective unitary group)

it is often convenient to deal with a generating unit vester C¢ (any in the line)
and unitary matriceBg € p(G), i.e., the corresponding nice error basis ($E213).
The matricegEg)gec can be replaced by a finite groip which consists of unit
scalar multiples of them, e.g., the canonical abstract gnaup, and the vectarby
the orthogonal projectioR, = vv* onto the line it defines. In this way, a SIC can be
equivalently presented as

e (Egv)gec (each line appears once)
e An H—frame(hv)pey (the lines are repeated)
o A projectiveG—frame(g- R,)gec, Whereg- A:= AL, g€ p(g).

The vectow and the rank one orthogonal projectign= vv* are said to béiducial.
By Corollary 8.2, the equiangular lines given fyw)ncy are determined up to
projective unitary equivalence by their triple products

(hav, hov) (hov, hav) (hav, V) = (gvv) (hvv) (g th™ v v),  g:=hythy, hi=h3thy.

The field associated with a given covariant SIC is the extensf Q by these triple
products, in which the fiducial project®, = vv* lies. The structure of this field
plays a crucial role in the construction of Weyl-Heisent@i@s (se€14.20).

Example 14.1The SIC(v, Sy Qv, SQv) of (1.7) is covariant with respect #y x Z;
(see Example 13.14). The fiducial vector and fiducial projeate

1 3+V3 o1/ 3+V3 V33
V‘ﬁ(&i 3_¢§>’ PV_VW_6<¢§+\@i 3—@)'

We observe that here the field required to presestarger than that foR, = vw*.
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14.5 The discrete Heisenberg group and Weyl-Heisenberg SICs

We now generalise the Pauli matrices and the group (nice easis) they generate
to higher dimensions (see Examples 13.16 and 13.18).
Throughout, letv andu be the primitived—th and 2—th roots of unity

2mi 2m
w:=ged, U:=exd,

and take the indices for elements®@t andC9*¢ from Z4 = {0,1,...,d — 1}. Let
Se €9%4 pe thecyclic shift matrix, and Q € C99 be themodulation matrix
given by _

(S)jk = 6j,k+1, (_Q)jk = 5“(. (14.4)

Ford = 2, these are the Pauli matrices= ogx andos = g, and ford = 3 they are

0071 1
s=|100], o= w |.
010 w?

These have ordet, and satisfy theommutativity relation
kg = wikg k. (14.5)
Thus the group generated by the unitary matrisasadQ is
H:=(SQ)={w'FQ:rjkeZg}. (14.6)
This is called theéHeisenberg groug (for Zg), as is the group
H:={ch:ceT,heH}c#(CY, T:={ceC:|c=1}. (14.7)

Since tracéS) QX) = 0, (j,k) # (0,0), we have (see Proposition 13.5)

e The unitary matrice$S Q)| xcz,xz, are anice error basisor C4*d.
e (j,k) — 9QXis a faithful irreducible projective representationZaf x Zg.

(see Example 13.18). In particular, the unitary actiokiain CY is irreducible, and
s0(hV)ney and(SI Q)| kez, are tight frames fo€d for anyv # 0 (Theorem 10.5).

Definition 14.2. A SIC (equiangular tight frame af? vectors) forCY of the form
@, = (9 QkV)j,kEZd is said to be aWeyl-)Heisenberg SIC(or Heisenberg frame.

A Heisenberg framéor C¢ is generated from a single vecteiby applyingS
(translation) and®? (frequency shift). Thus, it is a discrete analogue of a Gabor
system (Weyl-Heisenberg frame), and has good time—frexylenalisation. In this
analogy the fiducial vector corresponds to thmother wavelet

2 |tis also known as thgeneralised Paulior Weyl-Heisenberg group
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14.6 The Hoggar lines

All the known SICs are group covariant, and all are Weyl-Eeizerg SICs, except
for the Hoggar lines(d = 8), which we now describe. The original presentation of

these lines [Hog98] was in the 4—dimensional sgétever the quaterniarg. We

follow the description of [GR09]. Consider the nice errosisagiven by the tensor
product (se€13.14) of the Heisenberg nice error basis@r(see Example 13.18)
with itself three times, i.e.,

{Eg}ge(zze = {F1Q12) @ ($1Q%) w (361942)}(]7&@)6(25)3’

whereS_al_ox—(01>,Q—03—0z—<

10

10
0-1

> . Then theHoggar linesare

the SIC of 64 (equiangular) lines it given by{Egv}ge(Zg)g, where

=(0,0,1+i,1—

i1+, —1—

i,0,2).

The Hoggar lines are coinvariant with respect to other gsqgpe Table 14.1),
many of which can be obtained as a subgroup of the Cliffordigi(see;14.7).

Table 14.1: The nice error bases tbe 8. Those which occur as subgroups of the Clifford group
are labelled with am, and those which give rise to SICs are labelled SIC. All theses SI€ the
Hoggar lines (up to projective unitary equivalence), exéepH = <512,451> , G = Z3.

G H G
<512 451) (64,2) = 7 SIC* 512 400443 (64,123 *
(51245 (64,3) sic¥ (512401215 (64,91 sicr
(51235969  (64,8) SIC* (512402896 (64,12
(51236083 (64,10 (61240295} (64,138 SIC
(51259117  (64,34) * (512402963 (64,138
(51259133  (64,35) * (512403139 (64,162 *
S . GEken i
512 2615 4, IC* ) *
(512261511 (64,67) SIC* (512406902 (64,179 *
(512261518 (64,6 (5126276980 (64,192 = (Zy x Z4)? *
(512262018 (64,60) SIC* (5126277027 (64,193 SIC*
(512262052 (64,62) SIC* (5126278298 (64,195 SIC*
(512265618 (64,69) SIC* (5126279917 (64,202 SIC
(512265839 (64,68) SIC* (5126279938 (64,202 SIC
(512265911 (64,71) SIC* (5126280116 (64,203
512260267 (6473 s12cs3077] (6421
(512,26635% (64,75) SIC (5126339869 (64,207
(512266373 (64,74) SIC (5126375318  (64,236)
(51226647% (64,78) SIC (5126376278  (64,216)
(512266583 (64,77) SIC (5127421157 (64,242
(512266616 (64,82 (51210481364 (64,261)
ggg igg%gg ggj gg; g:g * (51210494180 (64,267 = (Z3)2 SIC
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14.7 The Clifford group (normaliser of the Heisenberg group)

Here we study th€lifford group(normaliser of the Heisenberg group), which plays

a key role in the construction (and counting) of Heisenbé€gsS

Proposition 14.3.1f U is a unitary matrix which normaliseld of (14.7), i.e.,
usokuteH, VjkeZg,

and @, := (S Q)| kez, is a SIC (i.e., is equiangular), then sods,,.

Proof. Since (St Qky, S2Qkey) = (Sii-izQki—key v), the angles between distinct
vectors in®, are '
(S v =r,  (i,k) #(0,0).

SinceU ~1SIQXU = ch, c € T, h € H, with h not a scalar fof j, k) # (0,0),
(8 Q4UV),UV)| = [(U IS QU = [(chyw) =T, (j,k) #(0,0),
and so the angles in the second frafig, are equal. O
Let[U]:={cU:ce T} = {€'U :t € R}, so thaf]] is the unitary scalar matrices.

Definition 14.3. The normaliser of the Heisenberg grodpin the group of unitary
matrices is called th€lifford group , and it is denoted by @). The projective
Clifford group is PQd) := C(d)/[l] (its elements are calle@lifford operations).

Since H ¢ C(d), the action of €d) on CY is irreducible, andz(C(d)) = [I].
Since
s=sT=s! o =01 Q"=0, (14.8)

the Heisenberg group and Clifford group are closed undéngake transpose and
Hermitian transpose, and hence also entrywise conjugatier{A*)T, we have

Entrywise conjugation maps a given Heisenberg SIC fiduoiahiother.

This motivates the following.

Definition 14.4. The normaliser of the Heisenberg grodpin EU(CY) (the group
of unitary and antiunitary map8 — C) is the extended Clifford group EC(d).
Theextended projective Clifford group is PEGd) := EC(d)/]l].

Combining the above observation with Proposition 14.3gjive

The extended Clifford group maps a given Heisenberg SICifditecanother.
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Some elements of the Clifford group include Faurier matrix 3 F, the diagonal
matrix R, M = RF, and the permutation matric€s, o € Z3, which are given by

(Fjk = %w“‘, (14.9)
(R)jci= w95y, (14.10)
(M) = % i(+a)+2ik (14.12)
(Po)jk = Oj.ok, O EZy. (14.12)

We observe thaR, M are well defined, i.e., the value ¢fj +d) depends only on
the integerj modd. The entryul(i+9) has many alternative descriptions, e.g.,

plHd) — 2 )i = i 1)i® = (- p)i® = @i,
Elementary computations (see Exer. 14.5) give:

Lemma 14.1.The unitary matrices FR, M, P, normaliseH. Indeed

FIQYF 1= w kskal (14.13)
REQ\R = plli+tdg itk (14.14)
M(S QKM = pkk-2i+d)g kg ik (14.15)
P (S QYP 1= iQo k) (14.16)

whereo 1 is the multiplicative inverse af € Z§.1fd is odd, then all the powers of
u above are even, and so can be expressed as powers of

We will see (Theorem 14.1) th& (or M) along withF andH generate the
Clifford group. The appearance Bf(and hencév) can be explained. It appears in
a direct search for diagonal matrices in the normalisét of

Proposition 14.4.The group of diagonal unitary matrices which normalise the
Heisenberg group is generated by the scalar matrice3®, and the matrix R given
by »

Proof. Suppose thaf\ = diag(A|) normalisedd, andAq := Ao. Then

}? 0 Ad-1
Mpg... 0 Aj -
M J

3 The matrixF* = F~1 = F is also commonly referred to as tiReurier matrix, or as theDFT
(discrete Fourier transforinmatrix.
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wherec € C, k € Z. Solving this recurrence gives
A} = Aol 31Uk = poc i 1=Dk — ) i(i+dk gy ~KA+D)y],
SinceAq = Ag, this gives
(o KE+Yd — (g KE+1Y0 1 k(D) _ gy

and soA = AgRKQ™. i

We now consider the structure of ). Let
Ujw =924  (i.keZj. (14.17)

If ae C(d), then
aUya ' =z(A)Uyn), VA €73, (14.18)

which defines functiongls : Z3 — Z3 andz, : Z3 — T, since noU, is a scalar
multiple of another. For example, (14.13), (14.14) give

W (l’() = (‘,—k> , (K =wk (14.19)

R <|J<> = (j ik) Zr(j,K) = iU+, (14.20)

We now show the elements of the Clifford group factoredbgan be indexed
by the elements dbLy(Zq) (the 2x 2 matrices oveZq with determinant 1).
For a 2x 2 matrixA, we define a symmetric matrixy by

Op = (g;gé’) . A= (‘;’/ g) . (14.21)

Lemma 14.2.Let )3 and z be given by14.18) Then the map
Y:C(d) = Slp(Zqg) :ar Ya (14.22)
is a group homomorphism with kerrté| and z satisfies
Z(p+0) = WP Mz(p)za(0),  P.gEZ] (14.23)
where A= (l; and ga is given by (14.21).
Proof. By (14.5), we havé&)Uq = wP21Up, 4. and so
wP% (aUp,qa 1) = aUpUqa t = (aUpa 1) (alqa ),

which gives
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WP 25 (P4 QU (piq) = Za(P)Uya(p)Za(DUya(q)
= Za(p)Za(Q)w¥e(P2Yal D1y, o0

and hence
WYa(P+0d) = Ya(p) + YPa(a), (14.24)

prqlza(p+q) — Za(p)za(q)wwa(p)Zwa(Q>l_ (1425)
For p= p1&1 + p2€2 € Z3, from (14.24) we obtain

Wa(p) = p1Wa(€r) + p2Wa(e2) = [Wale1), Ya(e2)]p,

i.e., Yz can be represented by thex2 matrix[@a(e1), Ya(er)].

Let [P, q] = [(a(P), Ya(a)] = Y[p,d], so that deffp’,q]) = det(ya) det([p,q]).
Since the quotient,(p)za(q)/za(p+q) is symmetric inp andg, (14.25) gives

WP B P — ®PIRPL — i) —Gyph = P12 — GuP2
= det([p,q]) = det[p,q)),
= def{yn) =1, (14.26)

i.e., Ya € Slp(Zg). Using this (see Exer. 14.8), (14.25) can be written as @)4.2
Since(ab)U, (ab)~* = a(bUyb~1)a~1, we have

Zab(A ) Uyn) = aZ(A)Uygr))a T = 26(A)Za(W(A)Uyygony):  (14.27)

S0 thatWap(A) = Wa(Ph(A)), i.e.,a— Y, is @a homomorphism.

We now determine the kernel qf. By (14.5),H C kery. Supposap, = I, so
thataSa = z,(1,0)SandaQa = z,(0,1)Q. SinceS! = Q9 = |, this implies that
Z,(1,0) andz,(0, 1) ared-th roots of unity, say

aSal=w’S aQal=dwfQ. (14.28)

If ac H, then (14.28) implies thaa is a scalar multiple o5 £ Q7. Hence, we
consider the unitary matriz = (S Q%)~'a. By (14.28) and repeated application
of (14.5), we have that

b(SQ¥b 1= 0 9FL(asal)(aQa ks P
=0 L9 (PQ)sPQY =K

Sinceb commutes with the basis Q¥); kez, for C9*9, Schur's Lemma implies
thatb must be a (unit) scalar matrot, and hencea=cS P Q% € H. 0

Example 14.2From Lemma 14.1, we have the following, € SLy(Zg),

_ _ 1
WF:(&) 01>7 ll’RZ(i?_), QUM:<§_)_1>7 WPGZ(G 0)'
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14.8 Generators for the Clifford group

The subgroup of the Clifford group(@) generated by, R (and the scalars) is the
symplectic unitaries
Csp(d) := (F,R/[I]).

The elements o€sp(d)/[l] are calledsymplectic operations and elements of the
Heisenberg groupl (or H/[l]) are referred to akleisenberg operations (Weyl)
displacementsor time—frequency shifts Ford even (see Exer. 14.6),

Qf =R, SE—FloSF—F!RF, S¢0%—F IRFRE.  (14.29)

Thus there are nontrivial symplectic operations which &e displacements.

It turns out that (14.29) are the only cases (see Corollar)1Zhis makes the
description of the Clifford group more technical feven (herdk has order @).
We now show that @) is generated by the normal subgrdd@mndF, R, i.e.,

Every Clifford operation is the product of a displacemenemion and a
symplectic operation.

Theorem 14.1.(Clifford group generators) The homomorphism
Y :C(d) = Slo(Zg) :a— Ya

maps F and R to generators for 8Zy), and hence is onto. Therefof&(d) is
generated by the unitary scalar matrices, and

SQ FR
The Clifford groupC(d) is closed under taking the transpose, Hermitian transpose,
and entrywise conjugatioA = (A*)T.

Proof. By Lemma 14.2, the kernel af — (, is H. SinceH is generated by the
unitary scalar matrices arl Q, it suffices to show theLy(Zq) is generated by

Yr = ((1’ _01> . UR= G 2) . (14.30)

Itis well known these matrices gener&k(Z). Since the map of taking the entries
of A € SLp(Z) modulod is a homomorphism ontBLy(Zg), they generat&Ly(Zg).
We observed the closure properties are a consequence 8f.(A#ternatively, forR
andF, we haveR* =R=R 1, RT=R F*=F=F 1 FT =F. 0

4 This is because their action ¢his given by a symplectic matrix (see Remark 14.2).
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The order ofSLy(Zg) is known (see [Gun62] Theorem 3, Chapter I)
3 1 :
|Sle(Zg)| =d |_| (1— ?), (p the prime factors ofl).
pld
Hence, by Theorem 14.1, the number of Clifford operations is

C(d) H|C
ol

D) ¢ s15(2) = ] (1-3).

The extended Clifford group E@) is generated by the antiunitary m@pv— v
of conjugation together with any set of generators fadJsee Corollary 14.3).

14.9 Indexing the Clifford operations

We now show each Clifford operation is uniquely determingdhe pair((a, z,).
Define the semidirect produllp(Zg) x TZ via the multiplication

(A,za)(B,z8) == (AB, (za0B)zs), (14.31)
where function%ﬁ — T are multiplied pointwise.

Corollary 14.1. With the multiplication (14.31), the map
C(d) — Slo(Zg) ¥ TZ : ars (Ya, Za) (14.32)

is a homomorphism with kerndl. Thus every Clifford operatiofa] €= C(d)/[l]
has a unique indekys,,z,), and these satisfy

LIJab = L/Jan Zgp = (ZaO l.,Ub)Zb, (1433)

Yo =Y =Y Za=2Zp1 =23 oy =Z0 Y, (14.34)
Further, if 12 = (n, then 3/z, is a character.

Proof. It is easy to check (see Exer. 14.7) ti®ib(Zg) x T% is a group with the
multiplication (14.31), identity(l,1), and inverseA,zy) 1 = (A~ z;* o A71) By
(14.27), we have

Wab= Yalh,  Zab= (Zao Yb)2,

i.e., the mam— (Y}, z1) is @ homomorphism. Thus (14.33) holds, as does (14.34)

by the calculation(y,-1,2,-1) = (Ya, ) ' = (Yo L,z o g ).
Now suppose thatis in the kernel, i.e.ya=1,za = 1. By Lemma 14.2, we have
a=c9QkKe H. Using (14.5), we therefore obtain (see Exer. 14.4)

aProPg~l — g okgPipPr—Kkg i — wkpl—ipzspl_sz,
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so thatza(p) = wkP—1P2 = 1,¥p € Z3. Thusj = k=0 anda=cl € (1], as supposed.
For ga = Y, = A, it follows from (14.23) or (14.25) that,/z, is a character. O

We call the subgroup @Le(Zg) x TZ given by
Ind(d) := {(Ya, za) ;@€ C(d)}
theindex group of the Clifford operations, and thiedex mapis the isomorphism
C(d)/[1] = Ind(d) : [a] — (Wa,Za)- (14.35)

Example 14.3ForM = RF, from (14.19) and (14.20), we calculate

Ym = YrYE = G 2) (g_) _01> = ((1) :D ,

K) (—k+d) K(k+d)+2jk

= (zmoPr)ze = zu(j,k)=pu"" w k=p
The Clifford group @d) and the index map — (Wa,Z,) can easily be set
up in a computer algebra package sucimagimaby taking the matrix group
generated by the matric&sQ, F, R (defined over a suitable cyclotomic field).

By Theorem 14.1y1(A) = {ha:he H}, A€ Sly(Zy), for anya with g = A,
Hence to describe the elements of the Clifford groyp)Cit suffices to know am
in each cosey—1(A). We now show this representative can be a symplectic matrix.

14.10 Appleby indexing

If dis odd, then—u = wdjfl, and it follows from (14.23) that

za(p) = (—H)P %P 2a(p),  VpeZd, (14.36)

whereA = yJ,, andZ; is a character (see Exer. 14.8).

If d is even, then the factqrf;.l)pTUAp above is not well defined. To obtain an
analogue of (14.36), it is necessary “lif& to aB e SLZ(ng). This “doubling”
works, but the corresponding (Appleby) ind@ x] is not unique. We now give the
details as described by [App05].

Define displacement operators by

Dp:= (—u)PPegPQP2, peZ? (14.37)

These satisfy déDp) = 1, and (see Exer. 14.15)
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and

- D d odd:;
D ={7P . ’ 14.39

where(-,-) is thesymplectic form
0-1
(p.q) = P20 — 1o = p' <1 0 ) g

It follows from (14.39) thaﬁp depends only op modd’, where

g - d, dodd;
" l2d, deven

We observe thatp, q) has the property

(Ap,Ag) = detA){p,g),  Vp,q. (14.40)

We now generalise (14.36), to show that for egahe C(d)/[l] there exists a
B € SLy(Zy) andx € Z3, such that

aDpal= wXBPDg,  vpeZ3.

Here (x,Bp) is interpreted agx,Ap), A:= B modd, whend is even. We will
write the pair(B, x) as[B, x], and call it anAppleby index.

Theorem 14.2.Define the semidirect product SZy ) x Z3 via the multiplication
[B1, X1][B2, X2] := [B1B2, X1+ A1X2|, A1:=Bi modd. (14.41)
Then there is a unique surjective homomorphism onto théo@libperations
f:Sl(Zg) x 25 — C(d)/[1], (14.42)
with the property that fofa] = f([B, x])
aDpat=wXBPDg,  Vpez3, (14.43)
ie.,
A= ga=Bmodd,  z(p)= XA (—p)P %P ype7Zi  (14.44)

This f is an isomorphism for d odd (i.e/,d d), and for d even it has kernel

kerf :{[(lidrd 1_?%) , (fg)} r,ste {0, 1}}. (14.45)
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Proof. If a € C(d) satisfies (14.43), then (14.44) follows (see Exer. 14.16yidw
of the isomorphism (14.35¥, is uniquely defined, and it suffices to show that

0 :Slp(Zy) x Z5 — Ind(d) : [B, ] — (A, za),

given by (14.44) is a surjective homomorphism.
We first show it is a homomorphism (as a masto(Zg) x ']I‘Zé). Now

6([B1, X1/[B2, X2]) = 6([B1B2, X1+ A1X2]) = (A1A2, Zaya,),
A =By modd,  Zaa,(p) = wXLtAXeAAR) ()P 0Bie,P
and
6([B1, x1]) B([B2. X2]) = (A1, Za, ) (A2, Zay) = (A1A2, (Za, 0 A2)Zay),
((Zay 0 A2) ;) (P) = Qo XAA2P) (1) B2P)" 001 B2Py{X o) ()P oo,
so thatf is a homomorphism provided that
(X1 +Arx2, AAop) = (X1,A1A2p)) + (X2, A2P),

p' 0,8, = (B2p)" 08, B2p+ p' 0, p.
The first follows since (14.40) gives

(X2,A2p) = (A1 X2, AiA2p)),
and the second follows by the identity
Os,B, = B} 08, B2 + det(B,) 08,

We calculate (as in Example 14.4)

9([((1) _ol> ) = (Y, 2), 9@(1 2) 0) = (Yrzr).  (14.46)
and

011 (§)) = sr Vs o).

so that® maps generators f@Lo(Zy) x Z3 to generators for Ing), and hence is
a surjective homomorphism.
Finally, we determine kefr = ker6. By (14.44), we havéB, x] € kerf if

Ai=yga=Bmodd=1,  z(p)=wXAP(—p)P'BP=1 vp,

Ford odd,d’ =d, and sdB = | andz,(p) = wX2P1~X1P2 = 1,¥p. ThusB, x] = I, 0],
andf is an isomorphism. Fat even,B modd = | gives
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1+rd sd
BZ( td 1+ud)’ rstue {01},

and the condition déB) = 1 gives
detB) = (1+rd)(1+ud) — st =1+ (r+u)d modd’ — r=u,

so that

_ (1+4rd sd _ (td(1+4rd) tdsd _ (td /
B—( td 1+rd)’ UB_( sdtd sc(l—Hd)):( sd) modd.

Henceza(p) = w!X-P) (— )P 98P = goXePL—X1P2(— 1IFE+sdB — 1 which gives
@WXtP2XePL — (_1)tPHSE — (L 1)tPrtsReyB(tPitsR)  yp

Thus,x1 = s, x2 = — 4t = dt, and we obtain (14.45).

In other words:

Each Clifford operation has an Appleby ind@ x] € SLy(Zy) x Z3.

e This is unique fod odd.
e There are eight choices (each differing by an element of kfar d even.

a Ya z(],K) [[BX]
SgoLAN whi-ak “»(%)1
Fol(@0) e [iT 701) 701
R L 2) wiiso | (1 2) 0

Table 14.2: The indekya, za) and Appleby indeXB, x| for generators of the Clifford operations.

Example 14.4For the Appleby indeB, x] = [(2 _01) ,0], we haveog = <_Ol _01) ,

WXBP (—p)PTO8P — ()2 = K =z (j k), p= (ﬂ) :

SO thatG([(? _01> ,0) = (Ur, z¢) and[(? _01> ,0] is an Appleby index fofF].
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14.11 Symplectic unitaries

By (14.29), ford even, there are nontrivigymplectic unitariegthose generated by
F, Rand the scalars) which are in the Heisenberg group. We noractesise these.
Let my be the surjective homomorphism

My : Slo(Zg) — Sla(Zg) : B> A:=B (modd),

which is the identity foild odd, and ford even has kernel (see Theorem 14.2)

1+rd sd
K:{< td 1+rd>:rvsvt€{071}}, K| =8. (14.47)

Corollary 14.2. A matrix ac C(d) is a symplectic unitary if and only if it has an
Appleby index of the foriB, 0]. Indeed, the map

a 1 Slo(Zg) — Csp(d)/[1] : B ([B,0]) (14.48)

is a surjective homomorphism, which is an isomorphism fordd. dor d even,
kera = {lI,(d+ 1)l }, and so the only nontrivial Heisenberg operations which are
symplectic are given by

st 0% s

Nia

Q% (d even)
Proof. By (14.41), we have
[81827 O] = [Bl7 0] [827 0]7

and soa is a homomorphism. It is onto, since by (14.46), its imagd&ios

O’(G ol>) =[Fl, U(G 2)) - R, (14.49)

which are generators f@sp(d)/[1]. Sincey has kerneH (Lemma 14.2), itinduces
a well defined homomorphisigh : Csp(d)/[I] — Slo(Zg), with

wF-vE - (1) WR-vR=(19).  asso)

By (14.49) and (14.50), we conclude that

rnd:(poav

since it holds for the generators (14.30)Si6(Zy ). The kernel of) consists of the
symplectic operations which are also Heisenberg opestian,

ker( = Csp(d)/[I]NH/[1].
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Ford odd, my is an isomorphism, so that kir= {[I]}. Ford even,
mg=@oa = |kerd||kera|=kermy| =|K|=8§,
and (14.39) gives
Disaip=(-1)PPDp =Dy = (d+1)l ckera = |kera|>2.
In view of (14.29), we must have
kera = {I,(d+1)1},  kerdy = {[1],[S?],[Q%],[S2Q2]},

as claimed. a

In other words:

Each symplectic operatida] has an Appleby index of the forfB, Q].

e This is unique fod odd.
e There are two choice$R, 0] and[(d + 1)B, 0]) for d even.

We callB € SLy(Zy) asymplectic indexfor [a].

The following commutative diagram summarises Corollarn?214

SL(Zg)

> Csp(d)/[1]

i (14.51)

7

Slo(Zq)
In particular, we have the following 1-1 indexing of the syegbic operations

Csp(d) | Sle(Zg), dodd;
N ) 3kZa)  geven

(CEDE
Remark 14.2Matrices inSLy(Zy ) are said to beymplectiqsee Exer. 14.10). &
is a symplectic unitary, with symplectic ind®x then (14.43) gives

aDpa ' =Dgp,  Vp(€ Zg),
i.e., the conjugation action @af on the displacemerﬁ)p is given by multiplication
of p by the symplectic matriB. This is the origin of the terraymplectic unitary

The groupCsp(d) of symplectic unitaries isot irreduciblefor d > 2, since its
centre contains the nondiagonal mafix = F2. Calculations irCsp(d)/[l] can be
done in the group generated ByandR, which is finite (see Exer. 14.19 for details).
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14.12 Permutation matrices

The permutation matrices are a subgroup of the symplectianas.
Proposition 14.5.The permutation matrices,Pb € Z}, are symplectic. Indeed,
with 1 < b < d, we have

P = (Coa) R 'FRFRY 'F, (14.52)

where bt is the inverse of b itZ;,, and ¢4 = Cp-14 IS the Gauss sum

1 bi(i-+d 1
Cod i= — 2 pbii+d) — _=_G(b(d+1),2d).
b.d \/ajezd 2v/d (( ) )

b 0

Proof. LetB = <O b1

) € Slp(Zy'). Thenog = 0, and so (14.16) gives

A:i=g =Bmodd,  zy(p)=1=wOAP(—y)P %P ype7zd.

By Theorem 14.2, this implies thaB, 0] is an Appleby index foR, , which is
therefore a symplectic unitary, with symplectic ind&xNow B can be factored

b 0 -1 0-1\ /0 -1
o (*0)- () 0D (05h). s
In view of (14.46), a symplectic index f&°F is given by
0-1\ [10\°/0-1
1-b) \11 10)

and so applying the homomorphismof Corollary 14.2 to (14.53) gives (14.52),
for some scalacy g, to be determined. From (14.9) and (14.10), we have

1 . .
ROF) j = —=pPil+d)+2ik 14.54
(R°F)jk \/all ( )
Hence, equating thgd, 0)—entries ofcy 4Py(RY 'F)~1 = RIFRY'F, gives
L= 5 RFR )=t 5 i,
\/a , JEZy deZd

We recall thai!i+9 depends only o modulod, anduid = pd%, so that
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Cod = 2 5 pb i) - i~ 1 gpid 1), 2d)
47278 2 o Z) ~2va 2.

Evaluating thg0,0)—entries of (14.52), using (14.54), gives

z “bj(j+d)+2jk+b*1k(k+d) _

Cod = —F+ Cb—17d.
dvd jede &7,

O

The formulas for evaluating Gauss sums imply taf is an 8—th root of unity,
e.g., ifb has odd order, thea, 4 = (V)19 (see Exer. 14.11).

Example 14.5Whenb =1, (14.52) gives
M2 = (RF)3 = gPy = e F (41|,
The mapZj — C(d) : 0 — Py is a group homomorphism, since
(Poyo,) jk = Z(Pol)jr (Poy)rk = 6,011 Or. 00k = Oj.0y00k = (Poya,) jk-

From Corollary 14.2, we observe that

If a1 anday are symplectic matrices with symplectic indidg@sandBy, then
B1B; is a symplectic index for the symplectic matexa,.

Using the symplectic index fdPg given by Proposition 14.52, and those for
andR given by (14.49), one obtains the Table 14.3.

Symplectic matrix] A= i, € SUZg)
ac f([B,0]) Be SUZy) Za(j, k) index description
B O .
Ps 0p1 1 diagonal
RIP; aﬁB Bgl) (—p)9PB?I? = paP?ili+d) lower triangular
-1
FIRIP;F BO 7gﬁ L, a#0 | (—p)~ap upper triangular
RAP.E-LRY By B \@By-1) 2+ 2(apy—1) jk+apk2 brs is a unit
B aBy—Btap (=) 12
FIRPFIRF | (9 BB 5;7 By (—p)~aB?iP+2aB?y-Dik—y(@B?y-1K | p s a unit

Table 14.3: Some symplectic unitari@g< Csp(d), with an Appleby indeXB, 0] (B is a symplectic
index), the index(Ya,z,). Here 3 is a unit inZy (and hence irZy). For the cases whea is
antiunitary, or the off diagonal entries Af= (), are nonzero and not units, s¢b4.13.
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14.13 Calculating a symplectic matrix from its symplectic ndex

Using Table 14.3, a symplectic mata&can be determined from its symplectic index
B (or Y = B modd), except for when the off diagonal entries®are nonzero and
not units. We now consider this case, and also wéErantiunitary.
The antilinear map
c:c?—cC%z—z2

of entrywise complex conjugation is in the extended Cldfgroup EGd), i.e., it
normalisedH, since . _
c(egQct=g0k (14.55)

Thus the antiunitary elements of &) are preciselaC, a € C(d). Let

_1._(10
)

We note de)) = —1. With U, defined by (14.17), from (14.55) we obtain
(20U, (a0) t =a(lCU CHa ™t =aUyp))a* = za(te(A))Uyayer)-

In this way, we can extend the indéz,, J5) to a € EC(d), where

Ya € ESLp(Zq) := {A € Slp(Zyg); det(A) = £1} = Slo(Zq) U{AJ: A€ SLo(Zyg)},

and
Zc=zolYc, Yac=lale, acE(d).
Similarly, the Appleby indexing extends. Wiﬂnp defined by (14.37), (14.55) gives
ClijV: C(_“)p1p28plQp2v — (_u)—plngpl_o—pzv
= (—p)IP1UP2gIP1 (P2 — Dy,

so that ifa € C(d) has Appleby indeXB, x|, then
(aC)Dp(aC)t = a(Djp)at = wXBIPDg;,  VpeZ3, (14.56)

i.e.,aC has extended Appleby index|BJ, x]. Thus, the surjective homomorphism
f of Theorem 14.2 extends to

fe 1 ESLp(Zy) x Z5 — EC(d)/[1]. (14.57)

We say that an antiunitary eleme@ € EC(d) is symplecticif it has an (extended)
Appleby index of the formiBJ, 0], B € SLy(Zg).

We now illustrate how a symplectic Clifford operation candoastructed from
its (extended) Appleby index. This allows a matix EC(d) to be constructed with
any given extended Clifford indeB, x|, B € Sly(Zq'), X € Z3,.
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Example 14.6(Antiunitary symplectic) Fod = 8, consider the symplectic index

(g 111> € ESl»(Z16)

from the Table 14.4. This matrix has determinasit, and so given an antiunitary
symplectic operatioaC, a € C(d), where a symplectic index @fis given by

o=(55)-(8%) (6.5 - (55

Since 5 is a unit ifZ,¢ with inverse 13, we have

- (39) (58 (%8) (49

and so we can takaC = R°RsF ~R'“C (see the fourth row of Table 14.3).

Lemma 14.3.Let B Sly(Zy ), then for xe Zy, we have

_(faB\ _(10)\/0-1\[/y+xad+xB
o=(78)- (A (R 0) (a) e
where x can be chosen so thiat-xg € Zy,. One such choice for x is the product of

the primes which divide d but ndt:= bpy € Zy. In this way, a symplectic matrix
a € C(d) with symplectic index B can be constructed by using Tabl@. 14.

Proof. The formula (14.58) holds by multiplying out. Since @t=ad— By =1,
a primep dividing d (and hencel’) cannot divide bottd andB. We have two cases

p|d = piB, pIx = pio+xB,
ptd = p|x = ptod+xB. (14.59)

In both of these casep,t d + x3, and s0d + xf3 is a unit inZgy:. O
Example 14.7Ford = 6,d’ = 12, letB be the order 4 matrix
32
B:.= (4 3> S SLZ(Z]_Z).
The prime divisors ofl arep = 2,3 andd = 3, so we can take = 2, and (14.58)

T e @ eNsy

Thusa= R ?FR2F~!R?is a symplectic unitary, with Appleby indéB, 0]. This
matrix a has three zero entries in each column and satisfies| .
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14.14 The Zauner matrix

It follows from (14.46) thaM := RF has the symplectic index

-1
1001 0-1
Bv = (1 1) (_1 0) = (l _1> S SLZ(Zd/) (1460)
From Bﬁ,l =1, or Example 14.5, it follows the symplectic operatid] has order 3.
This also follows from th&auss sum
d-1 d-1 2d-1
i) _ 5 )= 1S Bz _ 1 d+1.2d) = i
=S wt=5 3 28(d+1.20) = 5,
(14.61)
by a direct calculation
_ 2+2JI’ 2+2rk < r+J+k2 K2—2Kj
=g Z ~d Z
vd ki 2 (A1) g
= e () = (€)@ (MY (14.62)
d % (d-1)

Thus theZauner matrix ® (see [Zau99],[Zau10]) given by the normalisation
2:=7%M=C¢%1RF,  7:—e%, (14.63)
has order 3, as d#?, Z,Z* € C(d). By (14.15),
7(9Q4zt = yMk-2itdgkqi—k (14.64)

and by (14.33), we have

ve=(173) we=(T10) w=(%%) we=(70):
The Zauner matrix satisfies
R1zR=7?, R1Zz?2R=Z
We have the following corollary of Theorem 14.1.
Corollary 14.3. The extended Clifford group is generatedHbyand
C (order 2) Z (order 3) F (order 4)

Proof. The extended Clifford group is generated®yand a set of generators for
C(d). Here, the generatd® of Theorem 14.1 is replaced &= {9 1RF. O

5 TheZ = ¢9-1FG of [Zau99] isZ?, withF =F 1, G=R U=Q,V =S L.
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A stronger form of Zauner’s conjecture asserts the existeha Weyl-Heisenberg
SIC with a specific structure, i.e.,

Zauner's conjecture (Stronglror every dimensiod, a Weyl-Heisenberg SIC
(set ofd? equiangular vectors) ii¥ of the form

(9 Q kv) j.keZqg>

can be constructed, wheves an eigenvector of the Zauner matzx

Following from the work of Renes, et al [RBKSCO04], an extgagiand ongoing)
search led by Andrew ScétfSG10] foundnumericalWeyl-Heisenberg SICs (for
d < 67) and counted and indexed them (fiox 50). This has now been extended to
a putative list of all Weyl-Heisenberg SICs with certain syetries ford < 90 and
at least one fod < 120 andd = 124,143 147,168 172,195,199 228 259,323.

These Gcott—Grass) numerical SICswere obtained by finding unit vectovse
€ that minimise the second frame potentia(Skav)(Lk)GZg, i.e., by Proposition

14.1 and S QK)* = Q%S = wks QK

2d

4
(S Q v, )| |Z2‘ZZ| (SPrQPey, S Q%) |4 > T

(ikezg

with equality if and onlyvis a fiducial vector for a Weyl-Heisenberg SIC. These SIC
fiducials can be presented to high accuracy, e.g., 1000 déplaces (see [Chil5]).
The numerical SICs given by a fiducial vectdnave been invaluable in the study
and analytic construction of SICs [ACFW17]. We now detail soofitheir proper-
ties which are summarised in Table 14.4 (kindly provided bgtBand Grassl).
The Clifford action (of the extended Clifford group) on the projectéts= vv*
given by fiducial vectorg is g- P, = (gv)(gv)* = gR,g 2, which gives orbits

orb(v) := {g(W")g }geecia)

The symmetriesof a fiducial vectow is the stabiliser of the induced action of the
projective group PE@), i.e

S=9(v) :={[a] € PEQd) : av= Av for some (unit) scalak € C}.  (14.65)

The symmetrie§ = S(v) simplify the construction of a fiducial vectere.g., ifvis
an eigenvector of the Zauner matéxthenv lies in a subspace @Y of dimension
approximatelyd/3 (see Table 14.7). The symmetries of numerical SICs all@ppe

6 Using Andrew Scott's code, C. A. Fuchs, M. C. Hoang and B. C.&taave found numerical
Weyl-Heisenberg SICs fat < 151 (and counting) using a Chimera supercomputer.
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to be symplectic operations, which give a cyclic group ofesrd multiple of three
for d > 3. These include the operations with symplectic indiegf,, F, Fc, Fq, Fe
(see§14.18). The number of SICs modulo the action of the extendepbgtive
Clifford group PEQd) is given in the # column of Table 14.4.

Table 14.4: The Weyl-Heisenberg covariant numerical SG/Ns of [Scol7].
Gaps in the classification are marked by ?’'s, which eitheicatd an unexplored
dimension (to be filled in later) or note the likely presenéam unknown general
symmetry.

PEQ(d) orbits
d stabiliser
# E 5 notes labels
2 1 6 <(Pl _01)>FZ> a
® | 6 ((%70)F a
3 1|12 (%), -F) b
1 | 48 ESL,(Z3) c
4 1 6 (RF) = (F){F) a
5 1 3 (F) a
6 1 3 (F) a
7 1 3 (/) a
1 6 <Fch> = <Fc><Fz> b
8 1 3 (F) a
1]12) (B¥)=F){(H8)>Rh ? b
9 2 3 (F) a,b
10 1 3 (F) a
11 313 (F) a—C
12 1 3 (F) a
1| 6 (1D)>F (L3 ~Fe| b
13 2 3 (F) a,b
4 | 2 | 3 F) a,b
15 3 3 (F) a—C
1 6 <FbFz> = <Fb><Fz> d
16 2 3 (F) a,b
17 3|3 (F) a—C
18 2 3 (F) a,b
313 (/) a<C
19 1 6 (FeFz) = (Fe) (F2) d
1118 ($8)=(F)((£F))>F | %) ~Fa| e
20 | 2 | 3 (D) a,b
4 3 F, a—d
2L 1113 §F3>> e
22 1 3 (F) a
23 6 3 (F) a—f
24 2 3 (F) a,b
1 6 <FbFz> = <Fb><Fz> c
25 2 3 (/) a,b
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labels

a,b
a,b
a,b
a—f
g.h
a,b
a—C

a,b

notes

PEQ() orbits
stabiliser

(F7)

Fe) (F2)

(FeF)

S

o

N~

14

(2]

26
27
29
31
32
33
34
36
37
38
40
41
42
43
44
45
46
47

49

50
51

53
54
55
56

a—f

58
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PEQ() orbits
d stabiliser
# E 5 notes labels
59 |12 ] 3 (F) a
60 413 (F) a—d
61 6 | 3 (/) af
62 513 (F) a—e
63 14171 3 (/) a, d—p
216 (FoFz) = (Fo) (Fz) b,c
64 413 (F) a—d
65 8] 3 (F) ah
66 6 | 3 (F) d—
3|3 (Fa) a—<
67 7] 3 (F) cH
2 | 6 (FeF) = (Re)(Fy) a,b
68 413 (/) a—d
69 813 (/) a—h
70 513 (/) a—e
71 18 3 (F) at
72 413 (F) a—d
73 413 (F) a—d
74 7 3 (F) a—4g
75 12] 3 (F) al
3|3 (Fa) m-0
76 6 | 3 (/) af
77 81 3 (/) a—h
78 71 3 (/) aqg
79 [ 1471 3 (/) an
80 813 (/) ah
1 6 (BF) = () (Fy) i
81 [12] 3 (F) a
82 3] 3 (F) a—C
83 |16 3 (F) a—p
6 | 3 (/) af
84 2|3 (Fa) g,h
2|6 (Fe) Fe? ~ Fy i, ]
85 413 (/) a—d
86 |10 3 (/) aj
87 121 3 (/) a
88 413 (F) a—d
89 10 3 (F) a|
90 413 (F) a—d
91-121{ >1| >3 7?5k a
9 [>3[>6 ?5F,kK b—d
111 |>1]1>9 ?5HKy Fa° ~ Fa
>11>6 el
120 15156 ?25Fa
124 [>1[>6 ?5F, K a
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PEQ() orbits
d stabiliser
# E 5 notes labels
143 [ >1|>6 7?5k, R a
147 [>1]>6 ?25F FeZ ~ Fa a
168 [ >1|>6 7?5k, R a
172 [>1[>6 ?>F,F a
195 [>1]>6 ?5F, R a
199 [>1]>9 EN a
228 |>1|>6 ?5F Fe’ ~ Fa a
259 [>1]>6 ?>F,F a
323 [>1]>9 e a

14.16 Symmetries of the Weyl-Heisenberg SICs

The symmetries of a fiducial(under the Clifford group action) given in Table 14.4
include the symplectic (anti)unitaries with symplectidices (see Exer. 14.16)

(0 d-1\ 0-1
fe (000~ (), 0z

1 d+3> <d+1 3)
Fi= _ =(d+1 _ , d=3mod9 d#3,
a (ﬂﬁd—z @A+ es g > 7
-B d
Fb:<dﬁd_B)a d:BZ_la sta
. Kk d-2\_( k dt2«\ (10 d=(3k£1)?*+3, | 4
¢~ \d+2k d—k ) ~ \d+2k d+k ) (0-1)" Kk=3k®+tk+1, =7
(0 1 2
{0 1\ (0 - 10 a2
Fei= <1d+3k>(1d3k> <01>7 d="9k"+3

The first two are order three symplectic unitaries, namedyuner matrix, and
M =ag, == (1) R-FIRPFRS, d=3mod9 d#3. (14.66)

These have symplectic indices with tracé (see§14.18), and (see Table 14.4)

e For every dimensiod there is a fiducial with the Zauner symmetry.
e In addition, ford = 3 mod 9,d # 3, there areexceptionaffiducials which are
eigenvectors oM (but not of a conjugate ), namely those with the labels

12b, 21e, 30d, 39ghij, 48eg 57gh, 66abc, 75mna 84ghij, ...
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For all known Weyl-Heisenberg numerical SICs, the symras8jv) of the
fiducial vectorv is a cyclic group of order a multiple of three fdr> 3.

In addition to a symmetr¥ or My, the tabulated SICs have symmetries:

e The order 2 symplectic unitary
an — S%d<d+1)Q%d(d+1) P,k, d= k2 _ 1,

for d = 8b, 15d, 24c, 35j, 48f, 63bc, 80, 99, 120, 143, 168, 195, 224 ...
e The order 2 symplectic antiunitary

ap, = RIFIREDIp, FRAIC, d = (3k+1)%+3,

wherek = 3k? 4+ k+ 1, ford = 4a, 7b, 19de, 28, 52d, 67ab, 103, 124, 172,
199, 25%, 292...
e The order 9 unitary

ap, =R KKIE-1 g =K2(k+3)-3,

ford = 19, 53j, 111, 199, 323, 489 ...
e The order 6 antiunitary

ap, = RITFC,  d=9K?+3,
for d = 12b, 39, 84ij, 1473, 228&, 327,...

Example 14.8(d = 4) The Scott—Grassl SICador C# is in the 1-eigenspace @f
(dimension 2) and has antiunitary symmedfy, a:= R"'F 'R 2P;FR 3, where

Vi ViVl 1-i 0 —-1-i O
S L -1 i 1 0 —1-i 0 -1
=2l vivi —vivi | “2|-1-i 0o 1-i o |
i -1 i 1 0O i—-1 0 -—-1-i
It therefore satisfies
Zv=v, av= %(1— V. (14.67)

Each eigenspace & andM; (of order 3) has dimensios %, see Table 14.7
and (14.109). Equations such as (14.67) aid the search &t égucials. Further
simplifications of the equations that determine a Weyl-elgierg SIC (se§l4.27)
can be obtained by choosing a conjugat@ ¢br other symmetries) to be monomial

(see§14.17 and;14.18).

7 Herev is the numerical SIC & which has the (unnormalised) analytic form given by (14.83).
The SIC chosen in (14.68) does not have the symnastey cv, c € T.
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14.17 Monomial representations of the Clifford group

If d is a square, sa§ = n?, then the commutativity relation (14.5) gives
Q"' = Q" = SQ",

so the Weyl-Heisenberg group has an abelian subgroup gedéngS" andQ". By
diagonalising this subgroup, [ABBL2] were led to a monomial representation of
the Clifford group, i.e., one in which the matrices have #yaane nonzero entry in
each row and column. We now summarise (without proof) phiase-permutation
representation Let (&)kez, is the standard basis fad.

In the basigu;) for CY given by

n—-1 .
uj = Z)w*”t”amjz, i =(i,J2) €22,
t=

the Clifford group elementa transform to monomial matrices

a:=U"tau, U:=[uy,
where

Sq = Cizrny 21200 5o g 1 oi=er.
Ojle(il-,o) j2+1=0, | (l1—Li2)»

Example 14.9(d = 4) For n = 2, with the order(0,0),(0,1),(1,0),(1,1) on the
indices fromZ3, we have

010 0 001 101 0
. (100 0 . [000i 010 1
S=lo000-1|> ?={1000]° Y={10-10 |
001 0 0i00 010 -1
1000 0010 0.i0o0
e_[oo10) s [o-vio o 5_ [0 0-io
=lo1o0|" R=l1 000 ] %4=|vio 00
000—i 00 0-j 000

Inthe basigu;) the conditiorZv= v of (14.67) can be written a&w=w, w=U "1y,
i.e., viws = wy, —iwz = Wy and+/iws = ws. Thus we seek a fiducial of the form
w=(—ivi,—i,1,a),ac C. Itis easy to check that= \/2+ v/5//i gives a fiducial
vectorv, which is a 1-eigenvector &, namely

1-ivi
1 =itV VBV Vie \%(1+I) (14.68)

Ve —— .
Vior2ys |  -1-ivio
R NV v
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14.18 The Clifford trace and symplectic unitaries of order3

Each known Weyl-Heisenberg SIC has an order 3 symnzetiyM; (seet14.16).
The symplectic indices of these symplectic unitaries Batis

tracdF,) = tracegF;) = —1.

We now classify such matrices up to conjugation by a symiglegteration.
The Clifford trace is the map

trc: C(d) = Zq : ar tracd ).
Sincea— Y is a homomorphism with kernél (Lemma 14.2), this satisfies
trc(ab) = trc(ba), Va,b e C(d), (14.69)

tre(ah) =tre(a),  Vae C(d), Yhe H. (14.70)

In particular, the Clifford trace of any conjugatedbrz—1 = 7%is -1, e.g.,
tre(gZg 1) = tre(2g 1g) = tre(Z) = trace yz) = —1,
and the Clifford trace is well defined on the Clifford opeoas, i.e.,

tre([a)) :=tre(a), V[a] € PC(d).

The order of a Clifford operation is related to its Clifford¢e, since

A? = tracdA)A—1, VA€ Sly(Zg). (14.71)

Lemma 14.4.A nonidentity extended Clifford operatideg € EC(d)/[I] with index
(A, z3) and Clifford trace t= tracd A) has order3 if and only if

-DA=({t+1), z(t+DAp) =VPMP  ypez2  (14.72)

_ [y(a®+2a%6+ad%>-2a-8) Byla+d-1)(a+5+1) _(ap
WhereM\_( By(a+5—1)(a+5+1) B(63+2a62+a26—26—a)>’A (vé)'

Proof. Since a product of three antiunitaries is a unitary matrie,havea € C(d).
In view of the isomorphism (14.35)g] has order 3 if and only if

(A z2)* = (A, (zao A?) (za0 A)Za) = (I, ).
From (14.71), we obtain

AP =AA—1)=t(tA—1)—A= (t2—1)A—tl,
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so that the conditiod® = | can be written as the first condition of (14.72).
We now consider the conditiofz, o A?)(z,0 A)zy = 1. By (14.23), we calculate

2a(P)Za(AP)Za(A2p) = @ P OAAP)Z,(p 4+ Ap)za(A%D)
= wprUA(Ap) w*(pJFAp)TUA(AZp)Za(p_i_ Ap+ A2 p)

_ w_pT<UAA+GAA2+ATUAA2)pZa(p+Ap+A2p).
By (14.71), we have
| +A+AZ = +A+tA—| = (L+D)A

Using detA) = ad — By =1, a calculation gives

OpA+ OpA? + AT gpA?
_(@+5+1) y(a®+2a25+ad?—2a-06) Byla+d—-1)(a+5+1)
- By(a+d—1)(a+5+1) P(6°+2ad°+a%5-25—a))’

Thus we may rewrite the conditidiz, o A?)(z,0 A)Z, = 1, to obtain the result. O
Sincezy(0) = 1,Vae€ EC(d), and te(l) = 2= —1 if and only ifd = 3, we have

If a € C(d) has Clifford trace-1 andd # 3, then[a] has order 3.

Further, by taking the trace of the conditittd — 1)A = (t +1)I, we have

The Clifford tracet of a Clifford operation of order 3 satisfies

(t-2)(t+1)%=0. (14.73)

Ford prime, Clifford operators of order 3 must have Clifford tea€l.

Proposition 14.6.Suppose that ¢ 3 and a< C(d). Then

1. If a has Clifford trace-1, then[a] has order3.
2. If d is prime, therja] has order3 if and only if a has Clifford trace-1.

Proof. Since we have already proved 1, it suffices to provedfer 3 prime anda]
of order 3 that the Clifford trace=trc(a) is —1. We recall that is a root of (14.73).
If t £ —1, thent 4+ 1 is a unit (all nonzero elements B@f are units ford prime),
so thatt = 2. But, ift = 2, then (14.72) gives/8= 3, and hencé = | (3 € Z for
d + 3 prime), so thaa € H (by Lemma 14.2). SinceS' Q)3 = w331 Q"™ (see Exer.
14.4) andS, Q have orded, the order ofa] cannot be 3 (since 3 does not divide
Thust =trc(a) — 1 (when[a] has order 3 and # 3 is prime). O
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A Clifford operation of order 3 is said to lmnonical order 3 if it has Clifford
trace—1 (see [App05]), e.g., the Zauner matdxandM; are canonical order 3.

Example 14.10Lt follows from (14.69) and (14.70) that left or right mulligation
of a canonical order 3 Clifford operation by a displacemeogration gives another
canonical order 3 operation, e.fh;Zhy] is canonical order 3 for any;,hy € H.

There are Clifford operations of order 3 with Clifford traZze

Example 14.11lf 3 dividesd, then the symplectic unitany%é (and its inverse) has
order 3 and Clifford trace

/ 10
trc(R%) = trace((d/ 1)) =2,
3

as do the Weyl displacement operatS%sQ § , S508.

There are Clifford operations of order 3 with Clifford tracet —1,2, i.e., for
which (14.73) holds with — 2 andt + 1 not units inZg.

Example 14.12For d = 10, SLy(Z10) has a single conjugacy class of elements of
order 3 and trace 4 and 7. These have representatives

A= (g i) (trace 4) B= (g i) (trace 7)
These can be lifted to symplectic indices which give symtamitaries of order 3
and Clifford trace 4 and 7 (s¢&4.13), e.g.a= RIFR8F 1R, b= RIOFR°F ~1R15,
We need the following technical lemma of [BW17].

Lemma 14.5.Suppose that & 2, and let

.. (0-1 _(-11
=y = (1 _1) , = <_1 0) , (14.74)
m = (dég _32> , d=3mod9 (14.75)
1 3
mp = (2d33 _2) , d=6mod?9 (14.76)

Then the conjugacy classes of elements of oBland trace—1 in SLy(Z4) have
representatives

{z}, d#£0mod3 (24.77)
{272}, d=0mod 9ord=3, (14.78)
{zZ2,m}, d=3modQ9d+#3, (14.79)

{zZ2,mp}, d=6mod 9 (14.80)
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Lemma 14.6.Let ¢ : G — H be a homomorphism of G onto H, witkerg| = 2X.
If h € H has order3, then there is an elementgG of order3 with ¢ (g) = h.

Proof. By the firstisomorphism theorem for groups, we may assunmatkaG/K,
whereK = ker¢. Suppose that = aK € G/K has order 3, i.ea® = x € K, where
a ¢ K. By Bézout’s identity (the Euclidean algorithm) choose integes3 with
1= —3a +2“B. Letg=ax’ ¢ (a). Thend(g) = ax’K = aK, and

6 = (ax)3 = 8B =301 = @B — 1
O

Lemma 14.7.For d even, Sk(Z,q) has no elements of of ord8rand trace d- 1.
Proof. If A € SLy(Zyq) has order 3, antl=tracgA), then, by (14.71), we have

AP =AtA—1)=t(tA—1)—A=(P—DA-tI=1 = (P—1DA=(t+1)l.

Fort =d— 1, this gives(d?> — 2d)A=0=dI (mod 21), which not possible. O
We now characterise all symplectic unitaries of canonicaén3.
Theorem 14.3.(Characterisation) The symplectic operations of canohader 3
are conjugate irCsp(d)/[l] to [a], where ac Csp(d) is one of the following
{Z}, d#£0mod3
{z,2?}, d=0mod 9ord =3,

{z,2 W}, d=3mod 9d+#3,

{2,272 W,}, d=6mod 9
where

2ni

ez -DRFL,

~1)9-1RFEIREER, (14.81)

Z:
W, :

have order3in Csy(d).

Proof. The key idea is to apply the fact that group homomorphisms coapugacy
classes to conjugacy classes to the commutative diagra®il(ldf14.11, i.e.,

Sb(Zy) > Cspl(d)/[1]

» 1]
SLe(Zq)

We observe that
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e Since the kernel o¥ has order 1 or 4d odd or even), the conjugacy classes of
elements of order 3 and Clifford traeel in Csp(d)/[I] map onto the conjugacy
classes of elements of order 3 and tracein SLy(Zg) (by Lemma 14.6).

e Since the kernel ofr has 1 or 2 @ odd or even), each conjugacy class of an
element of order 3 and Clifford tracel in Csp(d)/[l] is the image undex of
the conjugacy class of an element of order Fla(Zy ) (by Lemma 14.6) and
of trace—1 (by Lemma 14.7).

Thus the conjugacy classes of elements of order 3 and trdce SLy(Zy ) map
onto the conjugacy classes of elements of canonical ordeCgg(d)/[l], which in
turn map onto the conjugacy classes of elements of order Barel-1 in SLy(Zyg).
A count of the conjugacy classes$t,(Zq ) andSLy(Zg) (for d even) shows that
these maps are 1-1, i.e., representatives of the conjudasyges of elements of
order 3 and trace-1 in SLy(Zy ) give symplectic indices for representatives of the
conjugacy classes of the symplectic operations of canboidar 3.

We now use Lemma 14.5 to calculate these symplectic indmed ghow the
injectivity asserted above) for the various cases.

Ford #£0 (mod 3), we have 80 (mod 3, and so there is a single conjugacy
class with symplectic index

Ford=0 (mod 9, d # 3, we have @ =0 (mod 9, and so there is are two
conjugacy classes given by the symplectic indize$. Ford = 3, we haved’ =d,
and there are two conjugacy classes given by the symplecticdsz, 2.

Ford =3 (mod 9, d # 3, we have d =6 (mod 9, so that there are three
conjugacy classes given by the symplectic indie$, and

(dlg _32> € Sly(Zy) (dodd), (2(2(11)3 _32> € Sly(Zyg) (deven.
3 -3

The second formula gives the first fdiodd, and so works in both cases.
Ford=6 (mod 9, we have 8 =3 (mod 9, so that there are three conjugacy
classes given by the symplectic indies’, and

(2(123 _32> € Sl(Zy) (dodd), (2%3 _32) € Sly(Zyg) (deven.

In the last two cases, the third conjugacy class is given egytmplectic indices
my andm, (respectively), where

1 3
mj = <4dj—3 _2) € SL(Zy).
3

andeZ is conjugate ton; (since otherwise there would be four conjugacy classes).
For convenience of presentation, we take the represeatatita symplectic index

o ( "2 -3 _ (10 501\ 10\ /0-1\ (10
WirmM=l42j 1) (11) (10 11) (1 0)\11)
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By taking the symplectic operations corresponding to theasentatives, 22, wy, W,

in the above conjugacy classes, i2.Z2,W;,W,, we obtain representatives for the
conjugacy classes of canonical order 3 symplectic operatibhe normalisation of
W in its definition (14.81) ensures that it has order 3 (see.Bxei4). O

From the above proof, we have:

The conjugacy classes of order 3 and tradeelements irSL(Zy ) are in 1-1
correspondence with the conjugacy classes of canonical &dymplectic
operations.

The matriced\p, W1, W, given by (14.81) are defined faf| 3, and are sparse,
ie.,

1i 2d .
(Wa) i = 1/ S (/)2 (—p) 30K B2 k=0 mod3;
) 0, j—k#0 mod3

d

FurtheMy, is defined for all, and is conjugate t@ via 11~ = (R"1F)~1Z(R"IF).
W = (RIF)"1Z(R7IF).

Example 14.13The canonical order 3 unitary given by the symplectic index

weone (4% = (39) (D). (o 3)

3

is conjugate thf = Wlfl, and so is given by the order 3 symplectic unitary
ap, = ROW, 1R = (—1)9-1R*-1F 1R 3FRS.
All the known Weyl-Heisenberg SICs appear as eigenvecfdreaanonical

order 3 symplectic unitaries or M1 = ar; (equivalentlyW,). As yet, no SIC
fiducials have been found which are eigenvecto/otfor d = 6 mod 9).

Since the symmetries appear to form a cyclic group, it isnaéta look for roots
of the symplectic indices farandm, as the symplectic indices of extra symmetries.

Example 14.14Ford = 8, the matrix
2
1113 611
b= (3 8) = (5 1) 6SI—2(216)

is a square root ofd + 1)z It is the symplectic index for the square rootbfiven
by B = Z1"R8P1sF ~1R’, which is a symmetry of the SIC 8(c) of Table 14.4.
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14.19 Conjugates of the canonical order 3 symplectic unitaes

For fiducial vectors which are eigenvectorszbr M; (all those known do date)
the equations characterising the SIC can be simplified (#seifExample 14.9) by
conjugatingZ (or M;) by an element of EQ@l) to obtain a monomial matrix (the
conjugates o8 Q¥ will continue to be monomial matrices).

We now use Theorem 14.3 to determine when the conjugafecofM; (or M,
for that matter) by a symplectic operation is a monomial iratf the formRYP.

Since the permutation matrices@id) are symplectic (se§l4.12), there exists
a permutation matri®; € C(d), o € Zy of canonical order 3 if and only if

PP=Ps=1, trc(Py)=0+01=-1,
i.e., the existence of an integer(for d £ 3) with

o =1modd, 0%+ 0+1=0modd. (14.82)

3

g 0 o 0 10 i
For such ao, we have(a 01> = (a(1+a+02) 03> = (0 1), so that:
If o satisfies (14.82), thelR?P,] is a canonical order 3 symplectic operation.

By the Chinese remainder theorem, it follows (see [AppOBdY the condition
(14.82) is equivalent td satisfying:

(i) dhas at least one prime diviserl mod 3.
(ii) dhas no prime divisorss 2 mod 3 (so thatl is odd).
(iif) dis not divisible by 9.

The first few suchd are
d=7,13,19,21,31,37,39,43,49,57,61,67,73,79,91,93 97, ...

By Theorem 14.3, the monomial operatifiRf P;] is conjugate (via a symplectic
operation) to one ofZ], [Z]?, [M1] = [WA], M&].

e Ford not a multiple of 34 £ 0 mod 3), i.e.,
d=7,1319,31 37,43 49,61,67,73,79,91,97,...

there is single conjugacy class, and sg@flP;] are conjugate t¢Z].
e Ford a multiple of 3, i.e.,

d =21,39,57,93,111,129 147,183, 201, 219,237,...

we have% =1mod 3,i.e.d =3 mod 9, and so the conjugacy classes are given
by [2]7 [2]27 [Ml}
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For ac satisfyingo® = 1, 1+ o + 02, the symplectic index calculations

_ o0 , 20 1 0-1
gzgl=<1az), gzzgl:(fla), gr:(oci), 2=(1_1),

give the following:

For anyd, if o satisfies (14.82), then

1. The monomial operatiofRR;] is a symplectic conjugate ¢Z].
2. The monomial operatiofiR 1P| is a symplectic conjugate ¢Z2].

Wheneved is a multiple of 3, i.e.d =3 mod 9, it appears (for thetlisted above)
that[Py] is always a symplectic conjugate [®f;].

Example 14.15Ford = 21, no symplectic conjugate &f is a permutation matrix,
but many conjugates are monomial, e.g., the symplectixiodkulation

14\ (0-1\ /14" (40
01/\1-1)\01 —\116)"
together with Table 14.3, gives
0Zgl=w'R'®P;, g:=F R“F

Example 14.16For d = 19, Appleby [App05] constructed an exact SIC fiducial
which was an eigenvector of the order 18 antiunitagC with symplectic index

~9 0\ _ (-90),_,1(312\ . (51
0-2)=\02/"=9 \715) 9 9=1I38):

In view of Table 14.4, this is the SIC £9The exact fiducial is

18
V:b090+Zble'éreen bo=\/@’ by = 10{95/579:CO§1< 7‘/%71)
r=

wherel; = (1g) € {—1,1} is the Legendre symbol.

The extra symmetries given I8oC immediately imply that the fiducial vector
has the very simple structural form above. At the time of @estruction, the only
known exact SICs were fal = 2,...,7 andd = 8 (the Hoggar lines). By using
similar techniques, the exact Scott—Grassl| SIGs 38] and 4& were constructed
[SG10]. In subsequent constructions of exact SICs, the stnies deduced from
numerical SICs have been exploited.
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14.20 The SIC field of a Weyl-Heisenberg SIC

The Weyl-Heisenberg SICs fdr=# 3 that have been found exactly, e.g., tb= 4

8
(V10++v2-2v5-2)\/ V5 }) +(V10+Vv2)VV5+1+4v2—4
—(8v2-8)i
—((V10+v2—2V5-2)\/VB+1+4)i — (VI0+V2)VV5+1+4v/2 -4

(14.83)
have the following features:

e They are very complicated to present (in general), e.g.thtee exact fiducial
vectors ford = 11 given in [SG10] take up 22 pages.
e They are expressible by radicals (nested roots).

Since the equations defining a SIC involve quartic polyndsiiaseveral variables
(see§14.27), it does not follow (from the fact a univariate quaidraan be solved
by radicals) that the components of a SIC should be expledsitradicals.

We now consider the field defined by a Weyl-Heisenberg SIC. Wesee that
some of its Galois automorphisms map SICs to SICs. This leadsethods for
the construction of exact SICs from numerical SICs. The qregion (to follow)
assumes a basic familiarity with Galois theory.

In theory, the natural field in which to define a SIC is that gatexd by the triple
products of its vectors (s&8.6). Since the Weyl-Heisenberg SICs are given by the
orbit of a fiducial projectof7 = vv* under the action of the Heisenberg group, and
the Clifford group maps SIC fiducials to SIC fiducials ($44.7), it is convenient
and effective to (possibly) enlarjéhe field to contain the entries 6f and .

Definition 14.5. The SIC field E of a Weyl-Heisenberg SIC with fiduciél = vv*
is the smallest extension @f containing the entries dfl andu = ed.

The inclusion ofu ensures (see Exercises 14.22, 14.23) that:

The SIC fieldE = Q(/7, u) depends only on the extended Clifford orbit/@f
Sincell = (M*)T = N7 andg = p~4, it follows

The SIC field is closed under complex conjugation (denoteg:hy

We have the (inclusion reversing) Galois correspondentedasn subfields ok
and subgroups of the Galois groép(of automorphisms of the field which fix Q).

8 In earlier work [AYAZ13], the SIC fieldE was defined to be the smallest normal extensio® of
containing the entries dl, v/d, andu. Here we use the more recent definition of [AFMY17].
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14.21 The Galois group of a generic SIC

Ford > 1, a SIC is said to bgenericif it is a Weyl-Heisenberg SIC fod > 4,
otherwise it issporadic SIC. The sporadic SICs have special properties not shared
by the generic SICs (see [Zhul5], [Stal7], [AFMY17], Exet.21), e.g.,

The symmetry groups of the known sporadic SICs, i.e., thegdotines and
thed = 2,3 Weyl-Heisenberg SICs are nonabelian (and doubly traasin
the SIC fiducial projectors [Zhul5]), whereas the known gen8ICs have
cyclic symmetry groups.

The generic SICs seem to have many special properties (itiadthe Clifford
group action), that were observed in the early construsti®hese were formalised
as a set oftonjecturesabout the SIC fieldE (and the action of its Galois group)
in [AYAZ13], and a refined version of thedactsis given in [AFMY17]. We now
outline thesefacts (conjectures) about the generic SICs. From now on, we assume
that SICs are generic, and tkmown SICs are those reported in [ACFW16].

Fact 1.In every known case, the SIC fielllis normal overQ.

We recallE is normal over Q means that every irreducible polynomial ov@r
which has a root if£ splits overE (i.e., all its roots are ifi).

Fact 2.In every known casé is an extension oK := Q(,/(d — 3)(d + 1)).
Here/(d —3)(d+ 1) is never an integer.

Fact 3.In every known case, G@L/K) is a finite abelian group.

In particular, the Galois group @& over@ is solvable, and so a generic SIC
is expressible by radicals.

We recall theKronecker—Weber theorerthat the finite abelian extensions @f
are subfields of some cyclotomic fie@{ €?™/™). Finding a similar characterisation
for the finite abelian extensions of a quadratic field (sucthasextensiorE of K
above) is an instance dfilbert's 12-th problem This was solved for imaginary
quadratic fieldsQ(iy/n), n a positive integer, where such extensions are a subfield
of a field generated by the torsion points of certain ellipticves. For abelian exten-
sions ofQ(/n), such as the conjecturd there is currentlyio such constructian

Even if the SIC fieldE is known (there are conjectures that it is a ray class field
overK), then itis notimmediately obvious how to go from a Scottagat numerical
SIC (of high precision) to an exact SIC with entriediigsincel is dense irC). This
is part of the intrigue of the SIC problem, i.e., given thethjgrecision numerical
SICs, it is tempting to imagine that exact SICs cannot be doadvay.
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14.22 The Galois action on a fiducial projector

The extended Clifford group permutes the SIC fiducials vaattion (Exer. 14.22)
a-Mn:=(av)(av*=ala?l, M=w, acECd).

There is a natural action of the Galois gradp= Gal(E/Q) of the SIC fieldE on
matrices oveit given by

gA) =d([ai]) :==[g(ajk)], 9ge¥, AeE™"

One might hope that this Galois action also maps SIC fidu¢aSIC fiducials.
Indeed we have already se€ji4.7) that this is the case for complex conjugation,
which we now denote by, € ¢. We will show that this is true for a large (index 2)
subgroup?; (consisting of the elements which commute wgt.

If ge ¢ =GallE/Q) and T = [aj] is a fiducial projector, then a necessary
condition forg(/7) to be a fiducial projector ig(I1)* = g(1) = g(11%), i.e.,

g(aj) =9(&j) <= 0cd(aj) = 9% (aj)-

Since the automorphisgmapsu to another 8-th root of unity, this implies that
g € ¢ must commute with complex conjugatigpe ¢ (see Exer. 14.20).

Forge ¢ = Gal(E/Q) and[T a SIC fiducial,g(/7) is a rank one orthogonal
projection if and only ifg is in the centraliser of complex conjugatigne ¢.

Let ¢ be the centraliser adc in . We now show tha#; maps SIC fiducials to
SIC fiducials. Let'T = vw* be a rank one orthogonal projection. SianéQk)j,keZd
is an orthogonal (nice error) basis, we have

_1 i Ok Qi Ok
I'I_a_ Z (rn,sQ“g Qx,
J,kGZd
i.e., I is determined by iteverlaps(or scalar multiples of them)
(M,90Q%) = tracgw'(92")") = (%) (j,k) #(0,0),

and/T is a SIC fiducial if and only if these have constant modulus.d&®ne the
overlapsx{,7 :=tracgl1Dp), p € Zy, where theD, are the displacement operators
of (14.37). We note thaf is a SIC fiducial if and only if its overlaps satisfy

5 :=tracgMD L, P=omodd Z 14.84
=1 = j . .
Xp acg/1Dyp) % b0 modd, pE Zg ( )

We refer to thefy as theoverlap phasesof the SIC fiducial .
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Letge ¥ = GallE/Q). Since(—u) is a primitived’—th root of unity, there is a
unique integer 6< ky < d’, with

9(—H) = (—w)'e,  KyE€Z. (14.85)
so that
9(Dp) = g((—p)PP2P1QP) = (—p)loPPegQloP = By (14.86)
where
Hg 1= (é k‘;) € GLy(Zy), gey. (14.87)

Lemma 14.8.Letge 4. If [T = v is a fiducial projector with SIC fieli, then so
isg(), i.e.,% maps SICs to SICs (possibly on different extended Cliffdsds).

Proof. Sinceg € ¥, it follows g(/7) is a rank one orthogonal projection. By (14.86),
9(xp) = g(traceMDy)) = tracdg(M)Buyp) = X, VP € Z5.

Sinceg € %, i.e., it commutes with conjugation, we hagéz?) = |g(2)|?, z€ E,
and so -
9 2 _ n 2 _ |1 2
Xp 7= |9(XH§1P)| = |XHg—1p| .

In view of (14.84), we conclude thg(/T7) gives a SIC, with SIC fieldE. ad

The subgroui; of Gal(E/Q) maps SICs to SICs (with the same SIC field),
with the Galois action on the overlaps given by

axs) =xky,  VpeZi. (14.88)

It appears tha¥; is a large (index 2) subgroup &f.

Fact 4.In every known case,

Gal(E/K) = ¢; = the centraliser of complex conjugation.

By (14.88), the Galois action ¢f; maps SICs to SICs with theameSIC field,
but onpossibly differenextended Clifford orbits. We will call the extended Clifébr
orbits with the same SIC field &alois multiplet, with the number of orbits being
its size e.g., 4ais a Galois singlet, 9ab is a Galois doublet, 3Gahd3alois triplet,
and 2labcd is a Galois quartet. It appears that orbit of a Sl@ifl under the
combined Galois and Clifford actions is (all of) a multiplet
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14.23 Constructing exact SICs from numerical SICs

Before giving more detail about the Galois action on SICsewglain why it has
been so pivotal in the construction of exact SICs from nucaé$ICs.
Suppose now, for a moment, that

e The%.—orbits{;} of the overlaps of a SIC fiducial are known.
e K=Q(/(d—3)(d+1)) is fixed by¥. (Fact 4).
e . is abelian (Facts 3 and 4).

Then theZ.—invariant polynomials

(0= [ x=x),
XEO;

would have coefficients in the field. By using the Scott—Grassl numerical SICs,
these coefficients could be calculated to a high degree afracy. If it were then
possible to “guess” these coefficientddrexactly, then one could find the overlaps
exactly by factoring the exadi (¢ is solvable), and so convert a numerical SIC into
an exact SIC. This general method is caledcision bumping (also se€9.8), and
has been successful in constructing many exact SICs (séE5ICFACFW16]), by
using the PSLQ algorithm or LLL (Lenstra—Lenstra—ksy) algorithm to “guess”
elements ofK (or some small extension of it, such as fgof §14.24).

14.24 The Galois action on a centred fiducial

The precision bumping algorithm @fl4.23 for constructing exact SIC fiducials
supposes that one know tBg—orbit of the overlaps. At this point, only the action
of the subgrou®p which maps a SIC to one on the same extended Clifford orbit is
understood. We now summarise these results (see [AYAZABMY17]).

Let % be the group which fixes the extended Clifford orbit of a fiduéi, i.e.,

=431 := {ge ¥ :g() is on the same extended Clifford orbit &g,
andEqg = EO” be the fixed field of%. Clearly,%, is a subgroup 0¥, which depends

only on the extended Clifford orbit dfl (or it seems the multiplet).

Fact 5. In every known case%y = %({7 depends only on the multiplet &7,
and the indexXEo : K] is the size of the multiplet.

The groupS(v) of the symmetries (14.65) of a SIC fiducial vectigrare the
stabiliser of the projectafl = vw* under the Clifford action (see Exer. 14.22), since

S(v) ={[al € PEQM) : (av)(av)* =w'} = {[a e PEQd) :a- M =1} =: 5.
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By a simple calculation,
Sa.n = [aSn e

Hence it is natural to seek a fiducial - [T on the extended Clifford orbit aff for
which the symmetriefa] Sy [a] ! have a simple form. Now (see Exer. 14.24)

The Clifford action of anfa] € PEQ(d), with extended Appleby indejB, b,
on the overlaps is given by

-
X0 = fbde®Bn Xgé;(B)Bp, VpeZ3. (14.89)

In particular, if[a] is symplectic, i.e.b = 0, then the overlaps dfl anda/fa!
are a permutation of each other. We say that a fidui¢ied centredif its symmetries
Sh are (extended) symplectic operations. In particularhal$cott-Grassl SICs are
centred (see Table 14.4). In every known case, the symmedypdy; of a SIC
fiducial can always be conjugated to be symplectic, i.e.,

On every extended Clifford orbit there iantredSIC fiducial.

For a given centred SIC fiduciél, we denote by (/7) the group of (extended)
symplectic indices fofy, i.e., with fg given by (14.57),

S(M):={Be€ESL(Zy): ae(B) € Sn}, ae(B) := fg([B,0]).

Since[a] - 1 = I1 for [a] € Sy, it follows from (14.89) that

If I is a centred SIC fiducial, then

BeS(M) <« x :xc’fet(B)Bp.

This clearly reduces the number of overlaps that must bedftmconstruct a SIC.
We now consider a further refinement of the SIC figld.et D be the square—free

part of (d — 3)(d + 1), so thatK := Q(,/(d — 3)(d + 1)) = Q(/D).
Letg € Gal(E/Q) be any element witg(v/D) = —+/D (these exist, by the Galois
correspondence). Thep := gg.g ! is an element of order 2, which fix&g since

91(vD) = g(-vD) =g(-vD) = VD,
and is independent of the choicegfsince

0g 1=0ad ! <— gl§e%=Ga(E/K) <« g lgfixesk,

with the last equivalence bg—1§(v/D) = g 1(—v/D) = v/D. In every known case,
o1 € %’7, i.e.,g1 maps fiducials to fiducials on the same extended Cliffordtorbi
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From (14.85), we havg~!(—pu) = (fu)kil, so that
O~ =0%g (- = ((—) o= (—p) "t = Hg=J:= (1 _1> :

Let E1 be the fixed field of the order 2 subgroép = (g1) of 4. By the Galois
correspondencd) C K C Eg C E; C E, with the indeXE : Eq] = 2.

Fact 6. In every known casef = E(iv/d').

We now seek to understand the extensiofigfo E;.

Fact 7.0n every known extended Clifford orbit, there is a fidudialvith its
overlapsy,' in Eq, i.e., by (14.88),

axf)=xL" =X, VpeZy. (14.90)

A centred SIC fiducial satisfying (14.90) is said to &ongly centred. For
d £ 0 mod 3, every centred fiducial is strongly centred (see BxXe27). Whilst for
d =0 mod 3, some, but not all, centred fiducials are stronglyreentHence

On every extended Clifford orbit there isstrongly centredIC fiducial.

We now assume that the SIC fiducldlis strongly centredLet &4, ..., &, be the
extended Clifford orbits of the multiplet fdil = 11, and[T; be a strongly centred
fiducial on @;. Then for everyg € %, there is a symplectic operatian= ag €
EC(d), with symplectic indexB = Fy ; € ESLy(Zy ), for which

g(M) =[a-M=ama*,  [&=fe([Fy;,0).

The fact that arm € EC(d) with g(/7;) = [a] - [T, can be chosen to be symplectic is
a consequence @f; and/Ty being strongly centred (see Exer. 14.27).
By (14.88) and (14.89), we calculate
90XP") = Xelyp = Xhip ™ = Xk ip = Xorpr Oa = del(Fy )Ry H.
(14.91)
For g € %, we havej = k, and, in particular, fog;, we have (see Exer. 14.27)

Foj=—J,  Gg j=def-3)(-J3) =1.

For a given strongly centred = I1;, the matrixFy j € ESLa(Zy ) is not unique,
as it may be replaced by any element of the left cégg& (/7). Correspondingly,
the matrixGg ; € GLo(Zy) may be replaced by any element of the form
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det(Fg jA ) (FgjA 1) THy = detA HAdetFg )R, 'Hg,  Ae ().

Since detA~1) = det(A), we may write this set as the right coSf1)Gg j, for the
subgroup

S(M) := {de(A)A: Ac S(M)}.

We now investigate whether the mappingydb these cosets is a homomorphism.
In view of the homomorphismag, Sy is a homomorphic image &(1), i.e.,

S =S(M) (dodd),  Sz=S(M)/(dl) (deven.
It is easy to see that the map
O :GLy(Zg) — GLa(Zg ) : A detfA)A (14.92)
is @ homomorphism, which majgs(/7) ontoS(I7), and has kernel
ker@ = {cl:c*=1,ce Z}}.

If cl € S(I7) has order 3, then from detl) = ¢ = +1, we have that =1, i.e.,
The groupssy (/1) andS(/7) are isomorphic (vié).

Let N(S(I17)) andN(S(/7)) be the normaliser of (1) andS(I7) in GLy(Zy).
If gMg~! =L, then detM) = detgMg~!) = det(L), and so

gMgl=L <= g(detM)M)g~=detL)L.
Hence S (1) and (/1) have the same normaliser BLy(Zy ), which we

denote by
N(IT) = N(S(7)) = N(S(T)).

Sinceg(/T) = [a]- 11, a= ag,;, we have (see Exer. 14.27)
Sm=San = 9Sn)=[a-Sr=aSa "
Hence, forla, | = ae(L) € Sy there isjay] = ae (M) € Sy with (see Exer. 14.26)
o)) = [y ) = [@ava™] = [ar;amar 4],
ie., HgLHg*1 =Fy;j MFgfjl, up to equivalence of symplectic indices, and we have
HoSo(M)Hg * = Fy jSo(M)Fy - (14.93)

We observe thag — kg andg — Hg of (14.85) and (14.86) are homomorphisms.
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Lemma 14.9.Let /7 be a strongly centred fiducial. Then for a fixed j, the maps

N(I1

%o So((l'l)) 19 Ry HSo(1T), (14.94)
N(T) _ »

% S 9> Gg (M), Ggj:=detFgyj)FyHg, (14.95)

are homomorphisms, which have kern@s) and(g:), respectively.

Proof. Let Fg = Fy j, Gg = Gy j. By (14.93),F; *HySo (1) (Fy tHg) 1 = S(17), so
thatFy *Hg € N(S(/7)), and the first map is well defined. Wity chosen irfE?<¢,

we calculate

9192(1T) = g0, h a';gigz ’

_ 1\ _ —1,-1
9192(11) = G (ar, Map, ) = Big, FopHag HFon Mag, aHgl Fop Mgy
By equating, rearranging, and taking symplectic indices pltain
Forg,Hoas (Fgy Hap) ™2 (Fgy tHgy ) ™ = Fud Ho, Fo,Hg, Mg, € So(17),  (14.96)

i.e., the first map is a group homomorphism. Above we tHgg, = Hg, Hg,,
For the second map, we apply the homomorph@nof (14.92), for which
O(S(M)) =9S(). Itis well defined, since dgtly) deI(Hg‘l) =1, gives

det(Fy )Ry tHgS(MT) (det(Fy 1Ry tHg) ™ = ().
Applying © to (14.96), and using dgtg, 4,) = detHg, ) detHg,) to simplify, gives
Gg,0,Gg, Gy, € S(M), and so it is a homomorphism.
For the kernel of the first homomorphism, we have
Fy'Hge (M) = det(Fy')detHg) =+1 = ky=det(Hg) =+1.
Forkg = 1, we haveg fixes 4 andHg = I, so that
FoeSMN) = 9o(M)=N = gfixesE=Q(M,u) = g=1I.
Forkg = —1, we haveg(u) = u~1 = g¢(p) andHg = J, so that
FoedS(MN) = g(M)=[C]-NMN=g(M) = g=gonE = g=gc.
For the kernel of the second, we have a similar argument. Asde
def(Fy)Fy "Hg e (M) = kg =det(Hg) = +1.

Forky = 1, we have déf; 1)Fy € S() so thatFg € S(M1) andg = I. Forkg = —1,
we have

det(F; )Fy W =de(—JF; (IR H e S(M) = —IRyeS(N),
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so thatFy € —JS(/7). Hence

oM =[ay-MN=a(l), ou=H'=nl = g9g=0. 0

By (14.91), the action of € %, on the overlaps of a strongly centred fiducial
1 = I1;j is given by

9(Xg) =X&yp»  Gg=Ggj- (14.97)

Thus the second homomorphism (14.95) provides an explayttew compute
the %—orbits of the overlaps, given that the image4fin N(I7)/S(IT) is
known. This makes the precision bumping methog1ef.23 feasible.

Factoring out (14.95) by its kerng&t := (g;) gives an injective homomorphism

% /% = Gal(E1/Eg) — '\Sl((nn)) 0(01) — GgS§(). (14.98)

In view of Fact 3, the image of this map must beadeliangroup.

Key fact. In every known case, the map— G3S(/7) of (14.98) defines an
isomorphism
Gal(E;/Eo) =2 M(IM)/S(IT), (14.99)

whereM(IT7) is a maximal abelian subgroup &fLy(Zy) containingS(/7),
andg permutes the overlaps Vifxy') = xggp, vp.

LetC(X) denote the centraliser BLy(Zy ) of a setX of matrices.

Example 14.17(Typez orbits) For a strongly centred fiducial which is given by
an eigenvector of the Zauner matrix (or a conjugate of ithwigmplectic indexB,
a calculation (see Exer. 14.25) shows the centralis&infGL,(Zy ) is abelian, so
that

Gal(E1/Eo) = C(MT)/S(M),  C(M):=C(S(M)) =C(B).

This is the original conjecture of [AYAZ13].

Example 14.18(Type-a orbits) For a strongly centred fiduciél which given by

an eigenvector of the canonical order 3 operation with sgati indexF;, the
centraliser ofF, in GLy(Zy) is not abelian, and there are three maximal abelian
subgroups containin§(/7) (see [ACFW16]). In this case, the isomorphism (14.99)
holds for an appropriate choice BF(/T) in the known cases: 12b, 21e, 48g.
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14.25 Minimal and maximal SIC fields
The facts and their consequences for the SIC fiellldf24 can be summarised:

The SIC fieldE of a generic strongly centred fiducial which is ann-let
(multiplet of sizen) is conjectured to have the Galois correspondence

1 9 1 4% < 9% < 9
E > E P E > K > Q (14.100)
2 &R 2

where%; is abelianK = Q(4/(d —3)(d+ 1)), and all of the subgroups and
subfields shown are normal (with degree of the field extengiven below).

Under these assumptions tpescision bumpingalgorithm outlined in§14.20
proceeds as follows (see [ACFW16]). Lé§/% = M(I1)/S(IT) act on the overlaps
of a centred fiducial via (14.97) to obtain orb{t¢; }. If d = 0 mod 3, thenT may
not be strongly centred, and it is convenient to replace tteglaps by their third
powers (which are permuted B%/%4). If I1 is ann-let, then the polynomials

fi(x):= |_| (X=X), (14.101)
X€ED|

have coefficients in the fielfly (a degrea extension o). For a singletii= 1), i.e.,
Y = %, the algorithm proceeds as already outlined. Fan-dat, the4.—orbit of an
overlap will be the union ofi of the%, /%3 —orbits of overlaps from centred fiducials
lying on different extended Clifford orbits. Either ti#¢—orbit can be guessed in
this way (e.g., iln = 2 andg. ¢ % then one could conjugate the Clifford orbit), or
the polynomialsf; can be dealt with directly. In practice, so far, it has beessfige
to “guess” the next to leading coefficient &f exactly (sinceEo is a small degree
extension ofK), thereby determiningfo, and applying the algorithm as before.

For a given SIC multiplet, there is a SIC figld(the SIC field of the multiplet).
For different multiplets, the SIC field (and the Galois gragipmight be different.
Calculations of [ACFW16] (for fixedl) suggest that

e Each SIC multiplet has a different SIC field.
e There isminimal SIC field Enin, which is contained in all SIC fields.
e There ismaximalSIC field Emax Which contains in all SIC fields.

A SIC field which is not minimal or maximal is called artermediate SIC field.
We say that a multiplet (or any SIC in it) minimal, intermediate or maximal if
its SIC field is. See Figure 14.1 and Table 14.5 for the a sumwfahe SIC fields
obtained in [ACFW16].
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Fig. 14.1: The SIC field inclusions (witlini, at the bottom) for cases where there are one or more
intermediate fields, together with the degrees of the extession

minimal intermediate maximal B E.
multiplet multiplet(s) multiplet [Emax: Eomin]
15 1 1% 15ac 4
17 1 17ab 2
18 1&b
19 1% 19a, 1d 19%c 12
20 2Gb
21 2%k 2]1abcd 3
24 24 24ab 4
28 2& 28ab 4
30 3a 30abc 3
35 35j 35, 35, 3th, 35af 35bcdg 16
39 39j 3%f, 39gh 3%cde 6
48 48 48e, 48f 48abcd 24

Table 14.5: Minimal, maximal and intermediate multiplets
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14.26 Ray class fields

A ray class fieldis an abelian extension of a global field (such as the algebrai
number fieldk = Q(+/D)) associated with eay class group Every finite abelian
extension of a number field is contained in one of its ray diedds.

The motivating example is the abelian extension§oHere the ray class field
over Q associated with the ray class gro#p is the field generated by the-th
roots of unity. Every finite abelian extension @fis a subfield of such a ray class
(cyclotomic) field (the Kronecker—Weber theorem). In gahehe role ofh above is
is played by theonductorof a ray class field. Most importantly, there are algorithms
for calculating in ray class fields. Calculations (see [AFMY, [ACFW16]) suggest

Ray class conjecture:The minimal SIC fieldE = En, is the ray class field

overK = Q(y/(d—3)(d+ 1) = Q(v/D) with conductord’, and ramification

allowed at both infinite placés

Given this, the minimal SIC field (and extensions of it) cancbhastructed in
Magmausing RayClassField(m) . This makes calculations in the precision
bumping algorithm, such as factoring the polynomigiof (14.101), faster than
when the ray class field is constructed as a tower of extession

There are further conjectures about the SIC field (see [ACHYV&S).,

Let E = Emin be the minimal SIC field in dimensiah Then in every known
case the tower of fields (14.100) satisfies:

e E andE; are ray class fields ovéd(/D) for which the finite part of the
conductor i’

e [E; is the class field with ramification only allowed at the infinplace
taking /D to a positive real number.

e [y is the Hilbert class field ove®(v/D).

We recall thaD is the square—free part 6 — 3)(d+ 1). If D is a square—free
positive integer, then it is the square—free parfdf 3)(d + 1) if and only if

(d—3)(d+1)=m’D <= (d—1)2-n’D=4.

for some positive integamn. This is a modified version d®ell’s equation and has
infinitely many solutionsl; < dy < d3 < --- (see [AFMY17]), given by

dj :1+2T,-(d1_1), j>1,

9 There are four ray class fields ovér= Q(+/(d — 3)(d+ 1) with conductord’. The SIC fieldE
is the largest of these, and the three others, which indiiydare subfields off.
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where theT; are theChebyshev polynomials of the first kind
If Zauner’s conjecture holds with the SIC field structurejeatured, then

For every square—free positive inteder there are infinitely many minimal
SIC fields which are ray class fields ov@(v/D).

Example 14.19The first few sequences of dimensions witfiixed are

d=4, 8, 19, 48, 124 323 844, 2208 5799 15128 ... D
d =5, 15, 53, 195 725 2703 10085 37635 140453. .. D
d=6, 24, 111, 528 2526 12099 57966 277728 ... D =21,
d =7, 35, 199 1155 6727, 39203 228487 1331715... D
d =9, 63, 489, 3843 30249 238143 1874889 14760963... D

It can be shown [AFMY 16] that for each one of these sequelticers are infinitely
many distinct subsequences for which each dimension divide following one.
These subsequences are catl@dension towers(the corresponding minimal SIC
fields are nested).

For theD =5 sequencéd;) = (4,8.19,48,124 ...), it has been conjectured in
[GS17] that there is a SIC with an antiunitary symmetry ofesrélj given by the

symplectic index
. (01 (0-1\/10)\ _
Fri= (1 1) = (1 —1) (o —1) =AJ,

i.e., the symplectic operatiodC. Such a SIC is called aucas—FibonacciSIC,
on account of the fact that the entries of the powers ef F;J are the Fibonacci
numbers. By directly solving (14.102) using Groebner basshods, [GS17] have
constructed an exact Lucas—Fibonacci SICdet 124 (labelled 124a), and have
found numerical SICs fadg = 323,d; = 844, by searching in eigenspace<d.

It is natural to speculate about similar infinite familiesSICs for other values
of D. In this regard, we list the first few dimensions far< 19

D 2 3 5 6 7 10 11 13 14 15 17 19

dp 7 5 4 11 17 39 21 12 31 9 67 341
d 35 15 8 99 255 1443 399 120 899 63 4355 115599
d; 199 53 19 971 4049 54759 7941 1299 26911 489 287299 39302981

and observe from the symmetries given in Table 14.4, thdbfer2, there appears
to be a family with|S§ = 6j, d = dj, and forD = 3 a family with|§| = 3j, d = dj;.
There much on going work in this direction.
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14.27 Equivalent equations for SIC fiducial vectors

The vectorsy € CY giving SIC fiducials are determined by tH& quartic equations

i 1 .
|<SJQKV>V>|2: a9, 1 (J7k) 7& (070)7 ||V||2:17 (14102)
d+1
invy,...,vq,Va,. .., Vg with coefficients fromQ(w). The variational characterisation
of (2,2)—designs (see Exer. 10.6) gives two equations (the firstéged 8)

R I oA —

4 2
qarpvh  MP=1 (14.103)

2
(1-k)€Zg

The algebraic variety of SIC fiducials (s&€) can be viewed as being real (by
taking real variableslvj andOv; and polynomials with complex coefficients) or
complex. In any case, it appears that:

The algebraic variety of SIC fiducials is zero dimensionald(aonempty,
except ford = 3, where it is one dimensional.

The direct solution of equations such as above led to theestexact SICs, e.g.,
[SG10] used Groebner basis methods on (14.102), wiithan eigenspace &.
We observe that

gy = (sIvakv= 3 v, (14.104)

r
which is a polynomial inw, with coefficientsU; = (viVrj)rez,. By using finite
Fourier methods, this leads to a third set of simplified eiquat(see [ADF14],

[BWO7], [Kha08]), which we now present, and solve in a cougleases.

Theorem 14.4.A vector ve CY is a Weyl-Heisenberg SIC fiducial if and only if

0, s,t=#£0;
<U3, gtUs> = z Vr\7|-+s\7r+tVr+s+t = T}-l’ S;é O,t == 07 S= O,t 7é O,
et a1 (81 =(00).

(14.105)

Proof. Using (14.104), we may writdS Qkv,v)|? as a polynomial of degreg— 1
evaluated at d-th root of unity

|<Sj-QkV7 v) |2 = (z Vrmwkr) (Z VsVsy w‘ks)
r S

= Z ZVr7Vr+er_tVr_t+jwkt =: fj(wh).
r
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For (14.102) to hold fojj 0, we must havd; be constant, equal tg}; (sincef;
is uniquely determined by its values at ttheth roots of unity), i.e.,

0, t#£0; .
erVr+er—tVr—t+j = { 1 ¢ fo 1 #0,
r ]

d+1°

which (after a change of variables) gives the first two equatin (14.105). Given
that this holds, we have

1 d-1
fo(w) = —= 5 W+ 5 v |%
a1 T2
For (14.102) to hold foij = 0, k £ 0, we must have

1 1 2
Ky _ 4_
fol)=—gigtIMl'=gg = ZMI'=3vwwwvi=4g
i.e., the third equation in (14.105) must hold. This thenuees (14.102) holds for
j=0andk=0,i.e.,
d-1 2
fo(1 =1
oM =gr1"a+1

Thus forvto be fiducial it is necessary and sufficient that the substteofquations
(14.105) considered above holds. Given the symmetryandt of the left hand
side, it follows that they all hold for a fiducial. O

From the proof, it is sufficient to require that (14.105) hfdd0 < s<t < L%J.

Example 14.20With r := |vj|, the last two conditions in (14.105) become

1
er ST gt 70 ZJ d+1

Example 14.21Ford = 2 andv; := rjeei, the equations of (14.105) are

1
VOVIC+V6V =0, 2rgri =2

4, .4
re+ry=
3 otl1

é.
Solving the last two (usin% + r% =1 to simplify the algebra) gives

2 3Z|Z\/§ 2 3:F\/é
r0= 6 3 I’lz 6 .

The first then reduces to q@6; — 6)) = 0, which has solution

2(91—90):L21+nn — df=dheii" n=0,1,23.

This gives the unique SIC fdE? (up to projective unitary equivalence).
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Example 14.22We consider the sporadic SICs foe= 3, which is the only known
case where there aiafinitely many inequivalent SICs. Here (14.105) gives

1
rg+ri+ri==

o o o 1
VaV1V3 + VoVaV2 4 V1VgV3 = O, rar? 4 rars+r2rd = >

2
Fromrg+rf+r5=1/2=2(1/4) = 2(r3r? +r2r +r3r3), we obtain

(r3—(r24+12))? = r§ 4+ (r} + 2r2r3 +-r3) — 2r3(r2 +-r3) = 4r3r3.
If rZ > r2+r2, then taking square roots gives

PB—(rP4r2)=2rr; = r3=r242rr0+r5=(r14+r12)> = ro=ri+ry,

and ifr§ <r?+r3, then
E—(r24r3)=-2rr; = r3=r{—2rra+r15=(r1—rz)?
sothatrg=r1—roforry >ro, andrg=ro—rq forro > rq1. Thus we have three cases
ro=r1-+rp, rh=ro+ry, ro=ro-+ri.

Sincer3+r?+r% =1 andr; > 0, these three cases describe the three sides of a
spherical trianglein the first octant on the unit sphere. The vertices of thamgle
are given by the intersections of the three great circles, e.

11

ro=ri+rz and ri=ro+r; = (ro,r1,r2) = (5, %.0),

N

i ; il 1 11
with the ot'her vertices b.em%, Q, ﬁ) and'(O, 72 ﬁ).
It remains only to satisfy the first equation, i.e.,

\72\71V(2) + \70\72V§ + leOV% =0. (14.106)

We consider a representative case when(ro,r1,r2) is on a vertex, and on an edge
of the spherical triangle. The other fiducials come from amsgtny of the triangle,
i.e., by permuting the entries of

Thevertex(ro,r1,r2) = (%, \%2, 0). Sincer, = |v2| = 0, the equation (14.106) is
trivially satisfied, and as there are no other conditionshase fiducial vectors

eiG

1 (€
v=-—1d?|, 6,pcR. (14.107)

v2\

Thetriangle edge § =r1+r2, r1,r2 > 0. For convenience, let; .= vjz/vj, so that
|zj| = |vj| =rj. Then dividing (14.106) byov,1V5 yields the equivalent equation

n+z1+2=0.
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Sincezp = -z —z and|z| =ro=r1+r2=|—2z|+| — 2|, the complex numbers
2y, —21, —2Z2 must have the same argument, i.e.,

20="r0€% z1=-1€? 2z=-r€?, peR.
Hence, writingv; = r;€%, so thatz; = r;e¥%, we calculate
% =rod? = Go=2+ Tk, k=012
r1e3i91 - _rlei(p - 6].: %"‘g—’_ %Tklv kl:07 1727
%2 =—rd? — 6,=%+7+Tk, k=012

After the change of variable®:= (¢4 271kp) /3, we can describe the fiducial vectors
corresponding to the poirito,ri,rz) on this edge of the triangle by

, fo
V:ele rluw;l ) QER, jlajze{oalvz}v
rop 2

2mni 2 . . L .
whereu = e% , w= us. We can give a more precise description of this edge by
solvingr3 +r2+r3 = 1 andrg = ry +r2 for ry,r2 in terms ofrg, which gives

ro+y/2—3r3 roFy/2—3r3

and rp=
2 2 2

r =

Here the half of the edge wherg> r, is given by the ‘top’ choice in the formulas,
and the other choice gives the half with< r,. For these to gives,r, > 0, we must

have ) 1
2-3r2>0, rg—,/2-33>0 — rggé, r§>§.

Hence% < rg < % along this edge, with; andr; given by the formulas above.
For thevertexSIC fiducial given by (14.107), we have the triple product
A(v,SYSV) = (4, SY(SYSV) (Svv) = ge',  t=3(p—0).

and so there arancountablymany projectively unitarily inequivalent vertex SIC
fiducials parameterised lty= 3(¢ — 0). In §8.5 of [Zhu12], the symmetrie§(v) of
the SICs in three dimensions were calculated. For tH&68)| can be 6 (the infinite
family 3a), 12, or 28 (types 3b and 3c).

Example 14.23Direct solution of the equations (14.105) shows that thgis eeal
fiducial vectorss € RY for d = 3,7,19 (see [BW07], [Kha08]).

The solution of systems of equations such as those presieritad section, still
play a vital role in the analytic construction of exact SICs.
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Notes

Many of the Gauss sums that appear when multiplying elemgintse Clifford
group can be calculated by using the followimgadratic reciprocity law

Fora,b,c € Z, with ac# 0 andac+ b even, one has thguadratic reciprocity

|c]-1 Ic| laj—1

zo gri(@i*+bi)/c _ [ 1Y gri(jac—b?)/4ac ZO o Ti(ck+bk)/a (14.108)
j= |a'| k=

The Clifford group can be viewed from the point of view of Galamalyis for
the finite abelian groufq [FKL09], where the Clifford operations are referred to
asmetaplectic operationg=HK *08].

There is currently much activity on Zauner’s conjectureg t

e The recent conjectures about the structure of the SIC fieddtlam action of its
Galois group on fiducials, e.g., the ray class conjecture.

e The recent construction of many more exact SICs, and coersdg5IC fields.

e The recent construction of many more numerical SICs.

o Efficienct methods for calculating the symmetry group fraimerical SICs, and
consequently conjectures about families of SICs with lagametry groups,
such as the Lucas—Fibonnacci SICs.

Some history and an extensive collection of references/engin [FHS17].

I wish to thank Marcus Appleby, Len Bos, Tuan Chien, Steveriafea, Chris
Fuchs, Gary Mcconnell, Markus Grassl, Andrew Scott, Jord,YBlake Stacey and
Hjuangjun Zhu for sharing their results and insights on th [8oblem with me.
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Exercises

14.1.Let (P;) be a SIC forCY, andC*¢ have the Frobenius inner product.

(a) Determine the condition om,c; € R which ensures tha, — c1l andR — cal
are orthogonal fojj # k.

(b) Find the dual basis t@;).

(c) Show thatP; —cl) is a basis if and only i€ # %.

(d) Show thatPj —cl),c= (1% ﬁ) is orthogonal.

(e) Find the projection ofP; — cl), ¢ € R onto the traceless matrices.

14.2.The Bloch sphereEach unit vector € C? can be scaled so that

)
coSs3

2 <0< < .

(singe'q’>’ 0<6<m 0<@p<?2m

(a) Express the rank one orthogonal projection matvixin terms of

a=sinfcosp, b=sinfsing, c=coso.
Here(a,b,c) € R3, with a® +b? +¢? = 1.
(b) Show that the map

1
Wi V2(W — §|)

maps the rank one orthogonal projections@n(equivalently, unit vectors iff?)
onto the traceless Hermitian matrices with unit Frobenirsm
Remark:This identification of the rank one orthogonal projectioparé states of

a two-level quantum mechanical system) with the unit sphretke 2x 2 traceless
Hermitian matrices is called tt&loch sphere with (a, b, c) aBloch vector.

(c) Show that the map
d 1
W A= q/ﬁ(vv*—al)

maps the rank one orthogonal projections@h(unit vectors inCY) to the traceless
Hermitian matrices with unit Frobenius norm, but is not ofwiod > 2.

14.3.The Bloch vectora, b, c) € R3 for a rank one orthogonal projection* on C?
is given by
c a—ib
2w -1 = <a+ib —C >

(a) Calculate the the Bloch vectors of the SIC @rgiven by (1.7).
(b) The vectorg+1,0, —%), (0,41, %) are the vertices of a regular tetrahedron.
Find the SIC corresponding to the Bloch vectors these giverwtormalised.

14.4.Show that the displacement operatsfQ*given by (14.4) satisfy
(@) QXS = wiksiQk,
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(b) (S QK" = w3'r-Dikgiork.

(c) Forh = cSQP € H, one hahd Qkh1 = wbi-akgi ok,
14.5.Show that the matrices R, M, Py of §14.5 satisfy
@F(FQNF1=w kskql,

(b) RS QKR = pilitdgiQi+k,

(©)M(S QXML = pkk-2i+d)gkQi-k

(d) Po(SIQ¥)P;1 = 7iQo 'k,

14.6.Ford even, show thaB® andQ? are symplectic unitaries, i.e., belong to the
subgroup of the Clifford group generated byandR, with

Q=R St=—FloiF=FIRF

14.7.Show thatSLy(Zq) x T is a group with the multiplication
(A,2a)(B,28) := (AB, (za°B)zg),

where function%ﬁ — T are multiplied pointwise.

14.8.The functionz, : Zﬁ — T of (14.18) satisfies (14.25), i.e.,
za(P+0) = WPV 24(p)za(0),

where the symmetric functioey : Z3 x Z3 — Zq is given by

cA(p, ) := (Ap)2(AQ)1 — P201, A= .

(a) Show thata(p,q) can be written as a quadratic form

wpa-daa o= (5AY). a-u-(55).

d+1

(b) Suppose that is odd. Then-p = u%1 = w2, sothatZq — T : pr (—u)P
is well defined. Show that, Z3 — T given by

2a(p) = (— 1)~ APP) 2(p) = (—p1) P APZy(p) = (—pu)PrPe(APL(AP2 7 (),
is a character, i.eza(p+0) = Za(p)Za(0), ¥Vp,q, and that
Zab = (Za0 Yh) 2,
k==m=1  2ou(p)=2Zgo:(p) = WP 2.

(c) Suppose that is even. Choose B € Sly(Zyq) with B= Amodd (there are
eight choices). Show that—u)”T"Bp depends only op mod &, so that

28 75— T:pes (—) P %Pz (p)
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is well defined. Show tha, g is a character, and so has the form
2ap(p) = WXAP wherey e Z3.

14.9.Here we consider how the indexing §£4.9 depends on the normalisation of
SandQ. Let . A
S=0S Q:.=0Q, C1,C2 €T,

andU;  := 9 Q. Asin (14.18), define a corresponding: Z3 — T by

ool — 5010 el
alpa " =Z(pUy,p = za(p)—w

z(p).-

(a) Show that; satisfies

Zb=2(2a0Uh).  Zsmgn(iK) = P17

and so Corollary 14.1 holds with replaced byz,.

(b) For the choice; = ¢, = —u, show that det),) = 1 andz(p) is a power ofw.
Zy(j,k) is a power ofw, and calculatey( j, k) explicitly fora=F, R M, P,

14.10.A 2n x 2n matrix M over a fieldF is said to besymplecticif

Tang (01
MTAM = A, A._(_|0>.

The symplectic matrices form a group@p= Sp(2n,F).

(a) Show that fon = 1 the symplectic matrices are the matrices with determibant
i.e., SH2) = SLy(F).

(b) ShowSLy(Z) is a subgroup o8Lx(R).

(c) Show thatSLy(Zy) is a group.

Remark:The elements 0BLy(Zy) are calledsymplectic matrices

14.11.Show that ifo € Z, has odd order, then

1 bj(j+d) n1-d
Cod = —= pPI0tD) = (vi .
: \/ajede (Vi)

14.12.Let Abe a normal matrix with eigenvalugs, . .., A, andP; be the projection
onto theAj—eigenspace. Since normal matrices are unitarily diaggatze, we have

A =AP AR+ + AR, j=012...

(a) Show thaP; can be written as a linear combinationl of, A2 AL

(b) Suppose has ordek, so that its eigenvalues ared, «?,...,wK 1, w:= e
(possibly with zero multiplicity). Show that the projeationto theA—eigenspace is
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1 _ _ _
P, = R(I +(AA) + (AA2 -+ (AAKT).
(c) Show that ifA is unitary and of ordek, then the multiplicities of its eigenvalues
(dimension of it eigenspaces) can be determined from tAdge0 < ¢ < 'g
(d) Calculate the multiplicities of the eigenvalues of tlwiffer matrixF, i.e.,

d 1 i -1 —i

am m+1 m m m—1
dm+1 | m+1 m m m
aMm+2 | m+1 m m+1 m
IM+3|({m+1l|m+1|{m+1 m

Table 14.6: The multiplicities of the eigenvalues,i2,i3 of F.

(e) Calculate the multiplicities of the eigenvalues of the Zauner matriZ, i.e.,

d 1 T T2

3m m+1 m m-—1
3m+1|{m+1 m m
3m+2 | m+1| m+1 m

Table 14.7: The multiplicities of the eigenvalueg ir2 of Z andZ’.

14.13.Suppose that | d. Let /i = e
(a) Show thaR', and hencé& ~R'F = (F'RF)’, has orde® .
(b) Ford odd, and fod even and’ odd, show thaF 1R‘F is sparse, i.e.,

B 0 g [ (~1)ku— 1002 | k=0 mod¢;
EIRF) \/> 1-ad :
( =y g 0, j —k= 0 mod¢.

(c) Ford even and even, show thae ~R‘F is sparse, i.e.,

B 0 g [ (=) ku= 7002 k=9 mod¢;
E lRfF A \/> \ﬁ 1-ud s 2
( Jik=1/ gD 0, j—k= 9 mod.

14.14.Suppose that Bd. LetT = e, \/i = e, and
Wa o= (~1)%RFFIRFR. a=0,12
(a) Show thaw\, is sparse, i.e.,

10i 2d .
(Wa) i = 1/ S (/)3 (—p)30-K* T2 k=0 mod3;
) d 0, j—k#0 mod3
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(b) Show that\, has order 3.
(c) Show that

tracgWy) = — 14218 +2Ta(171'%)).

i
7
(d) Find the multiplicities of the eigenvaluestl 12 of

(i) Wy ford =3 mod 9,d +# 3.

(ii) W, ford =6 mod 9.

Remark:The first implies that the multiplicities of the eigenvaluag of My = W2
are
1 e A=1;
™ =3<d+s<A2+A>>={d33

14.109
2 A=11% ( )

(e) The matriX\p is well defined for alld. Show that it is conjugate to the Zauner
matrix via
W = (RTF)'Z(RIF).

14.15.Show that the displacement operatﬁrp% (—p)PLP2SPLQP2, p € 72, satisfy

1-p,, |jqu = (,u)(pm@wq = w(p,q}@qﬁp,

5 Dp, d odd;
prda= (- )(F‘q>Dp d even

Dp

and

where(-,-) is thesymplectic form{p,q) := p201 — p102.

14.16.Appleby indexingWe consider some details fro§i4.10.
(a) Suppose thd € Sly(Zy ) andy € Zg. Show that ifa € C(d) satisfies

aDpa ' = wXBPDg,  vpeZ3,
then the unique indef,, z,) is given by
Ya=A:=Bmodd,  za(p) = wXAP) (—p)P 0P,

(b) Calculate the kernel of the Appleby homomorphism (11.42
(c) Find the indexX (s, z,) for the Clifford operations with Appleby index

M [0, F:= <d313_i) =(d+1) (1 :1>-

(ii) [Fa, 0], Fa:= 13d+3 = (d+1) ddfsl 3 ,d=3mod 9,d# 3.
4342 43 g

(i) [Fb,O],Fb:< Vet dd+1) JdTlcz,d>8.

(V) [Fe,0], Fe :(deKdd 2K ),d (3k+1)?+3,k =3k*+k+1,k>0.
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and determine the Clifford operatida if it is obvious.

14.17.We show the eigenvectors 8R°, ¢ € Zg, give the MUBSs of Theorem 12.22.
(a) Show that the matricgs8Q*},cz, commute up to a scalar.

(b) Show thaSQ* andSQ™ are (Frobenius) orthogonal whér-m e 7.

(c) Show that the column®, := {R'Fe;} of R'F are eigenvectors &Q°.

(d) For anyd, thed? — 1 matrices{S/QX: 0 < j # k < d} can be partitioned into
d+ 1 subsets ofl — 1 matrices

{Q,Q%....Q% Y, #:={SQ!, 0¥, . .. F1QE-V yezy

Show that matrices in the same set have the same eigenveaqis = {e;} and
By, respectively.

14.18.Here we consider the canonical abstract error group givedliffprd group.

(a) Find the determinant of the generat8r€2, F, Rfor C(d).

Hint: First find the determinant of.

(b) Explain how each of the generatddsabove can be replaced by a scalar multiple
M = ¢ M with determinant 1.

(c) UseMagmato investigate the canonical abstract error groups whigieapas
subgroups of§ Q,F R) ford = 2,3,4.

14.19.Let G = (F,R) be the group generated ByandR.

(a) Show thats is finite, i.e., it contains only finitely many unitary scafaatrices.
(b) Show that fod > 2, the nondiagonal matri®_; = F2 is in the centre 06.
Remark:By Schur’s lemma, this implies th&F, R) andCsp(d) are not irreducible.

14.20.LetA=[aj] € C™" with E := Q(A) = Q({ajk}), andg € Gal(E/Q).

(a) Show that ifA is Hermitian, therg(A) is Hermitian if and only ifg commutes
with complex conjugation.

(b) Show that ifA = v* is a rank one orthogonal projection, thg(#) is also if and
only if g commutes with complex conjugation.

(c) Now letE be the SIC field of a fiduciall. Show that ifg(/7) is a SIC fiducial
for someg € Gal(E/Q), theng must commute with complex conjugation Bn

14.21.The symmetry groujs(v) of (14.65) for a generic SIC fiducial @belian
Here we show that it inonabeliarfor the SICs ford = 2,3 (listed in Table 14.4).
(@) Show that the order two antiunitary symplectic operatic= F~C does not
commute with the Zauner matrix

(b) Show that the SICs fat = 2, 3 have nonabelian symmetry groups.

(c) Show that ifo = F~1C is a symmetry of a SIC (with a symmetFyor M1), then
its symmetry group is nonabelian.

Remark:The Hoggar lines are the only other known SIC with a nonabdliafact
noncyclic) symmetry group. Because of this (and other resjs¢Stal7] refers to
the Hoggar lines and = 2,3 SICs asporadic SICs, and all other SICs g&neric
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14.22.1f vis a Weyl-Heisenberg SIC fiducial, then s@isa € EC(d), (see§14.7).
Show that
[@-n:=(av(avy)*, M=w, [a] € PEQA)

defines an action of the extended Clifford group on the SIC:falyprojectors.

14.23.Here we show the SIC field = Q(I1, u) of a Weyl-Heisenberg SIC fiducial
projector/1 = vw* depends only its extended Clifford orbit.

(a) Show thaf® is closed under complex conjugation.

(b) Let" = (av)(av)*, [a] € PEQ(d), be a another fiducial in the extended Clifford
orbit of 1. Show thatQ(r1’, u) = Q(M, u), i.e., the SIC field = Q(I1, 1) depends
only on the orbit off7, and not the particular choice of the fiducial projector.

14.24.We consider the extended Clifford action on the overlx;#sof a SICrl.
(a) Show that ifa € C(d) has Appleby indeXB, b], then

Xg = w(b,Bp)Xéag)ﬂ’ Vpe ZS,.

(b) Show that the overlaps & = 17 satisfy
T_ 0 2 (-1
Xp = XZaps Vpe Zy, J= 1)

(c) Show that ifla] € PEQd) has (extended) Appleby indé¢R, b], then

n _ ,.(bdetB)Bp),, a1 2
Xp = w!Pee® p>XdeI(B)Bp’ VpeZ3.

14.25.Let 1 be a centred fiducial for whic& (/7) = S(I7) is abelian (all the known
cases). Show that B € $(I7) is a conjugate oF;, then there is a uniqgue maximal
abelian subgroup dbLy(Zy ) containingS (1) andS(I7), which is given by

C(M) :=C(S(M)) = C(So(M)) = C(B) = {al + BB: &, B € Zy} NGLa(Zy),
whereC(X) denotes the centraliser ¥fin GLy(Zy).

14.26.Let ¥ = Gal(E/Q) be the Galois group of the SIC fielgl of a fiducial 7,
andHg be given by (14.87). It can be shown (see []) that

Vit
vd
(a) Show that for every Clifford operatida], we can choosa € E9%9.

(b) Show that ifa € C(d) NE?*? andg € ¥ theng(a) € C(d).
(c) Show that

€ Q).

o) :=[g(@), ge% acE™

defines an action of the grodfs on the Clifford operations.
(d) Show that action o%; on PQd) in terms of Appleby indexes is given by
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g(f([B,b])) = f([HgBHy ", Hgb]).

In particular,g € ¢; maps the symplectic operation with symplectic indieto the
symplectic operation with symplectic inngBHg‘l.

14.27.Let 1 be a SIC fiducial. We recall thaf(I7), g € 4, is a fiducial (on the
same multiplet), wittg(/7) on the same extended Clifford orbit whgrE %.
(a) Show that the Clifford action commutes with the symnestiof a fiducial, i.e.,

San=a-Sp:=aSal,  V[al e PEQM).
(b) Show that the Galois action commutes with symmetriesfifieial, i.e.,

Sm =9S1), V9€%.

(c) Let 01,...,0, be the extended Clifford orbits of a SIC fiducial multiplehda
suppose that on every orlit; there is a centred fiducidl;. Fix I1;. Show that for
everyg € ¢ there is aTx and[a] € PEQd) with Appleby index[B,q], such that

0 modd, disodd;
o) = 18- M, 3= {O modd, dis even
(d) Show that ifd # 0 mod 3, then we can choge-= 0 above, so thatis symplectic,
and¥. maps centred fiducials to centred fiducials (on the same pletli
(e) Show that iid 0 mod 3, then all centred fiducials are strongly centred.
(f) Show that if all thelT; above are strongly centred, then we can tgkeo be
symplectic, and in this case

91(Mj) = P_1MTjP4.

14.28.Here we consider the group generated by the Clifford opmratand the
Galois symmetries of the SIC fielgl and its action on SIC fiducials. Fgre ¢, and
ae C(d) NE*d, we writeag for the mapE? — E9 given by

(agiv:i=a(g(v)), WweE"

(a) Show thak = {ag: ac C(d)NE%*4 g %} is a group under composition, i.e.,
the multiplication
(a101)(8202) = a191(a2) 9192,
with inverse(ag) ™t = g~*(a t)g~ .
Remark:The mapagis said to be @—unitary, sincea is unitary and

(ag)(av+pw) =g(a)(ag)(V) +g(B)(ag)(v),  a,B€E, vweE"

A l-unitary map is unitary, andg—unitary map is antiunitary.
(b) Show that PQ) x % = {[a]g: [a] € PC(d),g € ¥} is group with the induced
multiplication
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([aa)on)([a)ap) := [Gr(a)]onge,  a1,82 € C(d) NEY,

which contains P@), ¢ and PEQd) as subgroups. We cdH]g ag-unitary.
(c) Show there is a (natural) action of RiJ x ¢; = on fiducials/1 = vv* given by

alg- 11 := (agy)(agy)* =ag(M)a* =[a]-g(M),  aeC(d)NE™".

Show that if[a]g, a € C(d) NEY*Y, stabilisesT, thenv is an “eigenvector” ofg,
ie.,
(aglv= Ay, JAeE, |A|l=1

Remark:The stabiliser of 7 = vw* in the subgroup PE@) = PC(d) x (gc) is the
groupSy = §(v). The stabiliser is in general larger, since fgra %, we can choose
[a] € PEQ), with g(I7) = [a] - 1, and so ther-unitary[a—!]g stabilisesT.
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(d) For ag—unitary[a]g € PC(d) x ¢4, one can define an extended indeX, z,9),
or an extended Appleby indéB, b, g, [a] = f([B,b]). Show that

fy. : Slo(Zg') x Z3 x % — PQ(d) x % : [B,b,g] — f([B,b])g,
is @ homomorphism, whel®ly(Zy ) x Zg x % is equipped with the multiplication
[B1, by, 0] (B2, bz, 01] = [B1Hg, BoHy, ', by + B1Hg, bo, 0102].

(e) The subgrouply(Zy) x Zg x {1,0c} gives the extended Appleby triple indices
for PEQ). LetJ = Hg,. Show that the map

O : Slo(Zy) x 23 x {1,0c} — ESla(Zg) x Z5 : [B,b,gl] — [BI,b]

is an isomorphism between indices.
Remark:The mapfy, o ©~1: ESLy(Zy) x Z3 — PEQM) is the fg of (14.57).



Chapter 15

Tight frames of orthogonal polynomials on the
simplex

The orthogonal polynomials of degrkeen the triangle are a finite dimensional inner
product space which is invariant under the unitary actiothefsymmetry grouis
of the triangle (the dihedral group of order 6) given by

g-f=fog™,

i.e., is aG-invariant space (séd0.10). Itis natural to seek an orthogonal expansion
for this space which is invariant under these symmetries. @dlynomials in such
an orthogonal expansion have a simple form, i.e., they sboéa small number of
polynomials, together with those obtained by the changesuddbles given by the
action ofG. In a few cases it is possible to findzinvariant orthonormal basis, e.g.,
for the 3—dimensional space of quadratic Legendre polyatsnfExample 10.20),
but in general it is not. Here we present a nat@alnvariant tight frame for this
space (and more generally the Jacobi polynomials on thelsinprhis is great
illustration of the usefulness of tight frames — the redunayaof a tight frame allows
us to find an expansion with the symmetries of the space, whiobt possible for
a basis. Key aspects of this construction include:

e The Jacobi polynomials in the tight frame are given exiidit terms of the
Bernstein basis by using a multivariate generalisatiome$F; hypergeometric
function (the Lauricella function of typA).

e The tight frame considerably improves upon the previouslgwkn expansions
(Appell's biorthogonal system which has some of the symi@gtand Proriol’s
orthogonal basis which has no symmetries and is given bywasige formula).

e A polynomial is a Jacobi polynomial if and only if its Bernstdasis coefficients
give a Hahn polynomial. The Bernstein coefficients are attarsed by certain
linear dependencies which can be expressed in terms of jhietzaf the degree
elevation operator (for the Bernstein form).

e The proof that the frame is tight uses the fact that the Jagpolyinomials are
eigenspaces of the Bernstein—Durrmeyer operator.

429
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15.1 Jacobi polynomials and their Bernstein coefficients

Throughout, let = (&o,&1,...,&q) be the barycentric coordinates oflasimplex
T ¢ RY with verticesV = {vo,Vv1,...,Vq}, and volume vg)(T). We recall (se§4.7)
that the barycentric coordinates are the unique lineamaoiyals with

x:zéj(x)vh ;Ej(x):l, vx e RY.

In particular, the barycentric coordina§gis 1 atv; and zero at all the other vertices.
It is sometimes convenient to index the barycentric coaiis by the vertices that
they correspond to (rather than labels for them). We will steemdard multiindex
notation as outlined if4.9, e.g./” (v) =1; I (vj), wherel" is theGamma function

Example 15.1The barycentric coordinates of the interval (1-simplexd, 1] with
vertices{—1,1} are

1-x 1+x

o =7 =75, (15.1)

and for the triangle (2—simplex) with vertic¢8,e;,e,} they are

So(xy) =1—x-Y, &1(xy) =X, &(xy) =Y.

Theunivariate Jacobi polynomialsare the orthogonal polynomials given by the
inner product

) vo+v1 1 X\ Vo—1,/1+4x\v1-1
<fvg>V- 2/ ) (?) dX, VO,V]_>O.

The normalisation above is chosen(4ol), = 1. The parameters are usually written
asv = (vp,v1) = (a+1, B +1), with the Jacobi polynomial of degreedenoted by

P,S"’B). The conditionv; > 0 ensures that the weight function is integrable.

Example 15.2Well known Jacobi polynomials include thegendre polynomials
(vj = 1) and theChebyshev polynomialgvj = %), which are given by

1
(£,9 @y :%/ﬂf(x)g(x)dx, %% / f(x e

In view of (15.1), the weight function on the intervat1, 1] used to define the
Jacobi polynomials is a product of powers of the barycecwmrdinates of—1, 1].
By replacing|—1, 1] by ad—simplexT (a triangle ford = 2), we obtain the following
multivariate generalistion of the univariate Jacobi inperduct.

Definition 15.1. Let T be ad—simplex inRY with barycentric coordinates. Then
(multivariate ) Jacobi inner product on T with parameter is given by
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r(v)

<f’g>V = F(V)

1 "
_— fg&v1 R‘Hl ; X 15.2
d!vold(T)/T gé™ " veRTL vi>0 (152

We call the Lebesgue measure Brveighted byéV—1 the Jacobi measure

A simple calculation shows that the condition > 0, Vj, ensures the weight
function £V~ is integrable orT, so the Jacobi inner product is well defined, and
that

(V)a+p
(IVDjarsi8)”

where(v)q := [7;(Vj)q;, With thePochhammer symbol(x)n given by

(£9,8P), = a,B e 78, (15.3)
(X)n = =X(X+1)--- (Xx+n-1).

The orthogonal polynomials of degrkgsees10.10) for the Jacobi measure are
called the fnultivariate ) Jacobi polynomials and we denote them by, i.e.,

Py = {f € M(RY) : (f,h), =0,vh € M1 (R},
wherelT,(RY) is the space of polynomials of degreen onRY. Since

am(y) = (4410,

the space?) has dimension greater than 1 when 0 andd > 1.
Each polynomialff € I‘In(Rd) can be expressed in terms of the Bernstein basis

f: g Ca(f)Ba: ; CaBa,
lal=n lal=n

where theBernstein polynomialsof degreen are defined by

_ (la la]! n! d+1
B"'(d §0="ré¢t =8 lal=n aeZi™

This basis forT,(RY) is well suited to representing polynomials on the simplex
(sees4.9 for a generalisation to a frame for other polytopes). ddefficients

c(f) =c"(f) = c=(Ca)ja|=n
are referred to as th@ernstein(—Bezier) coefficients. By the multinomial theorem
f= 3 o= 3 caEso,(i(si)j = 3 (Ric)aBa,
laT=n [a[=n i= |a|=n+j

where the powers of thdegree raising operatorR are given by
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iy i (=a) .
(R'c)a—ylzzj<y)(_|a)yjca_y, i=0,1,2,.... (15.4)

Here we think of the Bernstein coefficients as a functormr — c, defined on
the simplex points

Byi={a ez jal=n},  #y=dim(MTa(RY).

We view such functions : Ay — R as polynomials of degreein d—variables by
identifying ¢ with the unique polynomial of degreeon thed—dimensional affine
subspacgx € R4*1 : xg+ X, + - -- 4+ X4 = n} which takes the valuey ata € Ap.
For example, by the multinomial theorefn= 1= 5 ;_,Bq, and so 1 corresponds
to the constant polynomial: a — 1. More generally, we have:

Proposition 15.1.Suppose that £ ¥ 4/_nCaBa € Mn(RY) and0 < s<n. Then f
has degree s if and only if:ax — ¢4 is a polynomial of degree s.

Proof. The polynomialgBg) s are a basis fofls(RY), and can be expressed

1, a=p4;
Bﬁ: Z bgBa, ba _{ B

s 0, otherwise
Let j :=n—s. Then by (15.4), the Bernstein coefficientsByf = 3 |4|—nCa By are

R 5 (N i C@ap (D ()
o = (X0 v;j(V>(—|a|)ibay (a—B) (—n); (—n)j (-B)g’

Sinced, — R:a +— (—a)g, |B] =s, is a polynomial of degres, we obtain the
correspondence. O

We define an inner product on the space of polynomfgls» R of degreen by

(19uni= 5 Wa ¢ (g)g(a). (15.5)
lal=n

al

The orthogonal polynomials of degreecorresponding to the discrete measure
above are called thdahn polynomials, and we denote them byZs™", 0 < s<n.
Theadjoint R}, of the degree raising operatBwith respect to (15.5) is defined

by

<RQ b>v,n == <C, R:b>v7n7]_, C: An71 — R, b : An — R (156)
A simple calculation (Exer. 15.1) shows the power&Kpfare given by
(B+V)y (]

(RYb)g=S

J .
(Bl+1); : <j<n _
= (IB+1); ( )bﬁwv b:Ay =R, 0<j<n  (15.7)

Y
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We can now show that Jacobi polynomials are characterisetthdyact their
Bernstein coefficients are a Hahn polynomial (and vice yerHais is a relatively
new result (see [Cie87] for the univariate case, and [Wal06]

Theorem 15.1.Fix v > 0. Let f =3 4 _nCaBq € My(RY), c= (cq), and0 < s<n.
Then the following are equivalent
1. f € #¢ (Jacobi polynomials).

2. ce 2¢" (Hahn polynomials).
3. (Ry)"Stlc=0.

Proof. (1<=-2) We havef € 22! if and only if it is orthogonal to the spanning set
{&P}p1<s for Ms_1(RY), i.e., by (15.3), we have

<f7€ﬁ>v = z Ca n (V)GJFB = n (V)

a
pr = cqg(Vv+a)g =0.
of=n AL VDiap (VDsHp \a|z:n a1 @l s

With pg : 4y, — R a — (Vv +a)g, this orthogonality condition can be written as
<C7 pB>V7n:Oa |B| <s
Since{pg}p|<s Spans the space of polynomials of degres this says € 2",

(2=3)Letgg: A= R:a— (—a)g, |B| =s—1. Withk:=n—|B|=n—s+1,
using (15.7), we calculate

(cdglvn= ) (V>!a Ca(—0a)p = ‘ > Mcﬁw(—ﬁ —Y)p

\Z\Z:Bn a y\:k (B + V)l
- BV _ (-1)lP
_(V)B|y;:k(v+B)VCB+V By —(V)B‘y;:k(‘H'B)VCBw v
(e VBl K
= (V)B Kl (S)klyg:k(‘ﬁ|+1)kcl3+Vy!

n

~ w04 ) (R)F.

Since{qg}g|—s-1 is a basis for the polynomials of degrees, we havec € 2"
if and only if (c,q)v.n = 0, |B| = s— 1, which is equivalent t¢R;, )“c = 0, by the
calculation above. O

This association between Jacobi and Hahn polynomials mesaner products:
Theorem 15.2.([Wal06]) Suppose that £ 3 |4—nCa (f)Ba and g= 3 |4/—nCa (9)Ba-
If f or g belongs ta??Y, 0 <s<n, then

G v)e G
0Oy = s s &y @ %O = g ) e
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15.2 The Bernstein—Durrmeyer operator

To motivate the tight frame of Jacobi polynomials on a simpte15.3, we consider
the Bernstein—Durrmeyer operatorM (see [Der85], [BX91]). This is defined on
the continuous functions on the simpl&with the Jacobi inner product (15.2) by

(F.8%vp _ ay (VD Ml g
d=n <1’f">vBa7\a|z=n<f’E M (W)g at®

MY f =

This self adjoint operator is a natural generalisation ef Bernstein operator (see
§4.10). It ispositive i.e.,

f>0 = MJf>0,

but does not reproduce the nonconstant linear polynomitails.degree reducing
and satisfies an analogue of Theorem 4.6. It can be viewedataad/albe—Poussin
meanof the orthogonal projections ont@! 0 < s < n. From this, or by a simple
calculation (see [Der85]), it follows that the eigenvaloéd! are

v n! 1

U TR A

with corresponding eigenspace the Jacobi polynon#i&ls i.e., for 0< s<n

1 &a

a<f,<$">vm, vie !  (15.8)

f= (-9 (V)nis 3

lal=n
Let Qs be the orthogonal projection ont#Y. Then forf € 7Y,
<fvfa>v = <stafa>v = <f7QS(EG)>Va

and so from (15.8), we obtain

e 1, oeay £
f=(n S)!(|V‘)n+s‘a% a!<faQs(E )>V(V)a
== 9tvhnis 3 101 B, B iy asg)

laf=n

In other words, (15.9) givestight frameexpansion for??Y . In the next section, we
obtain an explicit formula foQs(£?) whenn = s (the case with the fewest vectors).
This result was found independently by [Ros99] (not presbimt terms of tight
frames) and by [XWO01], [PWO02]. The presentation in terms of Be¥nstein—

Durrmeyer operatdi given here is adapted from [WalO6].
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15.3 Tight frames of Jacobi polynomials with symmetries

We now give the main result.

Theorem 15.3.A tight frame expansion for the Jacobi polynomig# is given by

= (v Wit guay,  viezs, (510
la]=n '
were (1) (n+|v|=1)g(—a)p &P
v (=10 n+Vi—1pg(—ajs &
@ = CETE oF 5 (15.11)

is the orthogonal projection of? /(v)4 onto &2Y.

Proof. In view of the tight frame expansion (15.9) fo?} (takes = n), it suffices
to prove thatpy is the orthogonal projection &“ /(v)4 onto 22Y. Since

(pt\:{/ € (i)a + nnfl(Rd)v

this reduces to showing tha is orthogonal to the basig"),i—n_1 for My 1(RY).
Suppose that = n— 1. Then

(VDigi+1yt = (vDn-a(IvI+n=D)g;,  (V)p+y = (V)y(V+VY)p,

and so, by (15.3), we have

ven (D" (n+v[-Dp(=a)pg  (V)p4y
oS = De 2, DB (VD
= (71)n (V)V 2 (—0)13 (v+ y)B_

(n+ V[ = D (VD1 &, (V)gB!
By the Chu—Vandermonde identity, the last sum above siraplifi

(=a)p(vV+VY)p vty (v=(vEY)a _ (-V)a
Y L R 7 () M ()

Sincely| < |a| =n, we must havey; < aj for somej, i.e., (—Vj)a; = 0, and so
(—Y)a =0, which completes the proof. O

The Jacobi polynomialgy in the tight frame for#?) can be written

\% (_1)n

= —— _F —1,-a,v;&),
(pa (n+|V|—1)n A(n+|V| ) a,V E)

whereF, is theLauricella function of typeA, which is given by
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a
(b)ax—, acR, b,cxeRIL
(C)q al

Fa(a,b;c;x) := Z (@))q|

+1
aeZy

This is a multivariate generalisation of the hypergeomndtrnction,F; (a, b; c; x).
We observéa(a, —f3,c; X) is a polynomial of degrefg| in xwhenf is a multiindex.

Example 15.3(Univariate Jacobi polynomials). The univariate Jacoltypomials

PP for the weightv = (a + 1,3 + 1) on [—1,1], and barycentric coordinatés
given by (15.1), can be written

a+1 1
PP (x) = %zﬁ(—n,lw+B+n;a+1;§(1—x)). (15.12)

The Jacobi polynomial for the multiindéx, 0) given by (15.11) is

-1 & (+v[-1)i(=n); &o(x)’

W0 = =T 2 () i
_ (—1)n N (—n)j(n+a+B+1) (3(1-x)
*(n+a+[3+1)nj;) (a+1); j!
="

1
= mzﬁ(fn,l+a+ﬁ+n,a+1,§(17x))

I GO . pap)
N+a+B+1n(a+1), "

(X)

Since#?) is one—dimensional, ea%fkk), 0< k <n,is ascalar multiple oPr‘,”B.

The tight frame expansion for the Jacobi polynomigfg given by (15.9) for
0 < s< n has more vectors than that of (15.10). By calculatiqgé @) explicitly
(see [Wal06]), one can generalise Theorem 15.3, as follows.

Theorem 15.4.A tight frame for the Jacobi polynomial®Y, s<n, is given by

= (=91(Vies 3 Mot qsyas.  vieor, @513
where
vs. (DS () (s+v[=1)g(—a)p(=9)jp EP
T (s+ V= Ds (V] +29)n_s I e B (15.14)

is the orthogonal projection of? /(v)q onto 22¢. We also have

¢ (n;!s)!

(IVDn+s z (f,g0%)vBa,  Vie 2. (15.15)
lal=n
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15.4 The orthogonal polynomials of Appell and Proriol

We now consider the symmetries of tight frames 8} given by Theorem 15.4,
and compare them with the previously known expansions.

The affine mapg € Aff (RY) of the simplexT onto itself are uniquely determined
by their action on the verticelsi, va, ..., Vg } or the barycentric coordinates, i.e.,

avj = Vgj, 9-& =&,

whereo € 41 is a permutation (of the vertices). Under this identificatithe
symmetry group of the Jacobi measure is

G:={0€S41:Voj =Vj,Vj},

and the Jacobi polynomialg?} are aG-invariant space, where the unitary action
of Gis given by
o-f:=fog?t  fen®Y).

With oa = (oao,...,00q), applyingo - & = &g to (15.14) gives

0@ =5 =@s, VOEG,
i.e., the tight frames of Theorem given by Theorem 15.4@Gfmvariant, i.e., the
G—orbit of some smaller number of vectors.

Example 15.4(Legendre polynomials) Suppose that all theare equal e.g., the
Legendre polynomialsgiven by vj = 1 (giving Lebesgue measure 4. Then
the symmetry group i€ = Sy.1, and the tight framéqy ) q|—n of Theorem 15.3
is the orbit of p(n) polynomials, wherep(n) is the partition function (the number
of partitions ofn). For example, 2+ 1,1+ 1+ 1 are the three partitions of= 3,
and so the tight frame for the cubic Jacobi polynomiat§ is the orbit of three
polynomials foranydimensiond.

Example 15.5(Quadratic Jacobi polynomials) From (15.11), we have

oo &% 2 & 1
920..0= Yoot D) @F V) vo T AT VDRV’
v _d& 1 (50 51) P S
(p(l,l,,O,....O) VoV1 (2+|V|) Vo W1 (1+|V|)(2+|V|).

The remaining quadratic Jacobi polynomials in the tightrfea® = (@) |q|—2 for
&7y are obtained from these by making the substitution

Vo Vj, Vi W, K#£J.

Whenvg = vj, v1 = v, then this corresponds to a symmetry#% . In any case,
formulas for all the polynomials i® can be obtained from those two above, by
substitutions, independent of the dimensibn
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The Appell polynomials (introduced in [AKdF26]) are the nonorthogonal basis
for 2 given by the subset of the tight fran® = (¢ ) q|—n for which thek-th
component ofx is zero, i.e.,

& :={q@y : |a| =n,ax = 0}.

There is an explicit formula for the polynomials in the duabls (see [AKdF26],
[FL74], [KMT91]). The Appell basis and its dual basis areanant under the action
of subgroupH of G (the symmetry group of the measure) given by

H:={0€G:vek= W}

The Proriol polynomials (introduced in [Pro57]) are an orthonormal basis for
ZY given explicitly, but by complicated formulas (see [DXQIThese polynomials
are not invariant under any of the (nonidentity) symmetoiethe Jacobi weight.

The basisP = (@) q|—n for #{ has the following desirable properties:

e ltisatight frame.

¢ |ts polynomials are given explicitly in the Bernstein form tsing a multivariate
version of the;F, hypergeometric function (the Lauricella functiép). These
formulas do not become more complicatedidsecomes large.

e ltisinvariant under all of the symmetries of the Jacobi vikig

As discussed, the bases of Appell and Proriol do not shace tilese properties.

Example 15.6Consider the three—dimensional spagg of quadratic Legendre
polynomials on a triangle. The symmetry group of the weigl8gi(order 6), i.e.,
all permutations of the vertices give symmetries. The tigrhe @ is given by the
orthogonal projections of

&2, &2, &2, &&, &&, &&

onto 2. This is theSs—orbit of two polynomials. The Appell basis is the orthogiona
projection of

&, & &é,

which is invariant under subgroup of order 2 generated byptrenutation(0 1).
The Proriol basis is given by the orthogonal projection of

&8, Eo(o+28), 4EZ+28& &

Notes

The idea of using finite tight frame expansions for spacesudfivariate orthogonal
polynomials(not to be confused witiultiple orthogonal polynomialgMFVA16])
appeared independently in [Ros99], and [XWO01], [PWO02]. A illetiaaccount of
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the multivariate orthogonal polynomials, which includie systems of Appell and
Prorial, is given in [DXO01]. The presentation in terms of Bernstein—Durrmeyer
operatorMy that is given here is adapted from [RWO04], [Wal06]. There amelar
expansions for the multivariatélahn and continuous Hahn polynomia[&RWO04],
and for the multivariate orthogonal polynomials for a rédlgliaymmetric weight
(see Chapter 16).

Tight frames allow for optimal expansions for spaces of iaiftate orthogonal
polynomials for specific weights, e.g., see [Dun87] §06.10,510.14.

Exercises

15.1.Let R be the degree raising operator given by (15.4), Bhdbe its adjoint as
given by (15.6). Show that thip-th power ofR}, is given by (15.7), i.e.,

ip)y=§ Vv (1) b:A, >R, 0<j<n






Chapter 16

Continuous tight frames for finite dimensional
spaces

The tight frame expansion ferequally spaced unit vectors Y is

20 cos2
f=2=5 (f,uj)uy f e R? ji= no). 16.1
”,Zl< supuj,  VEERT, oy (sinzgl) (16.1)
We may take the limit of this, as— oo, to obtain
2 o cosf
f= Zr/o (f,ug)ugdd,  VfeR2 Ug i= (sin@) , (16.2)

which is the prototypical example ofantinuougight frame expansion.

A key feature of this expansion is that the vectarg)o<g <2, are invariant under
the symmetrie©(2) of R? (see the comments at the start§8). Indeed, one can
argue that this is the natural representation for the spéce: R2, which follows
directly from its symmetries (applg(2) to any unit vector), and that expansions
like (16.1) then follow by a process of discretisation (edbampling.

16.1 Continuous and discrete frames

The sumy ;; in the definition of a frame can be a more general integral.

Definition 16.1. Let s# be a Hilbert space, an@,.”, u) be a measure space. A
(generalised) framefor 2 with respect tqu is a family (f;) < for which

1. Foreachf € 57, J = F: j— (f, f;) is.”—measurable od.
2. There exist (frame bound8) B > 0 such that

AHfIIZS/JI<f,fJ>|2du(J')§B||f||27 vie .

441
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It is tight if one can choos@& = B. Further, we will refer to the frame as being
discreteif u({j}) > 0,Vj € J, andcontinuousif u({j})=0,vj e J.

Example 16.1lf u is the counting measure on a sethen a generalised frame is
precisely a frame.

Example 16.2The vectorqug)o<e<2r Of (16.2) form a continuous tight frame for
RR? (with respect to the Lebesgue measure), since

2n 2n
/ |(x,ug)|2dB = / (x1€080 + X25in0)2dB, = mi|x||?>,  VxeR2
0 0

The basic results on frames extend in the obvious fashien replace the sum
overJ by an integral. In particular (see Exercises 16.1 and 1&/@have:

Proposition 16.1.Let @ = (f;) ;< be a generalised frame with respectitdor 7.
Then
Sti= [ (1.1} fjdu())

defines a bounded invertible self adjoint operatet S¢ , : 7 — S, for which

f= [(£.S ) du() = [(1.1)S*du()

:/J<s%f, f)SEfidu(j), Vfe s

We call(fj) = (S 1f;) the dual frame, and(S% f;) thecanonical tight frame.

Proposition 16.2.(Variational characterisation) Letf;);cj be a generalised frame
with respect tqu for a d—dimensional space”’. Then

1 2
S, 1t Pty anto = 5 ( [ I6il2au())
with equality if and only if f;) is tight.

Example 16.3Let I, (Rd) be the space of homogeneous polynomials of degree
onRY, i.e., those polynomial$ satisfying

X

f(X) = Hx”nf ( ||X||

) x# 0.

In view of this, these polynomials are determined by thelu&a on the unit sphere
S:={xeRY: ||x| = 1}, and so we can define an inner product on them by
(f,0) = Js fg (Lebesgue integration d8). Theridge polynomials® = ({-,V)")yes
give a continuous frame fdfiS (RY) (it is well known that they span). A calculation
shows that® is tight forn = 0,1 (but not forn > 2). In §16.5, we will consider
continuous tight frames for the this space (and the spacermplex homogeneous
polynomials).
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16.2 The analysis and synthesis operators

Let @ = (f;)je3 be a generalised tight frame fo#” with respect tou. Then the
synthesis operatorcan be defined in the natural way (see Exer. 16.1)

V=Vo:La(l) — #:ams /Jaj fdu(j).
From this, one can define tii&amian and thecanonical Gramian
Gram @) =V*V : Lo(u) = La(p),  Po=V*SV:Ly(u) — La(u),
whereS=VV*: # — 7 is the frame operator. The canonical Grami@anis an

orthogonal projection. It can be represented by the “miaffs] = [( fi, S 1j)] ke
(see Exer. 16.3), where

Poa—Poluai= [ Poluakdu(k) = [ (fS ™ fj)acdu(k.

Example 16.4(Short-time Fourier transform) Let” = L(RY), g € Lo(RY) be
nonzero, and, Tyg(t) := €7@ tg(t —x). Then

/]Rd /]Rd [(F,MTig) Pdxdw = [|g]2[| f]|2,  VfeLaRY),

S0 that(Me Txg) (x w)crdxra IS @ tight continuous frame with respect to Lebesgue
measure oiRY x RY. The analysis operatdt* : Lo(RY) — Lo(RY x RY) given by

V) (x,w) = (f,MuTya) | f(t)gt—x)e 2"@tdt,  x,weRY
(V H(x w) =( ) [ fHalt—x)
R

is called theshort-time Fourier transform (STFT) of f with respect tog (the
window functiol. See [Gd01] for detalils.

In principle, the definition of a continuous tight frame ablle extended, so as
to include many important integral transforms which behiava similar way. For
example, thé=ourier transform f of f € Ly(R),

flw)i= [ fe2modt= (1), (f.g:= [ ft)gl
gives the reconstruction formula
R T A Ticot _i/'m Tico-\ 27t
f(t)_ZHI/%f(c,a)e2 do=o [ (&) dw, Vi eLa(R),

which would be a continuous tight frame expansioe?f® ¢ Ly(R).
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16.3 Reproducing kernels
Many interesting continuous tight frames come from repoiny kernels. Some,
such as the family of zonal harmonics predate the theoryaofés.

Definition 16.2. A Hilbert spacesZ, of functions defined on some s¢tis called a
reproducing kernel Hilbert spaceif each of the point evaluations— f(x) ,x € X

is continuous, and hence has a Riesz represéter 2. For such a space, the
functionK : X x X — FF defined by

K(xy) = (Ky, K) =Ky(x),  ¥xyeX
is called thereproducing kernel.

The reproducing kernel is Hermitian, i.e.,

K(y) = (Kx, Ky) = (Ky, Ky) = Ky(x).

Example 16.5Let J# be a reproducing kernel Hilbert space of functiofis> I,
with the inner product given by a measyrgi.e.,

(1.9):= [ f)a)du. (16.3)

If K is the reproducing kernel, then

10 = (1K) = [ FORIAN() = [ (1.Ky)Ky () du(y),

f /X<f,Ky>Kydu(y>, Ve, (16.4)

and so(Ky)yex is a normalised generalised tight frame with respect to thasure
U, which we will refer to as theeproducing kernel tight frame.

Clearly, every finite dimensional space with an inner praodadi¢he form (16.3)
has a reproducing kernel, and hence a natural generalggedriime.

Example 16.6Let.7#” =9, a space of functions ah= {1,2,...,n}, with the inner
product given by the counting measure. The Riesz reprasafites point evaluation
j —= Xj = (x,€j) is the standard basis vectgr, and so the reproducing kernel is

K(j,k) =e(j) =0k, Kj=g¢j,

and the corresponding generalised tight frame is the stdnaldhonormal basis
(€j)}_1- More generally, it is a subspace df", then the reproducing kernel tight
frame iS(Pej)?:]_, whereP is the orthogonal projection ont#” (see Exer. 16.5).

A formula for the reproducing kernel can be computed from faamne.
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Proposition 16.3.Suppose that K is the reproducing kernel f&f, and (f;) is a
finite frame for#, with alternate dual framég; ), e.g., g = fj, then

K(x,y) = (Ky,Kx) = 291

Proof. ExpandKy € 7 in terms of this frame

Ke=3 (Ki fi)gj = Y (fj.Kdgj = fj(x)

J ] J

Using this, and the frame expansion, we obtain

(Ky,Ky) = zf Vg, 3 X)) = zf 129800 = 3 ()9,

]

as claimed. a

16.4 Zonal harmonics
The extension of (16.2) tBY is most easily obtained by usirgnal harmonics
We denote théunit) spherein RY by
S=s8%"1:={xeRY: x| =1}.
A function f : X — R, X ¢ RY is harmonic if it satisfiesLaplace’s equationi.e.,
Af=0, A:=D}+-.-Dj

Let 74 = 4 (RY) be the space of homogeneous harmonic polynomials of degree
k. The mapf — f|s, of restriction of a function to the sphere, applied# has
trivial kernel, so that

dim(A) = dim(A4&(S)),  H&(S) = {fls: f € A},

The spaces#;(RY) and.#(S) are the $olid andsurface) spherical harmonics
of degreek. They are invariant under the action o{d) and SQ(d) (which are
absolutely irreducible), and have dimension

dim(4) = (kﬁl 1> - (kgi?’). (16.5)

Spherical harmonics of different degrees are orthogonehtd other with respect
to the inner product
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(195 = [ todo = s [ 1(8)a(&) e, (16.6)

whereo is normalised surface-area measure on the sgfhet& denotes Lebesgue
measure on the sphere, and the area of the sphere is

d
2m2
areds) i— / 1de = 2 (16.7)
s (9
The spherical harmonics give the orthogonal decomposition
L2(S) = P #, (16.8)
k=0

of L»(S) into absolutely irreducibl&Q(d)—invariant subspaces.
The spherical harmonics of a degreavith the inner product of (16.6) form a
reproducing kernel Hilbert space, and so have a naturaireanis tight frame.

Definition 16.3. The zonal harmonic! of degreek with pole & € S is the Riesz
representer of point evaluation&ti.e., the uniqu& = Zék) € Jt with

f(E):<f,z§")>s:/gfz§">do(f), vf e A (16.9)

Thus (16.4) gives the following reproducing kernel tiglarfre:

Example 16.7The zonal harmonic(szék))ges are a continuous tight frame for the
spacez# of spherical harmonics of degréegi.e.,

f— /<f,z§")>gz§k>da(z), vf e 4. (16.10)
JS

We recall some basic facts about zonal harmonics (cf [SW7d[BRO01]).

Definition 16.4. A function f defined on a(d)—invariant subspace ®¢ (such as
S or RY) is zonal with pole & € S if it can be written in the form

FO) =a((x.&), lIXI])-
This definition is equivalent to:

e f isinvariant under the action of the subgroupatfl) which fixesé.

e f constant on parallels of the sphere, ifeis constant oid NS, whereH is any
hyperplane iR which is orthogonal to the vectdr, andSis a sphere (on which
f is defined).

1 The zonal harmonizék) is is also commonly defined for unnormalised surface-area measure,
which adds a scaling factor to the formulas for it presented. here
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Zonal functions generalis@ége functionsandradial functions which have the form
f(x) =9g((x,&)) (ridge function) f(x) =g(]|x|]) (radial function)

The zonal harmonizék) € J is azonalfunction, as can be seen from the following
explicit formula (see Exer. 16.8)

x&)

[l

K 3y — f1xlk(2) ke ®) (X&)
2800 = e ()~ X () (16.11)
Whel’eC|(()‘) are theultraspherical(Gegenbaugrpolynomials with C@ '=0,k<0.

If f, is zonal with polen, then we can move the pole &f to beé by applying
anyg € O(d) with & = gn. We use the notatiofy to denote the corresponding (well

defined) zonal functiors :=gf, = f, ogt,ge0(d), & =gn. In particular,
2l =979 :=72"0g™!,  vgeo(d). (16.12)

)

The zonal functior?_ék> is peakedaté (see Exer. 16.13), i.e.,

12812 = (2,285 = 2 (&) = dim(#4), (16.13)

(
& 7¢ ¢
Z(n)| <dim(4), v es. (16.14)
Example 16.8(Homogeneous linear polynomials). Hoe= 1, 7% is the space of
homogeneous linear polynomialsdrreal variables, and (16.11) gives

2 (x) = d(x.&),

and (16.10) becomes

d

— Wy 7D g5 — .
(= [(fzhszdo= Zr [0 008, viesm

Let f be homogeneous linear polynomi{alx), to obtain

d d :
(9= sroqmy L0 OC00E = (s [r)eae),

and we deduce the following generalisation of (16.2Rfo

Proposition 16.4.The vectorgé )¢ s of the unit sphere are a continuous tight frame

forRY, i.e.,
d

X= areds)

By linearity, the expansion (16.15) also holds faz C%, and an analogue exists
for S replaced by the complex unit sphég (see Exer. 16.12).

/S:<x,£>5df, x € RY. (16.15)
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16.5 Homogeneous polynomials

Let I'I,?(]Rd) be the space of homogeneous polynomial®8mf degreen, with the
inner product(f,g)s defined by (16.6). We will find the reproducing kernel tight
frame for this space. Every homogeneous polynomial 13 (RY) can be written
uniquely

_ (2] _
PO =3 IXIPpn2i(x) = ,Zonxnzl P2j (X). (16.16)
]:

0<7<3

wherepn_oj € J4_2j (Rd). This and the density of the polynomialslia(S) gives
the orthogonal decomposition of (16.8). Since the re#briatnap

M2(RY) = Lo(S) : f— f|s
is injective (see Example 16.3), from (16.16) we obtain tatiral identification

MR ~M5(S)= @ H#2(S). (16.17)

0<j<}

We say that a space istationally invariant if it is SO(d)—invariant. The desired
tight frame for the rotationally invariant subspa@g(R?) of L,(S) is special case
of the following general result.

Theorem 16.1.Let 5 be a rotationally invariant subspace 05(S). Then

A =P A, (16.18)
jed

for some subset J ®f, and we have the generalised tight frame expansion
f— Z/(f,zg)>gz§”d5:/Z<f,z§”>sz§”d§, vie#. (16.19)
je’s Sfe
Moreover, forsZ finite-dimensional, i.e., J finite, let
Zg=7)= Zzg” cH. (16.20)
JE
Then(Zg ) s is the reproducing kernel tight frame fo?’, i.e.,
f= / F(£)Ze dE = /<f,z€>gzgdz, vt ez, (16.21)
Js S
Proof. The action ofSQ(d) on .7#] is absolutely irreducible, and so the orthogonal

projection of.7” onto 77 is either 0 o7, and (16.18) holds (see Exer. 16.7).
Recall (see Example 16.7) tl'(ﬂéj))feg is a continuous tight frame fo#, i.e.,
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L1620 Pdo(@) =112 vie s,
Let f € 2, andP; be the orthogonal projection on##{. Then

(.2 = (f,Pz)s = (A 1.2)s,

so that

ltzfhPdg =y [ etz P = 5 IR 2= ]2

By Fubini, we can exchange the sum and integral above, ane:swmve (16.19).
Now suppose that is finite. Since(f,Z§J)> = (f,Z;), from (16.19) we obtain

f—/ZJfZ /Zfzg 52 do(8) = [ (1.2¢)2¢ 4o ),

which is (16.21). By Exer. 16.6 the reproducing kernel $6f is the sum of the
reproducing kernels fog?{, j € J, and so we recognis&; ) s as the reproducing
kernel tight frame for?Z. O

This generalises Example 16.7, which is the special dasdk}, 7 = J#. In
addition to (16.11), theolid zonal harmonics are given by the formulas

Ky — (1[0 (X
200 = 12" (157)
k2 d(d+2)---(d+2k—2j—4 oo

=([@+2%-2) 5 (1) T

_2k+d 21 dez(<|| 5>> (Funk-Hecke formula) ~ (16.22)

We now considefT;;(RY), i.e., the casd = {n—2j:0< j < §}.

Corollary 16.1. (Homogeneous polynomials) The reproducing kernel tigimnér
expansion forr1S (RY) is given by

f:./s(f,Zg)SZEdo(EL vt e Me(RY), (16.23)
where
Zei= S IXEZT ) x) = Xk (ﬁx‘ff) XeRL  (16.24)
o=

Proof. The reproducing kernel tight franig; ) s s for @ Jth—2j(S) is given by

0<j<}
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= 3 20

0<J<3
A polynomial in the form (16.16) is mapped by the identificatas follows

HN= B #A2iS):p=3 [-1Pp2i= 5 poails

0<j<y 0<j<3 0<j<

NIS

The inverse ofp; under this identification map &, which establishes (16.23). The
second formula in (16.24) follows from (16.11), which githe telescoping sum

7 (x <121 Lixn-2ic x,€) n-2jc (9 (x,&) 7
£ OQQQ”{” ()~ 2oy (e}
which simplifies to (16.24), sindg," := 0,k < 0. O

Example 16.9(Spherical polynomials) In view of (16.16), the space polyals
of degreen on the sphere is given by the choite- {0,1,...,n}, i.e.,

Mn(S) = A ® A D - & Ay = M5 (S) B My_4(S).

From (16.24), we obtain

Zg(x) = ci((x 5>)+Cn (x8),  xes.
Example 16.10(Polynomial wavelets) Faf = {n+1,n+2,...,n+s}, we have
I =Ty s(S) © Mn(S) = 1 ® A2 @ - © Hyys,

and from (16.11) and (16.22) we obtain

d
2

Ze(x) = CLEL((x &) + ¢$<vs» O (x.&) - (x.8))
S 2k+d-2
—kg;?—g—gf (2 (1x. 8)).

This zonal functiorZ; is localised in space nedr. The coefficients in the second
formula can be modified to obtain a zomallynomial waveletor M, 5(S) & My(S)
which has good space—frequency localisation [Fer07].

Example 16.11(Poisson kernel) It is natural to takle= N to obtain a reproducing
kernel for2” = L»(S). In this case, the series f@; does not converge iby(S).
Nevertheless, it sums to give tReisson kernel(see Exer. 16.8)

< 1|2

= Z .
P& =2 2 = k=g
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16.6 Orthogonal polynomials for a radially symmetric weigh

Here we consider the multivariate orthogonal polynomiads (see§10.10) for a
radially symmetric measune onRRY, i.e., one for which the symmetry group of the
measure i©(d), and so#, is O(d)—invariant.

For simplicity, we supposg is Lebesgue integration with a nonnegative radial
weight functionw : [0,R) — R on the ballBg := {x ¢ RY: ||x|| < R}, 0< R< oo,
(which defines an inner product é#,), i.e.,

(f,09)=(f,9w:= /B f(x)g(x) w(||x||) dx. (16.25)
v BR

By using the characterisation Gframes (Theorem 10.9) extended to the infinite

compact groufls = SQ(d), we find a single polynomigb € &, of unit norm, for

which (gp)gec is a continuous tight frame fa, i.e.,

f—dm(y) [ (f.opgpdu(@).  VIe (16.26)
Jgesqd)

wherevy is the normalised Haar measuren SQ(d). By choosingp = p; to be
zonal, we obtain

f:dim(@n)/g<f,pg>pgda(5), vt e Zn,

with one choice forp; giving the reproducing kernel tight frame. Both of these
expansions can be discretised to obtain finite tight frames.

16.6.1 TheO(d)—invariant subspaces of?,

To find ap € #, giving (16.26), we need th8Q(d)—invariant subspacé4 of #,
i.e., theO(d)—invariant subspaces (we use the subgr®0fd) for convenience).
We will repeatedly use the fact that if a functiérdefined orBg can be factored
into aradial andangularpart
X

f(X) :%(”XH)O( HXH),

then (by Fubini’s theorem) it can be integrated

BRf(x)dx:/S/oR%(r)O(E)rd1drd5: (/OR%’(r)rd’ldr> (/Se(é)df).

In particular, forj # k, polynomials in7j and.7# multiplied by radial polynomials
are orthogonal with respect to the inner product (16.25)% This leads to the
decomposition of#, into its O(d)—invariant subspaces.



452 16 Continuous tight frames for finite dimensional spaces

Lemma 16.1.For0< j < J,letB = Pj(”) be an orthogonal polynomial of degree j
for the univariate weight of0, R?) given by

t o 22 (V). (16.27)

ThenZ, is the orthogonal direct sum of the absolutely irreducioll)—invariant
subspaces

Zo= @ V", V=P (|- |D) Az, (16.28)

0<j<}

where the inner product on;\= Vj(”) is given by

(NP (]l - 1%), 2Py (|| - 7)) = aredS) (ha, ho)s|IPyl|Gn_2,  Vha,ho € 2,

(16.29)
where
d—2
o= 2 [ ORE e (16.30)
Proof. We have already observed that #e=V; ™ are orthogonal to each other.

Since#,_»; is an absolutely irreducible(d)—invariant subspace, it follows théj
is also. Moreover, by (16.17), we have

y dimv)= Yy dim(4_2j) = dim(Mg(RY) = dim(2,).

o< o<}

NIS

Hence to prove (16.28), it suffices to show thiat- 27, which we now do.
Lethy € 4, hg € 73 andp andq be polynomials, then

(hap(]| - [17), hga(l - 11%))
_ a B 2
= [ 11 ( ” H) (x| hﬁ(H 7 ) a1 wx]) dx

= ([ o202 B+ 2wy ) ([ haEmg(e) )

B d-2

— areds) /0 POV WD) T ) the ). (16.31)

Lethn_oj € %42 andp; be a univariate polynomial of degr¢eln view of (16.16),
the polynomialp;(|| - ||?)hn_zj is in &, if and only if

k
Pi(l- 1122, [ 2) =0, hear € Mz, 0<k<n 0<L<3.

By (16.31) and orthogonality of spherical harmonics ofeatiént degrees, this holds
except for whem—2j = k— 2/, in which cas¢ = j — %(n— K) < j, and we require
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R2 ) i, d=2
[ 2 wvhdi=o,
0

which is satisfied by the choiqg = P;.
The formulas (16.29) and (16.30) are special case of (16.31) O

Example 16.12(Gegenbauer polynomials). The orthogonal polynomialderunit
ball B; corresponding to the weight

w(r):=(1-r?%  a>-1 8> —g, (16.32)
are thegeneralised Gegenbauer polynomiaJsGegenbauer polynomials(when
B = 0), andLegendre polynomials(whena = 3 = 0). For this weight

tn72j+d—gzw(ﬁ) :tn72j+¥(1_t)at[3 — (1_t)atn72i+df§2+[37

so that
Pj = Pj(a’nszLﬂm(Z(-) -1),
2 ' 2
wherer(o"’3> are the univariate Jacobi polynomials given by (15.12).

Example 16.13(Hermite polynomials). The orthogonal polynomials &f = B.,
corresponding to the weight

w(r)=r#e™,  pg>0, (16.34)

are calledgeneralised Hermite polynomials andHermite polynomials (3 = 0).
For these, we can take
1r(n—j+9+p)

n72j+d72+ﬁ
A= Py = (1639

WhereLﬁa) are thegeneralised Laguerre polynomiai$s/en by

(o) -fl —a in n+a 4—x /0o (@) (12 0a a X gy | (@+N+1)
Ln/(x) = X exdx”(x e ), A (Ln/(x))“x%e *dx= —
Example 16.14ln view of (16.28), an orthonormal basis M[(”) (and hence?,)
can be obtained from an orthonormal ba3fg) = (S,—»; g) for 7% _2j (see [DX01]

for details). This basis is n@(d)—invariant (none can be).

We now find a continuous tight frame faP, which isO(d)—invariant.
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16.6.2 Continuous tight frames fo?,

We now give a continuous tight frani@; ) s s for the orthogonal polynomials?,,
which is O(d)—invariant. This is obtained by considering all group fran@p)gec
for #,, whereG is the continuous grou@ = SQ(d).

We assume the decomposition@, = @V; given by Lemma 16.1, and suppose
that P; is normalised so that its leading term has a positive coefficiLetv = vy
be the normalised Haar measure®@(d).

Theorem 16.2.Let pe &, be any unit norm polynomial of the form

dim(#4—2;)

) ) (n) O
dm(zy P PIEVi Ipjll = 1. (16.36)

=2

0<j<3

Then{gp}4csqq) is an equal-norm continuous tight frame fef,, i.e.,
f— dim(gzn)/Sqd)<f,gp>gpdv(g), Vf € P, (16.37)
and these are all such @ #7,. Moreover, p can be chosen to be zonal, in which case
f:dim(@n)/su, pe)pedo(E), Ve P (16.38)

There are a finite number of such=pp; with a given pole. Of these, we call

(n=2j)
Z " R (16,39

1
Pe = -
& dm( 2y 0<Zg Vareds) [|Pjllwn-2j

the canonical choice of p (the leading term gftRas a positive coefficient).

Proof. Let G = SQ(d). We observe that Theorem 10.9 extends to @igr any
infinite compact group), with the finite sw‘cérl Y gcc replaced by integration with
respect to the normalised Haar measuré&on

The action ofG on £, is unitary, and is absolutely irreducible on the subspaces

Vi —v{, Moreover, none of thej areCG-isomorphic to each other (see [FH87]).
This is easily seen fail > 3 where (16.5) implies th¢; have different dimensions,
and ford = 2 from following the explicit description of;

Vj = spar{(x,y) — O((a+ib)(x+iy)"2)P, (¢ +y?) : a,b € R}.

Hence, by Theorem 10.9, the choice (16.36) gives (16.37#e te write dinfV;) as
dim(—2j), and normaliseo so that it is a unit vector. A simple calculation shows
thatpis zonal with a pole &f if and only if eachp; is. The space of zonal functions

in J#,_»j with poleé is one dimensional, and spannedzg}*zj). Thus, by (16.29)
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and (16.13)

o —2]
2020p (1.112) Z Rl IP)

13
pj =+
T

TR () v/aredS)/am e ) [P

where the %+’ choice gives the canonical choice pf (which is most peaked &).
Finally, supposep is zonal, so thap; is zonal with pole € S Let Gs be the
subgroup ofc = SQ(d) which fixes the poing, i.e.,
Gg:={geSQd):g¢ =¢&}=sqd-1).
Then (see [SD80] for details) the integral of (16.37) candmputed
f,gp)gpdva(g) = / / f,gp)gpdvy_1(g)do
/Sqd)< 9PgPdVa(@) = [ |, (T-aPIgPdVa-1(g)da(é)
= [ L (.peipeaves(@)da(®) = [ (f.pe)peda(®).
/G

which gives (16.38). O

The first few zonal harmonics d&¢ are given by

20-1  Z0-apd).  28= T2 (s ).

20 = 19 i &) (@ +2)82-31x°), (16.40
d(d+6

2 = YOO (2 68y £)° (60 + 12 (x €)% + 3Ix]*).

Example 16.15Let &2, be the quartic Legendre polynomials on the unit disc. Then
by (16.33) and (16.40), the summands of the canonical clpicee

Po(x) = = (16 &)* — 16/ )% + 2[x]*),

\/ﬁ
P10 = = (400.8)2 =21 (4% -3).
pa(x) = = (6~ 6l +1).

and so the canonical choice is a ridge polynomial
1 4 2
P (%) = PolX) + P1(X) + Po(X) = = (16(¢.€)* - 120x. )7+ 1).

The choiceg; := po + p1 — Pz is is not a ridge polynomial (see Fig. 16.1).
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Fig. 16.1: Contour plots of the quartic Legendre polynomjaisandgs from Example 16.15 for
& = (1,0). Clearly the canonical choigg; is a ridge function.

For the Legendre polynomials (constant weight) the carbmicoice forps is
always a ridge polynomial. This is not the case for the Gegaabpolynomials for
a nonconstant weight (see [Wal09]). The correspondingimoots tight frame of
ridge polynomials for the Legendre polynomials was used étyuBhev [Pet99] to
study approximation by ridge functions and neural netwarkshe unit ball.

Corollary 16.2. (Legendre polynomials). For the constant weigloin the unit ball,
the canonical choice for p in Theorem 16.2 is the ridge palgiad given by

_ v2n+d (%)
Pe (X) = Jareds \/dim(@n)cn ((%,€)). (16.41)
Example 16.16For the Legendre polynomials on the disdRiA, (16.41) gives
Y 2n+2 1) B i

whereU, are theChebyshev polynomials of the second Kisele Example 16.15).
In this case, both (16.37) and (16.38) reduce to

21T
—nH/ (f.Rep)Repdb,  Vfe P, (16.43)

R
21 Jo

whereRg is rotation byg andp = ps (for any¢).
For the Legendre polynomials on the unit ballRA, (16.41) gives

pe(x) = V213 Bk ey,

vam/ (")

In this case, the integral in (16.37) is over the manif8id3) of dimension 3, and
the integral in (16.38) is ove§ which has dimension 2.
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16.6.3 The reproducing kernel foZ,

We now consider the reproducing kernel tight framed4éy (and associated spaces).

Lemma 16.2.Let p+# 0 be a univariate polynomial. Then the reproducing kernel
for the absolutely irreducible S@)—invariant subspace (ff - ||2).7# of Ly(u) is

PUXI) pUYI®) Sk

(x,y),
areds)| pl|2,

K(va) =

where|| p||wk is given by (16.30) and ¥ is the polynomial given by

k k7 X
Z00cy) = 2 () = iz (). (16.44)
Proof. LetKy(x) := K(x,y), so that
2
_ pdl-1P)edlyl? )IlkaZ‘L Y40,

7 aredS)| pllZ, i

Then, forf € J%, using (16.31) and (16.9), we calculate

12Ky — PN , (0
(B 19):5) = 2o IR 1) Bl - 192)

= Pyl Iy 2 )s
*MMHMH(MQ P2 9),

so thatk (x,y) is the reproducing kernel fqu(|| - ||%) #4. O
An explicit formula forz¥ (x,y) is given by (16.22), i.e.,

ZW(xy) = (d+2k-2) 3 (-2 2>2-j-j-!((i+§ljf)—! 2j -4

ick
0<j<3

) (x,y)<23 2y,

Example 16.17The reproducing kernel for the subspatj(@) = Pj(”>(|| 1?2
of &, givenin Lemma 16.1 is

(||X|| ) (||Y|| ) Z(n-2i)(

(m)
Kj (X7y):
aree{S)HP ||wn 2j

J

X,Y),

wherez® is the polynomial given by (16.44).

We now give twoSQ(d)—invariant formulas for the reproducing kernel fof,,
which follow from Theorem 16.2.
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Theorem 16.3.The reproducing kernel fag?, is given by the formulas

Kn(0y) = dim(s) [ p(x)pe(y) do (€)
P (1x12)P™ (llyl[)

oz areds)|P" |2,

z("=2)(x y), (16.45)

where g is the canonical choice and® is the polynomial given by (16.44).

Proof. Expanding (16.38) gives
f(y) =dim(20) [ (|| 109pe(09p09) pe(y)do(€)
= [ 109 (dm() [ pe(9pe(y)do(€) ) du(x),

Br

so that the reproducing kernel fo?, is given by the first formula.
Since Z, is the orthogonal direct sum (16.28), i.e.,

L@n = @ VJ(n>7

0<j<}

its reproducing kernel is the sum of the reproducing kerfmrlshevj(”) given in
Example 16.17 (see Exer. 16.6), which gives the second farmu O

The reproducing kernel for a finite dimensional rotatiopativariant subspace
of Lo(u) can be calculated by using the above techniques. This igle fitore
involved than forL,(S) (see Theorem 16.1), since the homogeneous components
of the C SO(d)—moduleL,(u) contain more than a single copy of each irreducible.
Indeed, the homogeneous components, as defined by (10rd4), a

2,
Example 16.18Since the polynomials of degréere the orthogonal direct sum

k
M(RY = 2o 2100 =B D V", (16.46)

n=00<j<j
the reproducing kernel dfl(RY) c Lo(u) is

K " (1% 2P (|]y[|2
K(xy) = ZO 5 P (I )2) illyll )
n=0 0<]< area(S)HPj ||w,n72j

We now consider the reproducing kernel for the homogeneolymipmials.

z("=2)(x y). (16.47)

n
2
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Example 16.19By (16.16) and (16.31), the homogeneous polynomials ofedagr
are the orthogonal direct sum

MR = @ |11 2.

0<j<}

Hence, by Lemma 16.2, the reproducing kernelg{RY) is

NEITVIE
Koy = 3

d Z(”_Zj)(x,y),
o=y aredS) || () lwn-2j

16.6.4 Finite tight frames for#?,

We now outline how the continuous tight frame expansionsrof §16.6.2 can
be discretised (sampled) to obtain a finite tight frame exjmm
For a fixedx € R andf € 2, (16.38) gives

£(x) = dim( ) /S (F., pe)pe (x) dE. (16.48)
The above integral of the polynomi&l— (f, ps) ps (X) of degree 2 can be replaced
by a quadrature rule (spherical design) to obtain a diséogte of (16.38).
Definition 16.5. A finite subse® of S together with weights; € R, § € © is called

aquadrature (or cubature) rule of degreek for the sphere if

/Sfdo(f): Y cef(€), Ve MR,

&cO

An equal weight quadrature rule, i.e., one with=1/|@|, V¢ € © is known as
aspherical k—desigisee§6.4). There is an extensive literature on quadrature rules
for the sphere (see [Str71], [CR93], [C0099)).

Theorem 16.4.(Finite tight frame). Le® C S be a cubature rule of degre2n for
the spheres with weights(cs ) s, and g be the canonical choice (16.39). Then

f =dim(%) Z ce(f, pe)pe, Ve Py (16.49)
¢eco

Proof. Apply the quadrature rule of degrea ® (16.48) to obtain

_ dim(Zy)

100 = Grags) o {1-Pe)Pe0OE = dim(2n) 3 ce(f. pe)pe(0)

o

which is (16.49). O
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Example 16.20For equal weight quadrature rules, i.e., spherical desidrts49)

reduces to dim( )
_dim(%,
f_i\e\ Z (f,ps) P, Vf e Py (16.50)

§cO

We now consider the bivariate polynomials, igk= 2. Here

cosf —sin@
SQ2) ={Ry:0< 0 < 2m}, Rg := (sine cose>’

whereRg is rotation througho.

Example 16.21(The circle) Let® be any set ok equally spaced points on the unit
circleS (d = 2). These give an equal weight quadrature rule of delgrekfor S (see
Exer. 6.10). Hence (16.50) holds fér= 6, k > 2n+ 1. This also extends to when
k>n+1andkis odd by by writing® = 6« URrO, and usindRyps = (—1)"p;.

Example 16.22(Logan—Shepp) Taking = 2(n+ 1) in Example 16.21 gives two
copies (up to a scalat1) of the orthonormal basiR j» po)’j‘:0 for Z.
n+1

In particular, for the Legendre polynomials on the unit disanstant weight),
the continuous tight frame expansion (16.43) can be disextto the orthogonal
expansion

n+1 [2m ) 1
f_TT[/O <f,anTnlp>R%pv Ve Py, p(x,y) = \—ﬁ_[Un()()7

of Logan and Shepp [LS75].
In a similar vein, one can obtain discrete versions of (16.37

Definition 16.6. A finite subgroupG of SO(d) generatesa sphericat—design if the
set® = {gn }q4cc is a spherical—design for some (and hence eveny§ S

Such groups are said to behomogeneou&ee [Ban84], [dIHP04]).

Corollary 16.3. Let G be a finite subgroup &0O(d) which generates a spherical
2n—design, and = pg the canonical choice (16.39). Then

dim(Z,)
f=—2"5 (f.gpgp,,  Vfe Pn (16.51)
o &P ’
Proof. Let© = {g¢€ }gec in (16.50), and usgps = Py - O

Example 16.23(The circle) Similarly to Example 16.21, (16.51) holds for
G= <R;£> C SQ(2),

the cyclic group of rotations through multiples affZ (of orderk), wherek > n+1
andk is odd, ork > 2n+ 1 andk is even.
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16.7 Functions on the complex sphere

We now outline how the orthogonal decomposition (16.8).£() into spherical
harmonics can be extended to complex valued functions oodimplex sphere

Sc=S:={xeC%: x| =1}

For more detail see [Rud80]. The inner product (16.6) isaegd by
- / fgdo, (16.52)
Sc¢

whereo is normalised surface-area measure on the sphééirnFrom (16.8), we
have the orthogonal decomposition into absolutely irrdda©(2d)—subspaces

La(Sc) = D 4 (Se), (16.53)
k=0

where#(Sc) = ##(CY) is the complex vector space of alrmonic(as functions
on R?%) homogeneous (with respect to real scalars) polynomialdegfeek on
R? (which is identified withCY). The monomialz — 278, |a| + |B| = k, are an
orthogonal basis farz(Sc) = .#4(CY), and a calculation shows

S G
/\z"| CEarot (16.54)

Let % = % (d) be the group of all unitary operators @, which is a compact
subgroup ofD(2d). The% —invariant subspace#(Sc), k # 0, are not irreducible.
LetH(p,q) be the subspace o#(Sc), k= p+ g, consisting of all polynomials on
€ that havebidegree(p,q), i.e

H(p,q) := spar{z+— 2% : |a| = p,|B| = a}.
This is the spacElg’q((Cd) considered in Exer. 6.17. The#(Sc) is the orthogonal
direct sum
Sc)= €D H(p.a)

p+o=k
of absolutely irreduciblg” —invariant subspaces, so that

L2(Sc) = P #4(Sc) = P H(p,q), (16.55)
k=0 k=0 p+g=k

where none of thél(p,q) in this orthogonal direct sum af&Z —isomorphic.
We now consider the reproducing kernel tight frames forowsiZ —invariant
subspaces df;(Sc). Here we writez? 28 for the monomiak — z°728.
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Lemma 16.3.The reproducing kernel for the irreduciblé —invariant subspace
H(p,q) of Lo(Sc) is

(d—1+p+q) 72 Pwows
(=D i fzq (@+B)

Proof. We first observe that by (16.54)

Kpq(z, W) = (16.56)

(d-1)!(a+p)!
(2P P, / 227 do(2) /|za+ﬁ|2da(> @ 1iai g

Since(z“zﬁ)m|=p7‘,3|=q is an orthogonal basis fot (p,q), Proposition 16.3 gives

(d=D!(a+pB)

which is (16.56). O

qu(z7w): Z Zazﬁwavvﬁw
laf=p|Bl=

Example 16.24(Holomorphic polynomials). The spat(p, 0) is the holomorphic
homogeneous polynomials of degngdts reproducing kernel is

Kpo(z,W) = (d ;i p) ) :pz"’w" (5) _ (d ;i p) ZwP.  (16.57)

In view of (16.55), the reproducing kernel for the space dbhwrphic polynomials
of degree<nis

K(z,w) = i (d;i—; p) (Z,W)P.

p=0
Summing over alp gives theSze@ kernelfor the holomorphic functions ibx(S¢)
d-—1+p 1

S(Z’W)F)ZOKPO(Z’W);)ZO< d—1 )<Z’W>p(1—<2aw>)d'

Example 16.25(Spherical harmonics) The reproducing kernelf(Sc) = .#(CY)
is given by

S Koa(zw) = 29 (ZWLEMD) e (W W)

o 2/ 21|
Summing over alp andq gives the Poisson kernel 8¢

1- 4P

zeB, wesS.

The details of these examples are given in Exer. 16.10.
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16.8 G—frames for infinite groups

The previous constructions of tigi-frames for the continuous gro@= SQ(d)
relied on the extension of Theorem 10.8 to infinite gro@3dMotivated by these,
we now briefly discuss such extensions in generality. Wedirppose that:

e G is alocally compact (topological) groymnd u is the associate(left) Haar
measurewhich is normalised so that(G) = 1 whenG is compact.

e There is aunitary continuous representatiaf G on a Hilbert space?, i.e., a
unitary representatiop for which the mag(g,v) — gv:= p(g)v is continuous.

Itis natural the role played by (algebraically) irredueisLibspaces is replaced by
topologically irreducible subspace8 continuous representation &fonV is said
to betopologically irreducible if V does not contain a proper clos€dinvariant
subspace (fov finite dimensional there is no distinction between the two).

The closure of a topologically irreducible subspace is almgically irreducible
subspace. For a continuous unitary actionsgh the orthogonal complement of a
G—invariant subspace G—invariant.

If Gis compactthen all topologically irreducible unitary representas are
finite dimensional. This leads to an orthogonal decompmsitf.7# into finite
dimensional irreducibl&—invariant subspaces (Peter—Weyl theorem).

If Gis not compacte.g.,G = Z, then the situation is far more complicated:

e Irreducible representations may not exist, and they canfo@te dimensional.
e The frame operator for @—orbit does not obviously converge.

Here is an example @& noncompact (see Exer. 16.11 for details).

Example 16.26Let G = Z act on” = (»(7Z) via thebilateral shift j-v=Sv, where
Se& := &1. This gives a unitary continuous action. Elementary calbohs show
that (Sjv)jgj is a tight frame if and only if it is an orthogonal basis, and tnly
v with finite support giving a tight frame are the standard $asictorsy = g (and
multiples of them). There exist vectors with infinite supggving tight frames, e.g.,

! 07_}a07_1a07 1707}a07 }aov !

V:(...,—g, 3 3 5 ?7..

2. (16.58)
The vectorsy for which (SjV)jeZ is a tight frame (orthogonal basis) can be better
understood by identifying them as the Fourier coefficiefitsZr—periodic function

f € Lo(T), wherev; = (f(z),zi>L2(T) (T = [0, 211 has the normalised Haar measure).
Here the shiftS corresponds to multiplication of (z) by z= €'. The condition
for v to give a tight frame is thaf have constant modulus. The examples e
correspond td (z) = Z (the only trigonometric polynomials with modulus 1), and
thev of (16.58) to the functiorf =1 on|[0, 7} andf = —1 on|[m, 271 (up to a scalar).
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We now consider the case whéns compact, e.gG = SQ(d). The Peter—Weyl
theorem ensures:

e A continuous action o6 (compact) ons# can be taken to be unitary.
e For acontinuous unitary action Gfon.7Z, there is an orthogonal decomposition
of ¢ into finite dimensional absolutely irreducible subspaces.

Theorem 16.5.Let G be a compact group with a continuous unitary actionséh
Then the orbi{gv)gec is a (generalised) tight frame forZ if and only if 77 is finite
dimensional, and the conditions of Theorem 10.8 hold, w{i€¥el 6) is replaced by

/G (vj,9vj)9vicdp(g) = 0. (16.59)

Proof. We first suppose tha#” is finite dimensional, and so can be written as an
orthogonal direct sun¥#” =V, @ - - - ® Vi of irreducibleG—invariant spaces. Since

L1r.99Pdu(@) < [ 11712IgvZdu(g) = k(@) fIFMP,

the frame operator fo® = (gv)gec is well defined (see Exer. 16.1) by

So(f) = [ (f.ovgvdu(e).  vie .

The argument of Theorem 10.8 then follows wjth. replaced by integration with
respect to the Haar measure. In particular, we observe(8age- u(G)||v||? and
Schur’s lemma (Lemma 10.4) also holds @infinite (andV; finite dimensional).

We now suppose tha¥ is infinite dimensional. Since the orthogonal projection
of a tight frame onto a closed subspace is a tight frame (fstibspace), we can
assume without loss of generality that

H=V1OVo®V3D-- -,

a countable direct sum of (finite dimensional) irreduci@einvariant subspaces.
Suppose thatgv)gec is tight frame fors#, and writev = vy +vo+---, vj € V.
Then(gw)geg, W := V1 + - - -+ Vim, is a tight frame for the finite dimensional space
V1@ ---®Vpy, and so the conditions of Theorem 10.8 hold. In particular,

vill® dim(V;)
[viell? dim(Vk)

Vi £0, Vi,

This implies

2 _ 2 w2 & N
[Iw]| —;HVJH = dim(vp) JZldlm(Vj)—oo,

which is not possible. Thus there can be a ti@hframe(gw)qcg for 2 only when
2 has finite dimension. O
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The considerations ¢f10.13 on when &—frame exists extend, e.g.,

For G compact andZ finite dimensional, there is a tigd—frame for. 7 if
and only if each irreducibl€G—moduleW in 57 has multiplicity< dim(W).

This result is closely connected with the result of [GM7 3 (& compact) on the
existence otyclic vectors i.e.,v for which the closed span ¢fv)gec is 7. The
condition forV = J# to have cyclic vectors is that it has countable dimensiod, an

mult(W,V) < dim(W), for every irreducbl€€G-moduleWw.

By considering the projectiomy of a cyclic vectorv € V onto its homogeneous
componentsHy (W), it is easy enough to see that this is a necessary condition.
Conversely, by choosingw so that(guy)gec is a tight frame forHy (W), and

Sw l[Mw||? < 0, one can construct a cyclic vector= Sy Wy.

For G a countable groupgs—frames (for the counting measure) are studied up to
unitary equivalence in [HLOO] (using Von Neumann algebras)d forG compact
they are studied in [Ivel5] (using the Zak transform). Botpr@aches make use
of the the left regular representation @f which plays the same role as the group
algebraCG in the case whef is finite—dimensional.

Example 16.27Let G = SQ(d) act on the space of polynomialg(R%), with a
radially symmetric measure. From the orthogonal direct §L646), we have

Ma(RY) = st A4 PP (|- |2 0 H5.

Since din{.#%) = 1 and the multiplicity of the irreducibleg in IM>(RY) is two,
there is nadG—frame for the quadratic polynomial (RY) (or M (RY), k> 2). Since
M(RY) is finite dimensional, it is possible to construct a repradgdernel tight
frame (see Example 16.18).

Notes

Continuous tight frames were introduced and studied inildatpAAG93]. A good
account of zonal harmonics is given in [ABRO1]. The sectiontloe orthogonal
polynomials for a radially symmetric weight was adaptedrfrpVal09]. | thank
Tom Ter Elst and Joey Iverson for many useful discussionstahés chapter.
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Exercises

16.1.Let (fj)jes be a generalised frame with respectutdor a Hilbert space’?”
(possibly infinite dimensional).
(a) Show that

g~ [TF.Tg. 1)) du(i) = (@51

defines a bounded linear functional g#1, and denote its Riesz representer by
St= [(1.1)f;du()).
(b) Show this defines a linear m&y 27 — 7, with
Alf|Z< (st f) <B|If]?,  Vfes.
(c) Show thatShas a bounded inverse, and
f:/J<f,§lfj>fjdu(i):/J<f7fj>§lfidu(1)
— /<f,§1/2f,->§1/2f,- du(j), Vieor.

J
(d) Show that thesynthesi@ndanalysisoperators (seg2.4) can be generalised to

Vily(U) = a— /Jaj fdu(j),

Vi = bo(n)  f e ((F, F)))jes,
whereVais defined as the Riesz representer of

fH/J(f,ajfﬁdu(j)::(f,Va).

Remark:HereS=VV*, and one can define the Gramiarlva¥ : ¢2(u) — l2(H).

16.2.Let (fj)jcy be a generalised frame with respecttafor a d—dimensional
Hilbert spaces#. Show that the variational characterisation (Theorem éfignds
in the obvious way (Proposition 16.2), i.e.,

[ et toRautduco = 5 ([ 1t1Pduci)’

with equality if and only if( ;)< is tight.

16.3. Thecanonical Gramiarof a generalised frame = (f;);cj with respect tqu
is given by
Po =V*SWV:Ly(u) — La(p),
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whereS=VV* is the frame operator andis the synthesis operator df.
(a) Show thaPy is an orthogonal projection.
(b) Show that the “matrix[Py] := [<fk,glfj>]j7k€‘] represent®y in the sense

Poa= [Pd)] pa= (/J[P¢]JkakdU(k))jeJ = (/J<fkvs_lfj>akd”(k))jgj'

(c) Letvk := ({f,S1f;}))jes be thek—th “column” of [Py]. Show thatv € Lo(u),
and(v;)jes gives a copy of the canonical tight frart® /21;) <y, i.€.,

Ve, Vs) Ly () = (fr, Ts), vr,seJ.

16.4.Suppose fj)jes is a unit-norm generalised tight frame fodadimensional
spacesZ, i.e.,||fj|| =1,Vj € J. Show thatu is finite, and

d
f:—/ ff)fdu(j),  Vfe
H(J) .]< I> ] H(J)
16.5.Let s be a subspace @, andP be the orthogonal projection ont#’.
(a) Show that the tight fr::lm(aKj)?:1 corresponding to the reproducing kernel for
S is given byK; = Pej.
(b) Find this normalised tight frame explicitly for

H ={xeF": X3+ +X, =0}

16.6. Suppose that? is a reproducing kernel Hilbert space.

(a) Show that any subspace#f is again a reproducing kernel Hilbert space.

(b) Suppose’”” = p; 7], an orthogonal direct sum of subspaces. Show that the
reproducing kernel ofZ” is K = 3 ; Kj, wherekK is the reproducing kernel of/].

16.7.Use the orthogonal decompositiba(S) = ; 7 of L(S) into absolutely
irreducible rotationally invariant subspaces, to show tha rotationally invariant
subspaces df,(S) have the form

A =P A, for someJ C N.
jed

16.8. The Poisson kerneffor the unit ballB = {x € R? : ||x|| < 1} is given by

B 1— X2

P(x,¢) = = d
%) = K=elf = 2 1 D)

xeB, &eS.

It has the property that for everywhich is harmonic on the closed unit ball

u(x) = ./S‘u(E)P(x,E)dE.

From this, and (16.8), (16.9), (16.7), it follows that
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- (K
- zozg J(x), xeB, €S,
k=

where the series converges absolutely and locally unifllymase the generating
function for the Gegenbauer polynomials

(1- 2yt+t2 Z)Ck

to expand the Poisson kernel in terms of the zonal harmatiedtain the formula
< > k, g <X7E>
Cl2 — |IX||“C2 .

16.9. (Linear polynomials on the sphere). The spafe¢S) and M1 (RY) of linear
polynomials on the sphere and B have dimensionl + 1.

(a) Find the reproducing kernel tight franig; ) for these spaces, with the norms
Il s and]| - |lw, respectively.

(b) Let &y, ..., &4 be four points on the sphere RP. Show that the zonal functions
(Ze ) _, are a basis fofl,(S) if and only if the points{¢;} do not lie on a circle.

(c) Show tha(Zg ) ‘4 isan orthogonal basis f@i1(S) if and only if the points{; }
are the vertices of a regular tetrahedron.

16.10.The % —invariant subspaces &b(S¢) are given by the subsums of (16.55).
Thus the reproducing kernel of such a space is the sum of flwedecing kernels
of its summands (cf Theorem 16.1).

(a) Show that the reproducing kerneltéfp, 0) is zonal.

(b) Find the reproducing kernel for the holomorphic polynalsiof degree< n.

(c) Show that the sum of the reproducing kernels of the homeges holomorphic
functions of all degrees (these are orthogonal) is th&Sthes kernel

. 1
X T

zeB, wesS.
It has the property that for everfywhich is holomorphic on the closed unit ball
f(2) = / f(W)S(zw) do(w).
Sc¢

(d) Expand the Poisson kernel

g2
K ZW _
pZOq (2 = [

to find a formula for the reproducing kernel fet(Sc) = 4 (CY).
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16.11.Let Sbe thebilateral shifton ¢>(Z), given bySg := €j;1. Thenj-v= Sv
defines unitary continuous action of the noncompact g@upZ on 7# = (»(Z).
(a) Letv € ¢5(Z) be nonzero. Show that {§'v)jcz is a tight frame forz(Z), then
the frame bound ié = ||v||, i.e.,(SV) is orthogonal basis.

(b) Letv = vye5 + vp&y # 0, a # b. Show

S 1. S)2 = |VII[XII? + 20 (va%(S* "%, %)),
J

and conclude thaiSlv) <z is a tight frame fort,(Z ) |f and only ifva =0 orv, =0.
(c) Find all finitely supported vectoxsfor which (Slv) jcz is a tight frame for2(Z).
(d) Letv=(...,—£,0,-3,0,-1,0,1,0,1,0,2,0,3,...). Show that(Slv);cz is a
tight frame foré,(Z).

(e) Determine all vectors for which (Sv) <7 is a tight frame for,(Z).

16.12.LetS¢c := {z€ CY: ||z] = 1} be the complex unit sphere i ~ R??, and
o be Lebesgue surface area measurg@riewed as a unit sphere 4. Deduce
the analogue of (16.15), i.e.,

_d d
~ eqs [ 20Eda(®),  vzect

16.13.Show that the zonal harmorzék) is localised af € S in the following sense.
(812§ (9] < 28 (8), vx# &, x €.

() Z7(&) = 12|12 = dim( ).

(c) The maximum

max{p(£) : [|plls = 1, p € HA(S* )} = /dim(7&) = O(K?),  k— oo

is attained if and only ip = —— rrlwz”) zy.
7tk

16.14.The variational condition (6.5) fdrf;) to be a finite tight frame foF is

Y ¥ I(6:10 = (z<fpf,>)2.

Show that the following analogous condition holds

//\Xyl do(x)do(y) = (/<xx>do( ))2.

Remark:This can be interpreted as saying that although a generivefiaf n unit
vectors forf9 is not tight, forn > d it is close to being tight (also see Exer. 6.3).

16.15.Let (-,-) x denote thepolarinner product of (6.19) ok (k, 0) (the space of
holomorphic homogeneous polynomials of dedtge
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(a) Use (6.21), to show that

N G L

(b) Express the reproducing kernel tight frame given byJIpin terms of(-, ), .
(c) Use the formula

21T
/ F((&,n))do (& / / 2)d-2¢ (1l rdrdd, n e Sc,

to calculate| (-, )]s,



Chapter 17
Solutions

Exercises of Chapter 1

1.1 Sincey(f,upuj; = 3(ujf)uj =V (V*f) = (VV*)f, we obtain the matrix
form. Verify that (1.1) holds for a particular choice of,u,,us. If Ris a rotation,
then[Ru, Rw, R = RV, and(RV)(RV)* = RVV*)R* = 3RR = 3I. Thus (1.1)
holds forRu,, R, Rus.

1.2 (a) Suppose = (f,u)vi + (f,u)vp, Vf € R?. Since the RHS is linear if,
it suffices that this hold for the bas{si;,u>} i.e.,u; = v — %vz, Up = —%vl + Vo,
which leads tor; = 3(2uy + W), V2 = 3(uy + 2p).

(b) Yes. Sinceu; + up +uz = 0, the coefficients satisfy ; (f,u;) = 0. Hence if one
is changed, then this sum will no longer be zero.

(c) No. Two coefficients can be changed while presergingf,u;) = 0.

1.3 Equiangularity/equispacing.

(a) Verify these are a tight frame by using the matrix form géE 1.1.

(b), (c) Direct computation.

(d) Though equally spaced from each other, these vectorsdtilhup” the space

C?, e.g., ifw=(—1,0), then|lv; —w| = v/2+v2 > V/3,V]j.

1.4 Gabor and Wavelet systems. _ _
(@) Tatly T (X) = (MpT)(x— @) = TI0Xg=2MDaf (x _ g) = g 27ab s T £ (x).
(b) Since 73 % = Ja.p and. Aa My, = M4 p, Va, b, the selG is closed under mul-
tiplication and inversion, and so forms a group (generatedry set of generators
for the subgroup$.7a}aca and{.#,}vcp).
(c) Since?,; = 73, Tk = 7K, and
Tl = 241(2 k) = 24 1(2)(— ) = 7 A1,
2]
the group generated by, and .71 contains the translates of the diadic integers
{7k }j kez,» which are not contained in the sg¥y; Jk} j kez-
2l

471
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Exercises of Chapter 2

2.1 Polarisation identity* Expand, and usgy, f) = (f,g), to get
I +g = [If —gll>=2((f.9) +(g. )) = 2((F.9) + (f,0)) = 40(f.g).
If the inner product is complex, then this gives
|1 +ig||? - || f —ig|® = 40(f,ig) = 40(~i(f,g)) = 40(f,g).

2.2 Take the inner product of Parseval wighto obtain Plancherel. The reverse
implication follows by the uniqueness of the Riesz représtém and

(9= 5 S (L0)6,9= (3 (L0)g.  voer

J€ IE

Takingg = f in Plancherel gives the tight frame condition. Conversgilyen a tight
frame, the polarisation identity gives

1
a0(fg) =t +gl>=lIf—alP=5 S (Kf+g, P —[(f—g, )
A%( ] ! )

_ i%m«f, fj){fj,9)) :45(1

(£, 1) (1.9)),
AJ; A )
and4]<f,g>:4D(%zj€3<f,fj><fj,g>),whenffiscomplex.

RemarkThis result extends to countably (or even uncountably)iitefinght frames,
with the interchange of sums and inner products being jedtifly considering the
appropriate limits of partial sums.

2.3 Clearly,P = %VV* is self adjoint, i.e.P* = P. Since(f;) is a tight frame for
2,V is onto.#” and Parseval givegV*| , = Al ,, so that
1 1

1
P2 = (ZVV* ) (5VVH) =1y VV =P
(RQYVI)(ZVV) =L 1

2.4 (a) Given the uniqueness of the coefficients in the ortholgex@ansion

(f, fj> fj;

=2 1

by Parseval( fj)jes is a tight frame if and only if| f;||2 = (f;, fj) = A, V], and this
is normalised if and only iff fj|| = VA= 1,V]j.
(b) Taking f = f;/| f;|| in the normalised tight frame condition gives

Ve,

1 Areal or complex normed linear spag, || - ||) is an inner product space, with the inner product
given by the polarisation identity, if and only if it satisfieharallelogram identityi| f + g||% +
It —gl>=2]f]>+2|gl? Vi, geX.
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_ 2 _ _ 2

keJ
so we must havéf;|| < 1, with equality if and only if|(f;, f)| = 0, VK # j.
2.5 (a) Since unitary maps preserve norrMLd.* f|| = f||, and we obtain
A2 =AU f|?= z|u f,f;) z| f,Uf})% Vi
(b) Since(T f;) is a tight frame for the finite dimensional spag€, the mapT

is onto, and hence invertible. Using the normalised tigatfe property of T f;),
followed by that of( f;), we obtain

TH=S(ETHTHTH =S T Hf=T"F vicw,
J J

so thatT~1 = T*, andT is unitary.

2.6 Apply P to the tight frame expansion, and ukse- Pf, f € J#, to obtain

= P(2<f7fi>f1) =S (PT,{)Pfi =S (f,PF)Pf;, feur.
J ] ]
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2.7 (a)=-(b) Suppose tha® is a partial isometry. Clearly(\QQ*)* = QQ". Let
Q| = Qlrana+), andx € ker(Q*) = ran(Q)*, y € ran(Q). Then

(QQ")?(x+y) = QR QQ'Y = Q(Q*Q))Q"y = QQ'y,

so thatQQ"* is the orthogonal projection onto r@®).
(b)=—>(c) Suppose thaQ" is an orthogonal projection. Clearl®;Q is Hermitian.
Letx € ker(Q) andy = Q*z € ker(Q)* =ran(Q*). Then

(Q'Q?(x+y) = Q"QQ'QQ"z= Q" (QQ")*z= Q"QQ'z= Q"Qy,

so thatQ*Q is the orthogonal projection onto rg@").
(c)=(a) Suppose tha®*Q is an orthogonal projection, so the®*Q)* = Q*Q,
(Q*Q)? = Q*Q. Lety = Q*zc ker(Q)~ = ran(Q*). Then

1QyI? = (QQ"zQQ"2) = ((QQ")°z,2) = (QQ'22) = (Q"zQ"2) = |ly|%,

so thatQ is a partial isometry.

(a=(d) If Qis a partial isometry, then it can be factoi®d= UP, whereP is the
orthogonal projection ont¢kerQ)- andU : (kerQ)*- — Q(.s#) is unitary, so by
Exer. 2.5 and 2.6, it followQ® is a normalised tight frame (for its span).
(d)=(b) Supposep = (f;) andQ® = (Qf;) are normalised tight frames. We will
show thaQQ" is the orthogonal projection onto ré@). Fory € ran(Q)+ = ker(Q*),
we haveQQ'y = Q0 = 0, and so it suffices to shoQQ'y =y, Yy = Qf € ran(Q).
This follows by first expanding in the normalised tight fragggf;), and then in(f;)
(and using linearity):

y=Qf =35 (Qf,Qfj)Qf; = Q} (Q"Qf, f)) fj = QQ"Qf) = QQ'y.
] ]

2.8 (a) For a giveru of sizen, a random equal-norm tight frame f6f is given by
the matlab codel=randperm(n), J=J(1:d), V=U(J,:) .

(b) The Fourier matrid¥ is given the matlab cod&=fft(eye(n))/sqrt(n)

orw=exp(2 *pi *i/n), F=w."([0:n-1]’ * [0:n-1])/sqrt(n) . Sincew" =
1and 14+ w+ w?+ - -+ w"1 = 0 (for anyn—root of unityw # 1), we have

1 ; , 1 1
FF)k=SF)Fa==-Y w0 =2 (@) = Zddy.
k=2 P g2 PR
Similarly, (F2)jk = 3 ¥ ¢(w/**)* = 8}k 0, with the indices moah, and so
(F k= (FF?)jk = ZangOaeré,O = Ojk-

2.9 (a) Letz; := x; +iyj, sow; = Z}, and the frame operator is



17 Solutions 475

13z +7)7? %zj(zjzzqu [zwl...znﬂn]
S=VV' == v [EE - 2gE)
4113/(F-7% -3z -7 S

2 T
This is diagonal, with equal diagonal entries if and only if
sz_zszzo, ZZJZ+227220 = Sw= zzfzo,
] ] ] ] ] ]

in which cases= 3 3|zl

(b) Tight frames(f;) and (gj) for R? are projectively unitarily equivalent if and
only if gj = ca;U fj, ¥j, whereU is unitary,c > 0, aj = £1. Assume wlog that

U is rotation by®, so this becomew; = cé%ajz;, Vj, wherez; := Of; +i0fj,

w; :=0g; +ilg;, i.e., the diagram vectors satisfif = {7}, V|, { = c?e*®.

(c) Three unit vectors are a tight frame ¢ if and only if the sum of their diagram
vectors is zeroz{ + z% + z% = 0. By (b), we may assume that these diagram vectors
are the third roots of unity, sn, z,, z3 are distinct sixth roots of unity, none of which
is the negatives of another, and so the vectoi®arthey represent are projectively
equivalent to three equally spaced vectors.

(d) Four unit vectorgvj) are a tight frame if and only if the sum of their diagram
vectors(zjz) is zero inC, i.e., the Argand diagram of their sum is a parallelogram.
Suppose wlog that? = —7 = (izp)? andz = —z = (iz4)?. Thenz = +izp, 23 =
+iz4,1.€.,v1 L V2, v3 L V4, and sov;) is a union of two orthonormal bases fRP.

(e) By construction, the sum of the diagram vectors is zend, $0 they give a
tight frame (see Figure 17.1). Moreover, none contains #rooormal basis (these
correspond to diagram vectors which are negatives of eaen)ofhe inner product
between the first and last has modulus @ow/hich gives the projective unitary
inequivalence.

/ N\

Fig. 17.1: The diagram vectors, and their sum (above) for tie frames of Exer. 2.9.

2.10 (a) The diagram vectors of a unit-norm tight frame R can be ordered
zf =¢€%,0<6,<6, < <86, < 2m, so that so the Argand diagram for their sum
Zf +---+ 7 =0is a convexa—gon with unit length sides. This polygon has the same
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shape as that obtained fro(rw,zjj), wherec = +1 ando is a permutation of the in-
dices, and so, by Exer. 2.9 (b), depends only on the equisalelass. Conversely,
such a convex polygon is uniquely determined by the sequefritseexterior angles
Y1,...,n (taken in either angular direction), agfl:= €9, 6; : 31, j is a se-
quence of diagram vectors (since the exterior angles adatevRich correspond
to this polygon.

(b) Since the angle between vectors is half the angle bettine@ndiagram vectors,
two vectors are orthogonal to each other if and only if thel@bgtween their dia-
gram vectors igt, i.e., they are negatives of each other, and hence corrddpan
pair of parallel sides of the diagram vector polygon.

(c) Suppose wlog the angles wkequally spaced vectors a?réj, 1<j<n,sothe
angles of the diagram vectors a%@j, 1< j < n. Fornodd this is original angles
(reordered) sothe polygon the regubagon. Fom # 4 even this is two copies of the
anglesn/zk 1< k< 3, so that polygon a the regulgdegon of side length 2 (where
each ‘side’ is two collinear unit length edges). Foe 4 the polygon is degenerate,
a flat parallelogram.

(d) Yes. Suppose all vectors are nonzero (to avoid edges rof Ieegth) then,
as in (a), we can order the diagram vectoz% ,Z2, where Zj =rj g%, and
0<6;<6,<--- <6, < 2m As before, the correspondlng convex polygon (with
sides of Iengthzi ) depends only on the equivalence class.

2.11 (a)C(av+ pw) = av+ Pw = av+ W= aC(v) + BC(w).

(0) S(CF) =3 (f, fi) fj =3 (F, 1)) f; =C(So f), and(f}, fi) = (f}, fi)-

(c) With this definition ofv, we need only check that the operations of (2.18) hold:
VEW= (Vi +Wj) = (Vj +Wj) = (v + W) = (V}) + (W}) = V+W, etc.

2.12 (a) traceS) = tracgVV*) = tracgV*V) = 3 (fj, fj).

(b) SinceSis self adjoint,(||S|r)? = tracSS) = tracgS?), and we get

ace’) = traceV "V (V'V)") = [V VIE = 33 [(f;, 07
J

2.13 LetV = [fj]. By ParsevalVV* = | ,, soL = LVV*, and we have

tracgL) = tracgV*LV) = Ze (V*LV)ej = Ze (V*Lf)) = Z<ij7fj>.
]

2.14 Let(e) be an orthonormal basis.

(a) {%el, (%)Zel, (%)%1, ..}U{ey,...,eq} is a normalised tight frame fo#”.

(b) The trace formula (2.9) holds for infinite frames, siniog Plancherel)
tracgS) = 3 (S, &) = > () (& fj) fj,&) = (fi, &0 (e, fj) ) = > (fj, fj).
3 (3l ;(g j ) R

Thereforey ; || f |2 = dA < 0, and in particulaf| fj|| — 0.
(c) Since||fj|| — O for an infinite frame, it can not have equal (nonzero) norms.
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2.15If || fj|| = ¢, V], then the trace formula (2.9) gives

Z||fj\|2:nc2:dA — c= dT]A.
J

2.16 Since(f;) is equiangular, Exer. 2.15 givé§;, fj) = | f;||> = d—nA, Vj. Suppose
that|(fj, fx)| = ¢, V] # k, then the variational formula (2.10) gives

R L=

2.17 (a) By Theorem 2.1@ is a normalised tight frame fap# if and only if
the Hermitian matrix? = Gram(®) is an orthogonal projection of rark i.e., its
eigenvalues are 0 and 1, with exaatlypeing nonzero.

(b) If all eigenvalues o8y are 1, it is the identity, giving the Parseval identity.
(c),(d) The singular values &f andV* are precisely the (nonzero) eigenvalues of
the frame operatd®d=VV*, or, equivalently the Gramiah = V*V.

2.18 (a)=(b) SincevV* =1, (V*f,V*g) = (VV*f g) = (f,0), Vf,Q.

(b)=(c) Takef = g, so that||V*f||> = (V*f,V*f) = (f, f) = | f| Vf.
(©)=(a) Expand|V*f|* = ([|({f. fj))[|l2)* = 3 [{f, fj)[? = | f|]% V.

2.19 If there is such a unitary, then clearly(g;, g«) = (U fj,U fi) = (fj, fi), Vj, k.
Now suppos€g;, k) = (fj, fk), Vj,k holds. Assume, wlog, thdffy,..., fq} is a
basis fors7’, and define a linear map by

U:. 7 —.x, Ufj:=gj, 1<j<d

ThenU is unitary, since fohy = 3¢, aj fj, hy = 7, B fi
(Uhg,Uhp) = Zmﬁ(gj,gk) = gajﬁﬁj, fi) = (h1, ha).
B B
Fork>dand 1< j <d, we have
(Ufic— 0k, 9j) = (U, 9j) — (9. 9j) = (U fi, U fj) — (9. 9j)
= (fi, fj) — (9. 9j) =0,
which impliesU fi = gk since{ga,...,9q4} is a basis forz".

2.20 (a) @ = (fj)jes and¥ = (g)kek are unitarily equivalent up to reordering if
and only if there is a bijectiow : J — K for which @ and(gsj)jecj are unitarily
equivalent, i.e., by Corollary 2.1,

Gram(®) = Gran((goj)je3) = ([9Q)*[ak]Q = Q" Gram¥)Q,
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whereQ = Qq € F¥*J is the permutation matri := [eg;]jcy.

(b) They are projectively unitarily equivalent up to reaidg if and only if g5 =
ajU fj, vj, with o : J — K a bijection,|aj| = 1, Vj, andU unitary, i.e.,(aj fj)jes
and(goj)jes are unitarily equivalent, i.e., with := diag(aj);c; andQ as above

A Gram(@)A = ([fi]A)[f]A = ([0] Q)" [e]Q = Q" Gram(¥)Q.
(c) If these are projectively unitarily equivalent as abdhen
(9oj,9ok) = (ajU fj, U fi) = ajoi(fj, i) = [{doj, oK) = [(f}, fi)|-

The equiangular harmonic frames with the Gramians of (2ah#)(2.17), i.e.,
AR : g

3 373 o

12 = 2 — o7
[‘; E —]’ P 5 5|, wi=es

3

satisfy this condition, but are not projectively unitardguivalent.
Remark:Projective unitary equivalence is determined byrgroducts (seg8).

2.21 (a) By Exer. 2.20, normalised tight fram@sand¥ are projectively unitarily
equivalent (up to reordering) if and only if their Gramidfg andPy satisfy

NP =QPyQ <= A*(I—Pp)A =Q (1 —Py)Q,

i.e., the complementary normalised tight frames are ptioglg unitarily equivalent
(up to reordering).

(b) The complementary normalised tight frame of an equakantight frame of
n=d+ 1 vectors foi"® consists ofl 4 1 scalars with modulus/4/d + 1. Since all
such frames are projectively unitarily equivalent, theutellows by (a).

(c) We observe that up to a scalar multipte ) is given by

ajax(fj, fk) = (ajU fj, aU fi) = (95, 9)-
Takingai = 1, we have

(2,01 1+ (93,01) 1+ w?
a, = =" —w? az= = = w,
27 (f2, fa) -1 37 (fa, fa) -1

with U given byU (a; fj) = gj, and sdJ = [a1fy, a2t o1, 00 = 1.

2.22 Let{a,b,c} € C be the complementary normalised tight frame. Since unitary
maps preserve the Gramiam, we can assumectha, and since it is normalised
|aj? 4 |b|? + |c|? = 1, thus the complementary frame has frame operator

V =[ab,/1—[a]2—|b]?, |aj®+|b|* < 1.



17 Solutions 479

Thus all Gramians for normalised tight frames of three vesctor C2 are given by

1-1a)? —ab —a,/|aj2+ |b|?

| —V*V = —ba 1-|b2  —by/]a2+[b?|.

—ay/[a2+[b2 —by/[a]?+ b2 [al*+|bf?

2.23 Let P be the Gramian of a normalised tight frame. ThenP is the Gramian
of the complementary tight frame, and these frames areripigguivalent if and
only if their Gramians are equal (Corollary 2.1), ilr—=1—P. This impliesP = %I ,
which isnotan orthogonal projection matrix.

The projectively unitarily equivalent normalised tigharfnes of two vectors for
F given byV = [%, %b] andW = [%, —%b], |b| = 1, are complements of each
other. Further examples might be given by equiangular figithes of 2 vectors
for F¥ (a calculation excludes the cage- 2).

2.24 The complementary frame ¥ = [f;] is null(V)’

2.25 (a) In terms of the synthesis matik = [f]j_in € C9*n we seek a x n
matrix V with columns of equal (nonzero) length, s&yand rows of equal length
which are orthogonal. Fan > d = 1, we can také/ to be any Ix n matrix with
entries of unit-modulus. Suppose> d > 2, and writen=kd+d+r,0<r < d.
We seek & of the formV = d[V1, Vs, ..., Vi, W], where eachV; is a unitary matrix
(sayl). ThisV has the desired properties provided the (d + r) matrix W has
columns of length 1 (the same as thosé/gfand rows of equal length, i.e., there
exists an equal-norm tight frame @ r vectors inFY. Such a frame is given by an
orthonormal basis when= 0, or by the complement of an equal-norm tight frame
of d+r vectors inF", which we can construct by (strong) induction simce d.

(b) The followingmatlab code gives such a function

function V = ENTF(n,d)
if d==1, V=ones(1,n); end;
if n==d, V=d =*eye(d); end;
if d<n & n<2 =*d, V=sqgrt(n d) *null(ENTF(n,n-d))’; end;
if n>=2 *d & d>1, V=[d *eye(d) ENTF(n-d,d)]; end;

Hereeye(d) can be replaced by aryx d unitary matrix andones(1,n) any
1 x n matrix with unit-modulus entries .
(c) Now an example

[1 1 1] Corr:gll:?ement \/é_\/é 0 coﬂ?r?ms 20\/§—\/§ O
T — 1 1 021 1

-2 — -2

complement |93 _1 _1 2 coumnsy\, — 103003 -1 -1 2
— |oo V5 vBvB| 003005 V55

2.26 (a) Each of the mapg; : f — (f, f;) f; is a (bounded) positive operator since
(AT, f) =|(f,f;)|> >0, and hence so are the differenées- Fs, s <t (which are

take {3o—ﬁ\/§ 0] add rooso—\/é\/é o]
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finite sums of these). Clearlifyp = O andF, = | 4.
(b) We have the telescoping supj_; (Fj —Fj-1) = Fn —Fo = |, andQ; := Ej —
Ej-1 (which satisfie€Q; = Q;) is an orthogonal projection, since
(Ej—Ej-1)*=Ef —EjEj_1—Ej1Ej+Ef ; =Ej—Ej_.1-Ej_1+E.1=Qj.
Similarly, if j <k, thenQ;Q« = QQj = 0.
(c) Let.z” c 2 be the orthogonal complement of the kernel of the linear map
L —C": f = ((f, )]

Since f € ker(L)n.# = f = y;(f,fj)fj = 0, we haves# C .. Further,
ran(Qx) N ¢ # {0}, since otherwise, rd@y) L .5, so thatPQ, = 0, and

(fi, i) fc = (Fc— Fe-1) fk = PQcfk = 0,

which contradictsfy # 0. Thus we may choosg € ran(Q), with Pf £ 0, so that
Lf = LPf is a nonzero scalar multiple of the standard basis vegtéor C", and
hencel. maps ontdC". A dimension count gives difo?”) = rank(L) = n, and so we
may replace’ by 7 .

(d) Suppose thatfj) is a normalised tight frame fard, i.e., the rows oV =
[f1,..., fn] € F9" are orthonormal. Exterd by adding a furthen —d orthonormal
rows, to obtain a unitary matrid. The columns otJ are an orthonormal basis for
", and their orthogonal projection onto the fisstomponents givesf;).

2.27 SinceF := [fj] =U +1iV, U := [uj], V = [v;], the normalised tight frame
condition for(fj) is

FF*=U+IV)(U+iV)"=UU"+VV* +i(VU* -UV") =1,

i.e,,UU*+VV* =1, andVU* =UV*. The sequence ofeal vectors has synthesis
operatorS= [U,V], which satisfieSS =UU*+VV* =1, and so is a tight frame.

2.28 Let (fj) be a normalised tight frame fdk9. Write f € C as f = u+iv,
u,ve RY. Then

S HE A= 3 Kuiv 112 = 3 (I T2+ 1w £)2) = ul2-+ Vi = 1) £
J J J

2.29 (a) LetV = [f;], W = [gk]. As in Exer. 2.13, we calculate

tracgM*L) = trac§M*LVV™) = tracg (MV)*LV) = 5 ;(Lfj,Mfj),
tracgM*L) = trac§ M*"WW'L) = tracg (L*"W)"M*W) = 3, (M* gk, L* k).

(b) LetL € Z(s2,.%). We verify the Parseval identity far(applied tof). Observe

(L, gk f[)ns = trace (o f)"L) = trace(fgiL) = tracggiL fj) = (Lfj,00),
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and so, by linearity, we have

Z<Lagkfj*>HS(gkfj*)f Z(prgk a(f, fj) =S (f, (Z ij,gk>9k)

Js Js J

= S (L ALf =L( S (f.f)f)=LF.
J J

2.30 (a)VV* =1 givesVx=V(V*f) = f, WAV =W(W*LV)V* = L.

(b) We havelalL + BM] =W*(aL + BM)V = aW*LV + BW*MV = a|L] + B[M],

and[L*] = V*L*'W = (W*LV)* = [L]*.

(c) Suppose that : 7 — £, (hy)seL is @ normalised tight frame fo, and let
= [hy]geL- Then[ML] = X*LMV = (X*MW)(W*LV) = [M][L].

(d) Withx = [f], part () givedx= [L][f] =[Lf]andAx=A[f] = [A f]. But f — [f]

is 1-1, so thaBx= Axifand only if Lf = A f.

(e) The singular values & are the positive square roots of the nonzero eigenvalues

of A*A = (W*LV)*"W*LV = V*L*"WWF*LV = V*L*LV, with the eigenspaces giving

the corresponding singular vectors.xlis an eigenvector ofA*A for A # 0, then

f =Vx+#£ 0, and we may apply (d).
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Exercises of Chapter 3

3.1 Letgj denotef — (f,g;), sothatA; = figj.
(a) trac€A;) :trace{f,—g’j“) :trace{g]‘f,-) = (fj,9)).

H * * . fa j
(b) SinceA?f = (g f;)g; f = (},gj) AT, takec = (},gy), P: f — (9L f;.
(c) SinceA] = g; f}, we haveP* f = <<Jj”ffjj>>gj, soP =P*ifand only if (f,g;)fj =
(f,fj)g;, VT, i.e., fj andg; are scalar multiples of each other.
(d) traceAjAy) = trace fj(gjak) fy) = (gk, 9j) trace fi ) = (9. 9j) (fj, fio)-
3.2 Least squares solution.
(@V(Aa+(1—-A)b)=AVa+(1-A)Vb=AT+(1-A)f = 1.
(b)V(V*SIf) =VV*H(VV*)1f = f.
(c) SinceV*S~1f is a solution,e” =V*S~1f +ker(V). Since raV*) is orthogonal
to ker(V), for anya=V*S 1f +b e o7, b € ker(V), Pythagorus gives

Y leil? = llell® = IV |2+ |Ib]|?,
J

so the unique solution of minimé,—norm is obtained by choosifg= 0.
3.3 (a) WithAT := A" (AA*) "1, we haveAAT = AA*(AA") L =1, ATA= A" (AA*) 1A
are Hermitian, andATA = IA = A, ATAAT = AT| = AT,
(b) With P" := P, PP = PP = P is Hermitian,PP'P = P, PTPP" = PT.
(c) LetA = Gram @) = V*V, andA" := Gram @) = (SIV)*(S V) = V*S 2V,
S=VV*. We verify A" is the pseudoinverse 8f AAT =V*VV*S 2y =V*S v
andATA =V*S-2vV*V =V*S-1V are Hermitian, and
AATA = (AANA = (V*'SW)IV*V =V*V = A
ATAAT = (VST VIVIS 2V =VviS 2y = AT,
(d) The synthesis operator gf¢@"is S‘%V, S=VV*, so by (a) and (c), we have
Gram( @%@ = (S"2V)*S 2V = V*S IV = v* (VV*) "IV = VTV
=V*'S WV =V*V(V*S2) = Gram{ ®) Gram @) .
3.4 ExpandingT f in the normalised tight framef;) gives

F=T 4 TH =TT H =S (LT )T ).
J J

ReplaceT* by T~ to obtain the other equality. L&t = [f;]. Then frame operator
of (T*f;) isT*V(T*V)* =T*(VV*)T =T*T, and so the dual frame is

(TT) 1778 =T
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3.5 Sincey | |(g,Qf})|> = 3;[(Q"g, fj)|* < B[ Q*gll* < Bo||Q||?gl|% we have

Bo < Bo||Q||%. Similarly, 3;[(g,Qf;)|? > As||Q"gl|. If g € spar¥, theng = Qf.
ButQ=QQ'Q=(QQ"*Q=(Q")*Q*Q, and so we obtaifjg|| = [(Q")*Q*Qf| < [[(Q")*[|Q" gl
Thusy; [(9,Qfj)[? > A Q"] 7?(Igl%, giving Ay > As QT 2.

3.6 (a=(b) z?:1 m’:“‘g'z > A, gives the lower frame bound. For the upper bound:
ST lCE )P < S 1P f12 = BII ]2 Bi= 35_g || ] < oo.
(b)=-(e}x=(f) V* is 1-1 if and only if its kernel is zero. The lower frame bound
gives:[V*f||2 =3 [(f, ;)| > Al|f||2>0,Vf £0,ie., kefV*) =0.
(c)<=(d)<==(e) (fj) spanssZ if and only ifV is onto iff V* is 1-1.
[(F,f5)
2

. . 2 . .
(f)==(a) Since inf_o 2T=1Hf7\1\‘ = infjg =1 /{9, fj)|2, and{g: ||g|| = 1} is com-

pact (#7 is finite dimensional), the infimum is attained, and so is Bo0Z

3.7 SinceSis positive definite, it is unitarily diagonalisable= UAU*, where
U =[uy,...,ug] andA = diag(Ay,...,Aq), with Aj > 0, so that

(ST.f) = (UAU™F, ) = (AU U ) = 5 Ay |(f,up) %
]
Let Amin = MiNAj andAmax = maxA;. Then we have
Aminl[ F117 = Amin 3 [(F,)? < (S, ) < Amax Y [(F,u7)> = Amax] 117,
] ]
with equality if (and only if)f is an eigenvector fokmin, Amax, respectively.

3.8 Let f = fj in the frame bound inequality
A2 < [IFi1I*+ ; [(fj, fi > < BJ fj 1%
KZ]
(a) Immediate.

(b) Equality in (a) if and only ify . [(fj, fk) 2=0,i.e.,fj L fi, V] #k
(c) Since| fj||? < Agives||fj||* < Al fj||2, we must have

;|<f,—,fk>|2>0 = fjisnotorthogonal to spp; fx —
KZ]

3.9 Let S=VV*. The commutativity relations of Exer. 3.11 give

Nl

[fil=S WV =VGram®)",  [ff =52V =V(Gram(®)")2.

Expanding gives
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[fj] = SV = (U1ZU3U,27U7) IV = Uy (25%)71U; (U1 2U3)
= U diag(1/0?,...)diag(a1,...)Us = Ui diag(1/0y,...)Us,

[0 = §72V = (U (£5%)U7) 2 (U12U3)

= Uy diag(1/0y,...)diag(oy,...)2U; = Urdiag(1,...)U;.

3.10 Let S= Sp = VV*, whereV = [fj]jcy, SO thatSz = S, and we have
@[ = (1) 72S v = 573V = [,

(b) Go = Gram @) = V*V, Gz = Gram(®) = (S V)*S IV = V*S 2V, and
Geean = Gram( @7 = (S™2V)*S~2V = V*S~V, so we obtain

GoGg =V VV'S AV =V*'S WV = Gpean=V*SVV*V = G5Go.

(c) Usef} = Syt fj andSyt = Sg.

3.11 (a) ObservesV = (VV*)V =V (V*V) =V G, and use induction.
(b) By (a),p(S)V =V p(G) for all polynomialsp. Now use Weierstrass density.
(c) Similarly, approximate\" via the Tikhonov regularisatiofiormula

Al = lim (A*A+51) A" = clsimOA*(AA*JrcSI)‘l. (17.1)
—

3—0
3.12 P:=VW* =WV* = P*, andP| » = |, givesP? = | | ,» (VW*) = P.
3.13 Let She the frame operator ¢ff;). SinceS! is a positive definite operator,
(fj, fi) = (£, S715) = (S 21}, S 2£;) = (fean foan — | fean|2 > 0. Since( f%2")
is a normalised tight frame, it satifies (2.9), i.§; fj‘:a‘”||2 =d.
3.14 Let T be the frame operator fdif;), i.e., T = § . The assertions amount to
the claimT 1 = S| . Now ran(S") = ran(S") = ran(S) = .#, so fory = Sxe .7/,
we have(TS'| » )y =SSSx=Sx=vy, i.e., TS|, = ,. Also see Corollary 3.5.
3.15 The (], k)—entry of Grani®) is (fi, fj) = vjvk = (W, Vj) (so the columns of
give a copy of®). Now apply Exer. 3.14 witV = L.

3.16 LetS=VV*.

(a) W is a frame since its synthesis opera@ is onto.77. .

(b) §j = (QVV'Q") 1Qf; = (@) 'S 'Q'Qfj = (@) 's M = (Q") *fj.

(c) gj*"= (QVV*Q*)*%QfJ- = (QSQ)*%Q§1 (§% fj) = U £/, where the matrix
U= (QSQ*)‘%Q&1 is unitary, sinc&JU* = (QSQ)‘%Q&ls%Q*(QSQ*)—% =1.
(d) LetQ = cU, then(QSQ) 2QSE = (AUSU*)~2cUSE = US 2U*USE = U,
with USZU* = (USU*)? following from USIU* = (USU*)J, j = 1,2,... and the
Weierstrass density theorem.

3.17 DefineW € F9<" by W = U;WU;. Then

WW* = UfWWLU; WU = U (WW)Up = AUU; = Al
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so that

min ||V -W|e = min |UiZU; —UWUS e = min |2 —W|E.
weFdxn A0 WeFdxn a0 WeFdxn a>0
WW=Al W+ =Al VA=Al

Let 5 = diag(01, 02, ...) andW = [wj]. Then
|Z —W/||F = trac (> —W)(Z —W)*) = tracg = 5* —\WZ* — SW * +WW)

= tracgVV* —W3* — SW* +Al)

= tracgVV*) + dA— tracdW* + SW*),
where §

tracgW=" +IW") =2y oj0(W)).
=1

The conditiolWW* = Al, says thatVV has orthogonal rows of lengtifA, so the
unique choice maximisingl (Wj; ) is Wjj = VA, Wjx = 0, j # k. Thus||V —W/||g is

minimised, when

dA-25 0jVA= 5 (A—-20;VA)
] ]
is maximised, which occurs wheriA = § 5 ; 0j. Thus, withA defined as above, the
unigue minimisekV is given by
W = U3 [VAILQU; = VAU;.

This gives Corollary 3.3, since the singular valugsof V are the square roots of
the eigenvalueg; of the frame operatd8 = VV*, and the canonical tight frame for
V = [f;] is given by (3.7).

3.18 It suffices to show thatly;(fj,0j) < Y, Yk, v/ Akyv/Fie|(Ukys Vi) |- BY
Cauchy—Schwarz,

( | flvukl ) (Z| szvgl )%
\/<S‘I’uk1’uk1>\/<s4’vk2’vkz> = \/)‘TQ\/I'TQ’

Z\ i, Uiy ) (Vo 93|

which gives

DZ flvgj < ‘z vagJ ‘ ’2;; fl’ukl ukl’vk2><vk2’gl>’
1

2

]
SZZ Uk17Vk2>|Z| fj, U ) (Viep» 9j) |
Z; uk17V|<2 \/rkl\/lTkz
2
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3.19 (a) Lete= (1,...,1). It is easy to check thatle= (na— a+ 1)e, and so
e is an eigenvector fona—a+1.If vl e ie,(ve)=vi+---+vy=0, then
(Mv); =avi +---+avy —avj +V; = (1-a)vj, so thatvis an eigenvector for & a.
(b) The matrixM is positive semidefinite if and only if its eigenvalues aremeg-
ative:na—a+1,1—a>0,ie., n%ll < a< 1. Its rank is the number of nonzero
eigenvalues which is either A& 1),n—1 (a= n%ll), or n (otherwise).

(c) If rankM) =n—1, thena= n%ll and soM is the Gramian of the=d+ 1
vertices of a simplex iiRY, see (2.14).

(d) If rank(M) = n, thenM is invertible, and so the Gramian ¢;) isM" = M1,
Let B be then x n matrix with diagonal entrieb, and off diagonal entries Then

b+ (n—1)ac, j =k;
(MB) j = (-4 ]-
c+ab+(n—2)ac, j#k

It is easy to check tha¥iB= 1, i.e.,B = Gram((V;)), when

b na—2a+1 o —a
~ (1-a)(na—a+1)’ ~ (1-a)(na—a+1)’

Thus(Vj) is (a scalar multiple) of an isogonal configuration of vestor

3.20 Recall a framep is real if and only if Grani®) has real entries.

(a) Use (3.4), and observe that the Tikhonov regularisgtbomula (17.1) implies
the pseudoinverse of a matrix is real if and only the matsglitis.

(b) Use (3.9), i.e., Graf®ca") = Gram( @) Gram ®).

(c) No. Suppose thap is a basis for which the Gramian has complex entry (easily
constructed), the®®@is an orthonormal basis, which is real.

3.21 LetV = [fj]. The dual frame ofPfj) and(Pg;) are equal if and only their
synthesis operators are, i.€PV(PV)*) 1PV = P(V*)~1, which gives

(@)PV(V*) = (PVV*P)P < PS= PSP

(b) Taking the adjoint of (a) giveSP= (PS* = (PSP* = PSP

(c) By (a) and (b), we haveS= SP, and conversely, given this, we may obtain (a)
and (b) by right and left multiplication by. Thus (a),(b),(c) are equivalent.

(d) Since rafP) = 7, (d) follows from any of (a),(b),(c). Conversely, supposatt
S C . ThenSPfe 57, so thatSP f= PSP Vf, which is (b).

3.22 LetL =U>V* be a singular value decomposition, where the diagonaleantri
of Z areoy,...,0m, andV = [vi,..., V. SinceU is unitary, we have

1

m

* * 2

I = U2V X = 12V = (07 (Vi) Tall = (3 afIxvi)I?) "
=

Hence (sinc is unitary), we obtain
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m )
I <M 10v)2)* = MIVX| = M|, M= maxoj,
=1

with equality if and only if(x,v;) = O for every singular value; less than the
maximum, i.e.xis right—singular vector for the maximum singular valuenttarly,
since(kerL)* is the orthogonal direct sum of the right—singular vectdrspaces for
the nonzero singular values, for a nonzero (kerlL )

m 1
Lx >m( X, Vi 2)E:mv*x = m|x m:= min g;
L[| > J;K, i)l V]| = ml|x]|, iR i

with equality if and only if(x, v;) = O for every singular valuej greater tham, the
minimum nonzero singular value, i.&.is right—singular vector fom.

3.23 Since the norm is unitarily invariant, it suffices to consitle first inequality.
LetmandM be the smallest and largest singular valuek,afo, by Exer. 3.22,

mix) < L) < M, v
Then]|(L— U)X > [IILx] — U] = [I1Lx] — ]| so that
Lx
L-u>ma I maxm-—-1.m -1y = JL 1),

3.24 (a) If L: 2 — ¢ is a linear map between finite—dimensional Hilbert spaces,
with singular valuesr; > 0> > --- > o, then there are the sharp inequalities

(minoy) x| < L] < (maxay) ], vikert)* = ran(L).
gj J

(see Exer. 3.22 for details). Suppose Wat U1 ZU; is a singular value decomposi-
tion of V, whereX = [diag(v/A1,. .., /Ad) 0] andAy,...,Aq > O are the eigenval-
ues ofS=VV*. The inequalities (and their sharpness) then follow byrigkito be
V,V*, S=VV* andG = Gram(®) = V*V, and observing that these have singular
value decompositions

V =UiSU;, V*=UyS*U;, S=UiS3*U;, G=U,S*5U;.
The equivalence of these inequalities with the frame bofwlttsvs from Exer. 3.7.
3.25 LetV =U;2U; be a singular value decomposition\ot= [fj]. Then
Sp =VV* =U13UUpZ*U; = U 5*U5,

which is a unitary diagonalisation &. Let A := 25" =diagA4,...,Aq). Since
Sp = S~ = (U1AU]) "t =UiA~1U;, we have
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laSe +BSs + V1| = [aUiAU;S + BUIA U7 + yUsUs ||
= |aA +BA T+ yl|| (Uqis unitary)
_ . -1 B
= 12'%|a)\] +BA; +y| (|| is the spectral norm)

We have Grarf@) = U,>*5U5, Gram( @) = (Up2*3U3)" = U(2*2) U3, and

Gram( @%@ = Gram(®) Gram @) = U,>* 5 (2*2)U;.

Since has the block fornk = [A1/2 0], =* 5 = diagA, 0), (£*2)T = diag A ~1,0),
and we obtain

| Gram(®) + B Gram( @) + yGram( @) |

= vafa (M o) +8 (" o) (' o) us
—lla (A 0) +B (Al 0) +y<' O)H —llaA+BA 4y

3.26 Since the functiold — A — Al A >0, isincreasing, and changes sigid at 1,
the maximum is eithek — A whereA < 1, and we need to prove

%—AZ B;\/'ﬁ': — (VAB-1)(VAB+A?) <0,

oritisB— %, whereB > 1, and we need to prove

B—éz% (VAB- 1)(vAB+B?) > 0.

The first clearly holds foB < 1, and the second féx > 1 (with equality iff AB=1).
It therefore suffices to consider the cdse 1, B > 1. Here either

1 1 1 1 1
Z_A=>-_">B-= < A<- < +JAB<1
A A 1/A=" B - B -
1 1 1 1 1
A= - <B-Z «— <A «<— +VAB>1
A A 1/A-" B B~ -
and again the corresponding inequality holds via
1 1 1 1 1 1 B—A
A>T Z>(2-Z)VAB B—->B-A>_——
A TTA B—<A B) ’ B~ ~ VAB’

(with equality iff AB= 1).
Alternatively, suppose that the inequality is false, i.e.,
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1 1, B-A
P
‘ A Bl VAB

then one obtains the contradiction

( 1)2 ( l)2<2(B—A)2 — (A? +B?)(AB—1)?

A— = B—=
Al T B AB AZB?

3.27 (a) Consider the first minimisation. Assumg 0. From

<O0.

B—A 2
tB— 12— \tA—1|2—t—(t——),

A+B A+B
we conclude that
tB—1]> A1), Wt>—2—, [tB—1<|tA—1, Wt<—>—
- ’ ~ A+B’ - ’ A+B’
Hence
B—A
m|n max{|tA—1|,tB—1|} = mm [tB— 1|_ m|n (tB—1) = ATE’
t> %5 t> 225 >x2g +
min max{[tA—1|,[tB— 1|} = min [tA—1| = min (1-tA) = B-A
< 2 A+ B’

t<a’g t<a’g t<afs

each of which is attained if and onlyti= A+B, which gives the first minimum. For
the second one, observe that(% < % and apply the first to obtain

_B-A
~ A+B’

[=(>l=
W@l

minmax
t>0 {ltA

[~

171‘}:

ats

which is attained if and only if = Tzl ie.,t=5E2

(b) Since[A,B] = R: A~ [c?A —1| and[§, ] = R: A1 |$A "1 —1] attain
their maxima at an endpoint, from (3.31) and (3.32) we obtam

dist(c®, @) = max{|c*’A— 1|, |c*B— 1|},

1
A ‘ ‘czB 1’}'

By part (a), witht = /c, the minima of these distances ower 0 is E+§, and this

is attained as claimed.

(c) The four quantities in the min—max are continuous furdioft, which are
monotone at every point except the value efhich makes them zero. Hence, for
the minima to occur two of these functions must equal the mari (if not, then

the one nonzero value equal to the maximum could be reduggtlg! so as to
reduce the maximum of all four values). Thus it suffices tosoder only the values

dlst( @, o) = max{‘
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of t which make (at least) two of these functions equal, and thenoon valueM (a
potential min—max). Calculations (or a sketch) shows th@mumM is given by

, M:\/E—l (att:\/%_%).

(d) By the formulas in (b) above, we have

1
tB—1 :‘——1
| | A

max{ dist(c®, CDC""”),diSt(% @, %N}
1
c?A

1

— max{|c?A—1],|c?B— 1], 1 02—8—1’}.

b

By part (c), witht = ¢, the minimum of this ovec > 0 is \/g— 1, and this is
attained precisely whet? = ﬁ.
(e) We observe that Grael) ©°2") = ¢? Gram(®°@"), and the eigenvalues &

satisfyB= % = A1 > A2--- > Aq = A, so Exer. 3.25 gives
dist(®,cU @%@ = ||Sp —cl|| = || Gram( @) — ¢ Gram( @) |

1 e,

2|: A

= max|Aj — ¢%| = max{|A—c?|,
j

dist(®,cU @) = max|A; * — c?| = max{|A— ¢, %—cz'}.
i

By the reasoning of (c), the minimum occurs when

AZ 11
A

1
A—c? :‘7— 2‘ 2=
|A—c A c —
3.28 Sinced < 1, we may assume th8t> 1. Suppose that
1 1 A—1] [B—1]
max{ (A1, [B- 1} = max{| 3 - 1| |5 - 1]} =max{ ==, =5~}

Consider cases. |[A—1| > |B—1|, thenA < 1, which gives

A=Y

A-1|=
-1 ="

A=1B=1

If |JA—1| < |B—1], then there are two possibilities

B-1

B-1 =
B-1f=

— B=1A=1,

A-1|

B-1| =
B-1y= "

IAB—A|=|A—1 = ABe{1,2A—1}.
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WhenAB= 2A -1, we have

2A—1
A<B=—— = (A—1)?2=A2-2A+1<0 =— A=1B=1,

and scAB= 1 in all cases.

3.29 Recall, from (3.13), that rg'*) = ran(Gram(®°@")).

(@=(c)W = QV gives ratW*) = ran((QV)*) = ran(V*Q*) C ran(V*).

(c)=>(a) Suppose that rgw*) C ran\V*). Let Q = WV'. SinceV' maps rarv)
onto ketV)' =ran(V*), we can decomposeasx =V Ta+b, b e ker(V) C ker(W).
ThenQVx=W(VVVhHa+WViVb=WV'a+0=Wx V¥ so thalQe = ¢.
(b)<=(c) The Gramians are orthogonal projections (determinethbiy ranges),
and so their produd®Q equalsQ if and only if ran(Q) C ran(P).

(c)= (d) W* is 1-1 and rafW*) C ran\V*) = ker(V)=, so thatv W* is 1-1.
(d)<== (e) Immediate, sinc¥ W*'g= 3 ;(g,9j) f;.

3.30 LetV = [f;], W = [g;]. Then the closeness condition is
[(W=V)c[ <AVc|, Ve

(@) If Vc= 0, then this impliefW —V)c =0, and soNc= (W —-V)c+Vc=0.
Thus kefV) C ker(W), and Exer. 3.29 give¥/ = Q®.
(b) In view of (a),W = QV and the closeness condition is equivalent to

[(Q-1\Vc| <A|Vd|, VcekerV): =ranV*).

Since® is a frame S=VV* is onto, and s& c above can be an arbitrary element
of 2. Thus the closeness condition is equivalenitbeing an upper bound for
Q—1][,and c[¥, ®) = [Q—1].

(c) Since||Vc|| = [|[(V —W)c+Wd| < ||[(V —W)c|| + |[Wd|, we have

W Vel <ALV ~Wel +Wel) = [V ~Wye] < 72 Wl

i.e., @ is close to¥, with cl(®,¥) < ;.

3.31 (a) We have[M][[|SX| = [[MSX| > [|x][ — [[(I = MS)X]| > (1 —[|I = MS||)|x]],
ie.,
9% > . e
(b) [|F(91) — F(g2)l| = I =MS)(g1—g2)|| < [l —=MS||l —MS].
(c) By (a),MSis bounded belowjiMSX| > (1— ||| —MS|)||x||, and so
_ 1

3.32 (a) The eigenvalues @= Sy satisfyA < Aj < B, so that



492 17 Solutions

| -——S -
I A+B = A<A<B A—l—B
The maximum ofA — |1 A+B] above occurs at the endpoints, and so it is
B—A
max{|1— —— =—
{l A+BH A+B‘} A+B’

(b) The error in the fixed point iteratiogh.1 := F(gn) for a Banach contractioR
with constank and fixed poing can be estimated by either of

lon—all <«"lg—goll.  llgn—gll < 9oll-
Using the estimate = ||| — A+BS|| <B A+B < 1, from the second we obtain
B—A
(%8)" _ Il (B-A
lon—al < 1255 sl =R (ag)"

RemarkThe choicen = Sf, i.e.,g = f, gives theframe algorithm(3.37), for which
the first estimate gives
B—A
—f|| <
o= FI<IFI(55)

3.33 Let S=UAU* be a unitary diagonalisation & andf (x) := x~2,x> 0. Since

g = (CDI@IE 2y
f(x) = 2211 Xz,

the Taylor series expansion éfaboutc = 252 is

1
2 =

<A;B> - ArBy

5
VA+B 221 (1_AiBX)j’

which (by the ratio test) is absolutely convergent for @ < A+ B. By Exer. 3.32,

—=8< Bl

1——A’:‘1——
A+B A+B ‘ A+B A1 B

and so the series f@ 7 is absolutely convergent. Its partial sums satisfy

A-ZHBJ 2512(11')!!)2 ('_AiBS>J:U{ A—2|—BJ 22(12(Jj)!!)2<|_A—2|—BA>J}U*'
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Since the eigenvalues &f(diagonal entries ofi) satisfy 0< A< A; <B < A+B,
the partial sums in th¢ } converge toA 3 (by considering entries), and so the
series converges ® 7 =UA-3U*"

3.34 LetV = [fj], and use equivalence (f) of Proposition 3.4. We calculate

L1111 1
|—Pp=l-V'slv==(111)=w' vi=—(111),
3\111 \@( :

Thus all possible Z 3 matriced (I — Py) are determined by=Lv, i.e.,

L(I —=Pp) = L(W') = (Lv)v' = zV' = \jg[z,z,z],

and so all possible duals are given\Wy= [f1 +w, f2+w, fa+w], w= %z € R2.
(b) LetW = [g;]. Then(g;) is a pseudo—dual if and only if
(2/V/3) detVW*) = W11Wop — Wa1Wio -+ Wi3(Wa1 — Wa2) + Wag(Wiz — Wi1) # O.

The left hand side above is zeraif = g, i.e.,w11 = Wi2 andwy; = Wypp, otherwise
the coefficient ofw3 or of w3 is nonzero, andjs = (wi3,We3) can be chosen to
make the left hand side nonzero.

3.35 (a) This follows immediately fromVV* = (W Q1) (VQ)*.
(b) The synthesis operator of the canonical dual of the frgiven byV Q" is

U=(VQQVv)vg.
By (3.40), this dual frame uniquely minimisdl§/|| over all dual frames t& Q*.

Thus, by ()W = UQ = (VQ*QV*)"VQ*Q s the unique dual frame @b which
minimises|W(jq = [WQ Y| = |U|.

3.36 () To((f, f})) = ((f, f;)) — ((f, f; — f;)) apply the triangle inequality

(S100R) < (S 0R) + (16— )
J J J

and the reverse triangle inequality

1
2

< VB|f|+VRIfl.

NI

VA - VR < (316 62)E - (S 1086 - fP) < (3168 )
] ]

J

Thus(vVA—v/R)2 and(vB+ v/R)? are lower and upper frame bounds {dy)._

(b) LetV = [fj], W = [f;j]. Then the synthesis operator of the canonical dug s
U = (WW)~lw, and sglUV* — | = [[UV* —UW*|| < |JU]|V* —W*||. Now
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1
IV =W = sup (v — W) :H?ﬁ‘%@“"‘ fi.07) <vR
= J

[Ifll=1
Similarly, [[U|| = [[U*|| is bounded by the square root of an upper frame bound for
the canonical dual ofp (see Exer. 3.24), which by (a) is 1/(vVA— v/R). Thus
|UV* — 1] < 1, so that the canonical dual df and ® are approximate duals, if

VR/(VA—V/R) < 1, which holds if and only iR < %.
3.37 (a) LetV andW = cV be the synthesis operators@fandc®. Then

[WV* —1| = ||cVV* —1|| = max|cAj — 1| = max{|cA—1]|,|cB—1]}
j

(see Exer 3.27 for details). We consider cases:0 gives|cB—1|=1—-cB>1,
0O<c< 2 g gives—-1<cA-1<cB-1<1, andc> 2 g givescB—1> 1. The

mlnlmum occurs wheftA—1| = |cB-1],i.e.,.c= AiB

3.38 By replacings# by ¥ + #, we may assume without loss of generality that
A is finite dimensional. Let; = dim(¥), d, = dim(#) andn = dim(27).

(a) Suppose that N7+ = » N¥+ =0. Then the algebraic direct sumsp, # -
and# @, 7+ are subspace#’, and so their dimensions satisfy

d1+(n—d2)§n, d2+(n—d1)§n = di=do.

Thus a dimension count gives (ii). Conversely, if (ii) hqlten (i) is immediate.
(b) The first part was proved in (). L= P*,P=P, ., andwe #/, vt € 7.
Then (Qv-,2 = (vF,P2 =0, Vze# — Qv =0,

(Qzwh) = (zPwh) = (200 =0, W' e#t — Qze(¥hH)l=w.
SinceP andQ have the same rank, we conclude tf¥y, is a bijection?” — #'.
SinceP? = P impliesQ* = Q, we conclude tha®|, = 1. ThusQ="P,, , ..

3.39 LetV = [fj] andW be the synthesis operator of a finite frame %t Then
[9j] =W(V*W)T, and so the canonical oblique dual(gf) has synthesis operator

U =V(WNVWHYWT=v(wv)Twv)T =vwv)iwy.,

We observe that kéW*) = 7'+, so thatW* is 1-1 on rafV) (since# - N7 =0),
and ketW*V) = ker(V). Now right multiplication of the above bgw*V)", using
ATAAT = AT, givesU (W*V)T =V (W*V)T. Thus it suffices to show that =V on

(ran(W*V) ")+ = ker(V*W)T) = kerW*V) = ker(V),

which follows immediately from the formula fas (which has right factor o¥).

3.40 (@) ATAA" = AT givesP? =V (AV)TAV(AV)TA =V(AV)TA =P.
(b) AATA = A givesAPV = AV (AV)TAV = AV, i.e , A(P) = A(F), V€ 7.
(c) By (b), APV = AV so that rankP) > rankAV), while P =V (AV)'V gives
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rank(P) < rank((AV)") = rankAV), so rankP) = rankAV).

d) If dim(Z|y) = dim(A]y) > dim(¥), then Al is 1-1, so thatAV maps
ker(V)* bijectively ontoA 7, hencgAV )T mapsA ¥ onto kefV)*, and sc® maps
onto¥ =V (ker(V)1).

(e) If dim(.¥) < dim(.Z]y ), then rafAA) =ran(A |y ), so forx € X there isve ¥
with Ax = Av, which givesAP(x—V) = AV (AV)TA(x— V) = 0= A(x— V), while
(b) givesAPv= Av. Adding these gived\Px=AP{(x—V) +Vv} = Ax.

(0 If Ak(f) = (f,0¢), thenA = W*, whereW = [gy], sOP =V (W*V)TW*,

3.41 If @ = (fj) is a basis an® = [f], then the orthonormal basis given by the

canonical tight frame has synthesis operzﬁo%v = VG‘%, whereG = Gram( @)
(see Exer. 3.11). For the Legendre weight 1 on[—1, 1], applying Gram—Schmidt
and then bwdin orthogonalisation to the first four normalised monaigives fol-
lowing sequences of polynomials As one would expect, fwdin orthogonalisa-

Fig. 17.2: Gram—Schmidt andkwdin orthogonalisation of the first five monomials

tion, different sequences of polynomials of degrek Q ., n give different orthonor-
mal bases (in contrast to Gram-Schmidt). Starting instatdthe Bernstein basis,
one obtains

Notice that here, Gram—Schmidt does not preserve the syrniesmef the Bern-
stein basis, whilst bwdin does. These latter polynomials presumably maintadug
conditioning and have the advantage of being orthogonal.

They also seem to maintain the partition of unity property
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o~

J/\NM\N
Avupae

Fig. 17.3: Gram—Schmidt andkwdin orthogonalisation of the Bernstein basis
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Exercises of Chapter 4

4.1 (a}=(b)<=(c) Sincef € X is determined byA (f)),cx,

VA=Ix <= f=Ixf=VAf=5A(f)f, Vi
= A =3 MDA = (5 AFAN(E), VfeX, vA
<~ )‘ZZj)‘(fj))‘jv VA.

(a)<=(d)<=(e)<=(f) SinceV is ontoX, we can multiply and cancel by on the
right, and since\ is 1-1, we can multiply and cancel Byon the left. Thus

VA=Ilx <= G>=ANNANV=A(Ix)V=G (multiply by A andV)
<~ V=V(AV)=VG (cancelN)
— A=(AV)A =GA (multiply by A, canceV).

4.2 Sincec®(f) = (f,51fj) = (S 21,52 f;), where(S 2 f)) is the canonical
tight frame, we compute

(.00 = ((S 21,5 72)),((S 2g,S 1))
=3 (S 21,5 21))(S2f;,S 2g)= (S 21,5 2g)  (Plancherel)
]

4.3 By Proposition 4.9 = & if and only if ; = Y, = v. In this case, writ€; = &

asfy, to obtain
X= ZEJ L,UJ = 2 I'T\va

veo

Since the barycentric coordinates f8rare unique, we have that, f, = ¢y,
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Exercises of Chapter 5

5.1 Suppose thaf;) is a disjoint unionum{ f; : j € Jn} of tight frames, with frame
boundsAn. Then forfj, j € Jm, we have

Si=S(fi,fiofk=Y (fj, fi) i = Amfj.
i Z j k;m j i

Conversely, suppose that ealGhs an eigenvector d. Let {An} be the eigenvalues
of § and®n, = {j : Sfj = Amfj}. SinceSis Hermitian, its eigenspaces syj&h)
are orthogonal, so that fdf € @y, we have

So, fj = (fi, i) =S (f, ) fk = S = Anfj,
i fkeZOm i Z i ] i
and so (by linearity) eactbn, is a tight frame. Thusf;) is the disjoint union of the

tight frames®p,.
5.2 (a) Since(f +9, @) = (f,¢) and(f +9, Yx) = (9, Y«), We obtain

smwzzu+gm@+gu+gwwwﬁwn+&@>
J

(b) The dual vector tgg; +0€ PUWY is
S Hp+0) =S5 (@) +S,1(0) = ¢ +0,

and similarly for O g € @UW.
(c) Since({g; + 0,0+ yi) = 0, the entries of the Gramian are zero if they correspond
to a vector in® and one in.

5.3 Let P andP; be the orthogonal projections onté# and.7#. Then
(f+a9.9+yp) =({f. @)+ {9 ¢)) =V f+Wg,
so that

(@ + ;) is a frame forsq & 5
= U=[g+yj:F = Ao 4isonto
= U =VP+WP:f+gm (f+0,¢+;)is 1-1
< ranV*)NranW*) =0 (sinceV*: .4 — Y andW* : 73 — Y are 1-1).

5.4 (a) Since||f +g|? = ||f||>+]/9l|?, Y +g € 74 © 5, we may add the frame
bounds

Aollf? < (Sof,f) <Bolfl?  Awlgll®<(Svq.9) <Bulg|?

to obtain the sharp inequalities
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min{Ag, A }|f +g||* < (S(f +9), f +0) < max{Bo,By}| f +g||*.

Thus the sequence is frame féff] © 773, with the above frame bounds.
(b) Supposes(f +g) = Sp(f) + Sp(g). ThenS (and hence&s 1) mapsJt; — 4,
so that
f+9=5"(So(f)+Sw(9)) =S 'So(f)+S 'Sy(g)
—  f=5"Sy(f), g=S"Su(g)
—  SHf)=S,'(f), SH9) =S,(9).

Similarly, S(f +g) = Sp*(f) + S,'(g) implies thatS(f) = Se (), S(g) = Sw(9).
5.5 Suppose thatfj) is a simple lift, sayfj = gy +ay € &2, 5 ; ¢ =0. Then

TH=allg£0, (3 f.f) = (@ly.q+aw) = a2l . y).
] J

Conversely, suppose thgt:= 3 f; # 0 and(y; fj, fy) = C, Vk. Let P be the
orthogonal projection ontgr. Then(f;) is the direct sum

<fjvw>  Df C
we? =P gy

fj:Pfj+(|fP)fj:Pfj+ Y,

which is a simple lift of(P f;).



500 17 Solutions

Exercises of Chapter 6

6.1 Since A is Hermitian, it is unitarily diagonalisable, with real eigvalues
A1,...,An, @and an orthonormal basis of eigenvectfts,...,u,}. The inequality
follows from the Cauchy-Schwartz inequality applied19...,1) and(A4,...,An),
with equality if and only ifA; = --- = A; = ¢. Thus

d r
A= le\ju,-u]-“ = ZlchUT =c[uy,...,Ur][Us,...,u]" = cUU".
= i=

6.2 With K := y;(f;, f;) = 3|/ fj||* > 0, we have

KZ
2 ) 2 R ANVES ) 25
(P = ma 15,807+ 3 (05 6)7 2 3 310058072 -

6.3 In matlab , we take a quotient, with valu€ d (with equality for a tight frame)
c=[]; m=100; d=7;

for n=d:m,

V=rand(d,n)-1/2; c(n)=trace(V’ *V)2/norm(V'  *V,'fro’)"2;

end;

¢(1)=0, c(m+1)=d, plot(c)

Large numbers of vectors do give frames which are close . fiche fact that tight
frames correspond to cubature rules gives a heuristic eapém for this. A more
precise treatment gandom framess given in [Ehl12].

6.4 (a) ForF! =T, the condition for perfect tightness becomes

vil* +wl* 1 Vj4+|Vk|4)
- )

2w+ M 2 (2 +

1 d n—-1

which holds if and only ifd = 1 (for vj # 0).
(b) Suppose some vectay is zero, then the perfect tightness condition gives

vill* 1 (Dl
n-1 d\n-1/’
which can only hold (fow; # 0) if d = 1.

(c) An equal-norm frame is perfect if and only if it is an equgalar tight frame.
(d) This is an open question.

6.5 If (fj) is orthogonal, i.e.|(fj, f)| = 0, ] #Kk, then FRf,..., fa) = n, while
any other choice gives a larger value.

6.6 The lower bound, and equality, follow directly from Theorért. For the upper
bound, Cauchy—Schwarz gives
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Sasiea (0P _ S SR 21
06122~ (Ellf2)?

with equality if and only if allf; and f are scalar multiples of each other.

)

6.7 The integral oveS is invariant under a unitary change of variables
(a) Choos&J with Ue; =y/|ly||, so that(y,Ux) = ||y||{e1,X), which gives

[ pvdo = [(pyoudo= [ Iyi?pedo =y [ pedo =cly

Thus
fz|y, fzpy @)= [ pydo=cly?

i.e., @ is atight frame.
(b) Sincerls (RY) = spar{py : y € RY}, it suffices to considep = py

12 c &
do=clyl®=c5 S I o)* =~ @)
fipdo=cly?=cx 3 [0 = % 3 pio)

6.8 By Proposition 6.1, we seek a balanced equal-norm tighterafm (distinct)
vectors forRY. We must have > d, since the sum of the vectors in an orthonormal
basis is nonzero. L&t = [v4,...,V,] be a balanced normalised tight frame .
The conditionV be balanced is that it is orthogonal to the normalised tighrge
U=[1/yn,...,1/\/n] (see Lemma 5.1). L&V = [wy,...,w,] be the complement
of the direct sum ofJ andV, which is a balanced tight frame f&"1-9. Since
there is no balanced tight frame ofectors forR! whenn is odd, we cannot have
n—1—d=1andn odd. In all the other cases, 2—-designs can be obtained gtaki
anunlifted real cyclic harmonic framef n vectors forRY (see Corollary 11.3).

6.9 (a) Fort =1 ord =1, we have; (d,R) = ¢ (d,C). Fort > 1, we have

«(d,C)  @-1(dC)gig ¢ 1(dR) t(d+2t—2)
a@R) o adR)galy G 1@dO)id+2-2)+(-1)d-1)’

and so, by induction, there is strict inequality for 1,d > 1.
(b) Usingcy (d,R) = grgraigrigy, X°2 @%°2 = X, 5 ||| = n, we get the
following conditions, which are equivalent to being an ardgpherical half-design,

1.3:5.(t—1)
dd+2) - (d+t—2)’

f]vfk = 2

HM:

t  1d(d+42)---(d+t—2) & N d
X = (x,x)2 = = [l VXERT,
n 1.3.5-.(t—1) J.;
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/x®tda }i
S n =i

(c) For a monomiak?, (—x)? = (—1)I%1x@, so the space of odd polynomials is
non;orn; @---, and by (6.26), we have

1n/2
d =135,....
[ dotx 23, ((h) )} lal=135,

Thus (6.33) integrates the odd monomials, and hence all oiysh@mials.
6.10 (a) The claim is that for all bivariate polynomigtsc 1,_1(R?)

n

1o : 1 2. . 2m.
/S(RZ) p(x,y)da(x,y) = E‘[/o p(cosh,sinB)do = Hglp(cos?1,5|n?1)_

By identifing (x,y) € R? with z= x+ iy € C, this can be written as

/ d(z,z)do(z
S(C)

Letq(z2) :=2"Z, a+ B <n. Thena = B ora — B #0 (modn), so that

n n ) .
Z — Zw(afﬁ” — Oa G#Bu
=1 = 1, a= B
This equals the integral; ¢ 727# do(z), which is given by takingl = 1 in (6.25).

(b) It suffices to show (6.9), i.e., théty;) is a sphericalt,t)—design forR?. Using
the trigonometric identity cG9 = %g’”, and the cubature rule of (a), we have

;Zij,wk)\Z‘ = Zg@osj7nTcosk7nT+sinj:sinkg)zt
-3 5 (eosi—w7) " -3 3 (R
]

:”Zrl]Z(COSZZJJrl) nZ%T./OZH(COSgJFl) d6.

By (6.25), witha = (t,0) andd = 2, the integral simplifies to

1 [27/cosf+1\t 1 27 \2de 1 (T 2t
5_[/0 (72 )de_ﬁ./o (COSE) —_—/O(cosx) dx

2

1 n
ﬁz q(w!, wi), w:=en, Vge M 1(R?).

1
n,

3\!—\
Sl

HM:

1 2 ot 1
_ZT/O (cosx)“ dx= =5
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6.11 We verify (6.39), noting that>(d, C) = gy, ¢3(d,C) = garrarz -

@a2{ (02~ 1)( A7) 410} = 28 = 2 @2

(b) md{(md— d) (%)ﬂ 1% 4 (d— 1)04} m(m-+d - 1) = gZg(md)? if and
onlyifm=d+1(d#1). 3

©d(d+D{(@(d+1)—d)( L) +18+ (-0} = (d+1)2 = LG if
and only ifd = 2.

6.12 Verify that 4q1+27(%)2t) = (4,C)40 holds fort = 1,2,3.
_Els_.h13 The common angle igvj,vi)| = 3,/90=2 — = 74 | # Kk (see Exer. 2.16).
us

ZZWJ,W (n —n)(iq/d(n_f))LlJrn,
A R) (S IIY) = g g™

and a simple calculation shows that these are equal if andfonl= %d(d +1).

6.14 (a) It is easy to see the vectors @y = (vj) (64 of type 1 and 56 of type 2)
satisfy|(vj,vi)| € {0,1,2}. Forv; fixed, a simple calculation shows that the number
of times|(vj, w)| takes the values,@,2 is 63 56, 1. Thus we verify (6.39) as follows

z;uvj,vk)ﬁ =120(63-0°+56-1°+1.2°)
J

1-3-5 2
= m(lZO 2°)? =c3(8,R) (g HVKHB) :

(b) By (a), @9 and hencep integrates all homogeneous polynomials of degree 6,
and therefore of degrees®4 also. Sincep is centrally symmetric it integrates all
homogeneous polynomials of odd order, and in particulasethad orders 13,5,7.

6.15 Take f = x®t, g = y*! in the Plancherel identity (2.4) for the tight frame for
Symi (), using (2.9) and (6.16) to determide

YRty TSt gty pet et +d-1 at)2
= Ty (T AT
After simplification by (6.17) this gives (a). Settiyg= x gives (b).

6.16 Recall (Exer. 2.11) tha#” has inner product given big,y) := (X,y), X,y € 57,
and so the apolar inner product on Sym’) @ Synt(#) satisfies

xRyt VoW = xVHTW = (W), xyvwe 2.
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Write ¢ = a—h. Using (6.29), we obtain

(a,a) //x®t Xyt @y, do(x)do(y // |(x,y)|2da(x)da(y)
- / Iy%(d.F)dor(y) = a(d.F).

t t ®t
(b,b) = z;f%n@ et z;m,fk |
C2 2
(ab) = z/ O @R, £ e ™), do(x z/| x, £)[2 do(x)
= 2 If%a(dF) = a(d.F) = (ba),
J

which combine to give the result fdr. Let B := (-, x*!)x*!. The Frobeneous inner
product betweeR, andR, is (cf. Exer. 3.1)

(P R)F = tracdRR;) = (XE P (P 3 — | (xy) 2

Using this, a simple modification of the above argument gikiegesult for

Q= /SPXda(x)—é ipfj.
pe

6.17 (a) The linear functional$ — daﬁﬁf(O), |a| =t,|B8| =r are dual to these
monomials. Thus counting gives the dimension.

(b) Recall (Exer. 2.11) thgu, W) := (w, V). Thus the inner product induced by taking
the apolar inner product on Syfw#*) and Sym(JZ") is given by

<<'7V>t<x7'>ra <'vW>t<y">r>0 = << 7V>®t ® <7a)7(>®tv< 7W>®t®<7vy>®r>
= (), W) HER), YN = Wy H(E X" = (W) (xy)"

() Letp= (-,wi(x,-) andy = win (6.71), to obtain
(P, W) () o = (wv) (x W) = p(w).
(dIfpe I'I{fr(Cd) is orthogonal tdP, then by (c) we have
pw) = (p, (W) (w-)") =0, Yw = P'=0 = M (C")=P
(e) It suffices to considep = (-, V)t (x,-), g = (-, w)i(y,-)". We have
(0, V)((ZW)) = (3 Vj0)) (TkWiZc) = VaWa + -+ + VgWg = (W,V),

(0,0 ((ZY) = (3%i0) (Tk V) = Xa¥1 + - +Xa¥g = (X.Y).
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Sinceq(z) = (zw)i(y,2)" = (zW)!(z,y)", andp(d)§ is a constant, we obtain

P(9)d(2) = (9,%)'(9,%" ({zW)'(zy)") = tHw,v)'r! (x.y)" =t!r'(p,q)e.
6.18 Making the substitution (6.41) in Theorem 6.7 gives:
@c(d,F)|x|* = Zw,| x @)%, xecF.

(b) ct(d, F) {x,y)' zwj @) (g,y), xeFd
© [ pdo(x sz P(@). TPEM(S).
(d) / X' @x*'do(x)

RO

@t t
e

=2
(e) / (X" x da(x i

(f)//g X,¥)] do

6.19 (a) Sincel|X||? = (xq+ -+ +Xa), (X, V)2 = (Vix1 + - - VgXg) %, we have

i% weg(1(9, @)1%), Vg€ M(R).

J 2t _ . t—1 J 2t t—1 . t—-2
7 % =20 X% (5 ) = 20 20208~ 2 ),
17} 2t-2
3, XU = 2w (v ( ) 2 2tvj(2(t — L)vi) (x WA 2.

J
(b) Since|Z|> =121+ - -+ + 24Za, [(ZV)[* = (V2 + - - + ZaVa) (ZaVa + - - + ZaVg)

9i(IZ|%) =tzj|2I*Y, 9;0;(1|ZI*) =tl|Z|* 2 +tzj(t — 1)z 2>,
9i(|(zv)?) =tl{zv) 2"y (z),
(z

9i05([{zv)[*) = thz V)P Hvv; +t(t - 1|z v)[X

(c) Applying the Laplacian in each case gives

2-2) (7 \)v;V; (2,V).

n
a(dR)2t(d+ 2 - 2)pP Y = T S 2@ DI )Y

S T2 2,

c(d, C)4t(t+d - 1|z Z4t2\ (z PV )12,

Y ||f I
which is the Bessel identity fdrreplaced byt — 1, since

d+2t—2 t+d-1

Ct(da]R) %1 :Ct—l(dvR)a Ct(da(c) t

= Ct—l(dv(c)‘
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RemarkThis (with induction) provides an alternative proof of Posjiion 6.2.

6.20 We verify the generalised Bessel identity (6.31).Cet ¥ [[vj||% = 3 [/wi?.
Then

(@B = 5 3 Iww) + ¢ ¥ oo )

= i(z\<x,vj>|ﬂ+;|<x7wk>\ ), wxer,

where Z = 3 [|vj[|? + S [lwi ||

6.21 Suppose thatf;)!_; is a weighted(t,t)—design with the minimal number

of vectors. We claim that the polynomiaks— |(x, fj)[® in I, (F9) are linearly
independent, and hence obtain the result by a dimensiont emimy (6.16) and
(6.70). First scalé¢f;) so that the generalised Bessel identity (6.31) becomes

n
\|X||2t=Z 1(x, )%, wxe T
=1

Now, by way of contradiction, suppose thgfc;|(x, fJ>|2t 0, wherec; € R, and,
without loss of generality;j < ¢, = 1, Vj. Subtracting this from the above gives

n—1

x]|? = > (A=cplix, fj)? Z vy ®,  wxe T
=1

wherey; 1= (1— cj)% f;. Thus, by the generalised Bessel identity (6.3\11))?;% is
a(t,t)—design of — 1 vectors fof®, which contradicts the minimality of.

6.22 The generalised Plancherel identity (6.32) implies theimalrphic polynomial
X (x,y)t is in the span of the polynomiats— (x, f;)!, 1< j < n. By Exer. 6.17,
the polynomialx — (x,y) :y € F¢} spanri¢ (C%) = I17,(C?), with a similar result
for RY, and so we have

. t+d-1
> omdyy — .
n > dim(r1°(F%)) ( d_1 )

6.23 Suppose thatf;) is the tight frame corresponding to(at)—design(g;), i.e
= ||g; ||tflgJ (see Proposition 6.2). Taking norms givgg | = ||gj|', and hence

gJ = f,/||fJ|\ . Substituting this into (6.39) gives the condition

2t 2
= a(d.F)( l||”f6”ttl|| 2)".

n

DDA E e

— )
0= 1 41 [ A Y
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6.24 (a) (P, R) = tracgxx‘yy*) = tracdy*xx‘y) = (X, y)(¥,X) = |(x,y)|%.
(b) By (a), we havep(R,R)? = (R — R, — R) = 2—2(R,R)).
(c) By (a) and (b), we havp(R;, Py)2 =2-2(R,R)=2—- 2\<”—’)§H, —>|2

y
NIyl

(d) Clearly tracéR— 1) = 1— 1d = 0, and we calculate

I(Fc— 1) — (R = ghII* = (R~ R, B~ R) = 2-2(R,R) = p(R.R)?.

6.25 ForF = R, C, eachp # 0 can be expressed as a finite sum of monomials:

P =S cx (¢i#£0), pP@= Y capZ? (Cagn#0).
] (a,B)

Since these monomials are linearly independent, we have

p(ax) = Z(ajcj)xj =p(x), Ya = cjaj =cj,Va = piseven
]

pa =y @%aPle, p) 2P =p2) = cupa T IFl=c,p, Va
(a,B)

so thatja| = |B| for ¢, g # 0. Hence in both casgsc @/ ;.

6.26 Suppose thaf(x+a) — f(a) = b has two solutiong andk (for somea and
b). Then

yta—yl —b=yr_y — (Y —y)P-1)=0,

so that eithej = k ora= 0. Thus for(a,b) # (0, 0) there is at most one solution to
f(x+a)— f(a) = b, and sof is 1-uniform.

6.27 The equations hawe+ 2d(d — 1) = d(2d — 1) solutions of the form
(W, X, Y, 2) = (W, W, W, W), (W, X, Y, Z) = (W, X, W, X) OF (W, X, X, W).
We can rewrite the equations as
W—zZ=y—X=a, f(w)—f(z2) = f(y)— f(x) =b,

for somea € G, b € H. We now treat cases. Far= 0, we havez=w, y = x. For
a# 0, we havev = z+a, y = X+ @, so that

f(z+a)— f(z) = f(x+a)— f(x) =b

and the 1-uniformity off implies z= x, and sow =y. Thus there are only the
d(2d — 1) solutions first mentioned.

6.28 (a) Subtracting the component of the force in the directigives
EFRa,b) =v—(v;a)a= (a,b)((b,a)a—Db).

(b) Sincea; is aA—eigenvector of the frame operarand EFKa;,a;) =0,
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; EFFaj,a) = Z(a,-,a@((ak,aj)aj —a) = (Sg,aj)aj —Sg =Aa;—Aaj =0
K7

6.29 A simple calculation, using;z= 0, 2= 1, gives

0 J _
ﬁ<vjvvk> = ﬁ ZVSJVSK* OgVaj-
Therefore (using the chain rule), we calculate

dVaB ZZH VJ’Vk |2t 1) 7<<vj,vk><vk,vj>)
= ZZU vj, Vi) [20Y) (d(BVC!j<Vk7Vj>+<Vj,Vk>5jBVak>
]

= Zt\<Vi,Vﬁ>|z(t_l)Vaj (Vg, Vi) + zt|<V37Vk>|2(t_l) (Vg Vi) Vak

—ZtZ| v;. V) 2 (v, Vj)Vaj,

0va ;tHV |2 1 <Vé»VZ ZtHV/szt 15mVa/=tHVﬁH =Dy Vag-
6.30 To find the entries of the He55|an, we use the Wirtinger catcul
o 1,0 .90
32~ 2(ax %)
which gives
9%h B ( d%h ) 9%h B ( d%h )
OXap0%qp OVap0Xap /' 0Yab0Xap OVap0Xap /'
%h - ( 9%h ) d%h B ( d%h )
O%ab0Yap OVandyap /' OYabdYap OVar0Yap/

We now takeh = p andh = g. By Exer. 6.29, we have

Py =20 0 v ) =2 1V, V) P (Vi Vg, i) + Vg (v, V)
J

aXaﬁ (9VUB
a9 a9 _ 2(t-1) o—
30 V) =2 (5 (V) =tIve* Y (vap + Vp).

Differentiating these gives
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%p

17
7P )= _ 2(t-1) _ N
OVap0Xap *ZZKVJ?VB)‘ aTab(VaKVB’VJ)+VaJ<V17VB>)

]

+2t;2|] (Vaj{vp,vj))(t— 1)\<vj,v,3>|2<t*2>%(<v,-,vﬁ><v,3,v,->)

zztz|<vj,v,3>| 2071 (Vg G Vag + Baa Boj V), V) + Va] OopVaj)
+4t;D(vaj<v5,vj>)(t_1)|<vj,v5>|2<t*2>(<vj,v,3>5o,-vaﬁ+6D,3va,-<v,3,v,->)
= 21| (Vp, Vg )| 2" (VrViag + Gaa (Vb, Vig)) + 2t B 2 (), V) |2 VG va
+4t(t—1)[(Vo, Vp) \2<“2>D (Vab<VE’Vb>) (Vag {Vb, V5))
+a(t-1) 5oﬁZ| Vi, V) 2020 (Va (Y, Vi) Vaj (Y, Vi),

9%g

7
_ 2(t-1) —
aTabﬁXaﬁ (V) t”VB” dTab(VUB—"_VGB)

7}
+t(t— 1) v )2t (VaBJrVaB)d (Vg,Vp)
=t | Gaa Gop +t(t = 1)|[Vp || (Vg + Vap) BupVap-
Similarly, since ZI(z) = i(z— z), we have
Iap
dYGB
ag
aYOrB

(V) = ZD(ﬁi:g(V) ZZ‘ v;, V) 12V (Vai (vi,vp) = Vaj (V. i) ),

V) =20( 52 V) = vl i V)

Differentiating these gives
_Pr
OVan0 Ya [3

4 O(Va (v, v1)) (€ — 1)1V}, P2 (9], V5) BV + oV (V. Vi)
]

ZtZ| VhVB ‘Zt Y (5610150 <VJvV[3>+Va]5rJBVa]_Vajéojvap)

= 2ti[ (Vo Vg ) [~ (Bacr (Vo, Vg) — VabVag) + 2idop 3 [(v, V)X Vaiva
]

+4t(t — 1)| (v, Vg) [P 2 0 (Varb (Vg Vi) ) (Vag (Vi Vi)
— 1) 3 (v, Vg) 72 0(Vaj (v, Vi) Vai (Vp, Vi),
J
9%g

i 2(t—1 2(t—2
Fagdyag ) = e BV %+ 20(Verp) (¢~ 1) v |* B
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From these formulas one can calculate the Hessian matnixasfdg. To find the
Hessian matrix of := p— ¢ (d,F9)g?, use the fact

2 2
9 @)= <2gﬁg> :Zg(v)ﬂ+2agag rseX.

ﬁrds(g )= ar\"“os ards ' “or 9s’
6.31 (a) Letf; = (1,0), f2=(1,1). Then

2

2 252+ 2xy+y? 2
= =7 3

4
== 1,0)=- 0,1) =
9(xy) =3 iy 9(1.0)=3, 9(0,1)
(b) Expand| 3 ¢; fj|* = (3 ¢; fj, Tk ok fi) = 3} Tk Ci(fj. fi), so that
||zc;f,-||2szglcn|ck||<f,-7fk>\sz;|cj|¢|<f,-,fk>\ck¢|<fj,fk>|.
] ] ]
By Cauchy—Schwarz, using the fact that both norms are egpedhave

H;Cj fill? < ;ZIleszi, fi)| = ZIlengfhka-

(c) Takecj = (x, fj) /(5S¢ |(fe, Tj)]) in (b), and simplify.
(d) Usey [ (fe, f)| < maxc3[(fe, fiol, V.
(e) In the argument, apply Cauchy—Schwarz in the form

I3 eitil?< 33 il fifl < (3 >3l Zi0d?) (108, 10
<Z|CJ| )( fi: ol ) .

. 1
Now takec; = (x, fj) in | 3;Tj(x, ) < [X|I2(5;Ic; %) (|(fj, fi [°) 2.
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Exercises of Chapter 7

7.1 (a) A block matrix calculation gives

(10) (8; Bz) — (UnU)=(10) — U= (g U(;z).
(b) Since dinfu(F")) —dim(U(F"-9)), we calculate

dim(Ap ga) = %n(n—l) — %(n—d)(n—d—l) = %d(Zn—d— 1),

dim(Ap ca) =0 — (n—d)? = d(2n—d) = 2dim(A}, ga) +d.
7.2 (a) The derivative
(1) = o (VI R2(2~ WD)+ (1-29a),  t£1
Vi-t? ’ ’

can be zero only when

PL-t)B=(1-2%%a% = (Iv*~w]*)>.

For 4a? 4 B # 0, this gives
2_ 14r f B
== =\ 57 402

;
(VI + 1wl £ 5 (M2 = wif?) + V1 - r2a.

For thist, we obtain

f(t) =

NI =

This is clearly maximised by the choice for whigk(||v||> — |w]|?) = /B (and is
minimised by the other choice). Thus possible local maxinameh minimum values
are

) = ZM17+ )£ 5/B+VI=r2a = S+ ) + 5 A,

(b) The choices ofr that give the maximum and minimum value of the possible
local maximum value and possible local minimum value frojrefa

NI

a:6<V,W>:‘<V,W>|, a:6<V,W>:*|<V,W>|,

which give the values

£(t) = S+ Iwl?) + 5 /B + a2
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(c) We havet (0) = w2, (1) = V|2 Since\/B+4aZ > v/B = v]]2 — |wi?,

the maximum and minimum values of (b) are the global maximadhrainimum.

7.3 (a),(b) Since the vectors & satify (7.7), the condition (i) gives

n n
k) 12
> V)12 = 3 a
j=k+1 j=k+1

Suppose thdtv&fluz < a1 and (a) does not hold, i.dlv§k>|| =0,j>k+2.Then

n n
k)12 k) |2
; IMOI2= v 2 <aui< Y a,
j=k+1 j=k+1

which is a contradiction. Now suppose th|a£'31||2 > a1 and (b) does not hold,
ie., vak) | > axy1, Vj > k+2. Then we again obtain a contradiction
n

n n
K
; MYI2> S awi> Y a
j=k+1 j=k+1 j=k+1
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Exercises of Chapter 8

8.1 (a) The forward implication follows by taking the inner prad with f, and the
reverse follows from the polarisation identity (as in Ex2R).

(b) It follows from (8.30) that set of = (c;) satisfying (8.29) is an affine subspace
of ", and so has an element of minimia-norm. Ifc = (c;) satisfies (8.30), then
so doeg[(c;)). Since|(cj)| < |cj, thec with minimal /,—norm must have real
entries. Taking the trace of the linear operators in (8.28g

tracel ) = dim(7 ZC, trace ¢ ¢* ch||<p,||2.
]

8.2 (a) Sis Hermitian, and (8.31) giveAl ,» < S< Bl . ThusShas eigenvalues
0< A< A <B,and sois invertible, witlil/B)l ,» < S1 < (1/A)l
(b) The signed frame operator ©f;), o can be writterS= V/\JV* whereV [fi]
andA is diagonal with diagonal entries. Thus the signed frame operator(d f)
ois

(S™V)AG(SV) =S (VAV)S t=slsst =51

Expanding ,» = SS'* = S-1Sgives the signed frame expansion, e.g,

f=S(S) =3 oy(SH. ) fj = 5 oj(f,.S ) fj = 5 oy(f, ) fj.
J J J

SinceSis positive definite, the canonical tight signed frafiyé":= S 1/2f; is well
defined. The signed frame operator(6f2") is

(S )AG(SVA) =S V2VANV S V2 =5 128512 =,

e.,(f — j@" o is a tight signed frame.

8.3 Suppose thatf;)]_, is a tight fusion frame foFd with signature
o1=--=0m=1, On1=-=0,=—-1

Then, by Cauchy—Schwarz, we have

n m

m
IfIF= 3 Gil(f,fi}F< 3 I(F. )< (zlnf,-uz)ufn% v T,
=

= =

so that(fy,..., fm) is frame forFd, and hence we must have> d.

Now let (fq,..., fm), m>d, be any normalised tight frame f6f, ando be the
signature above. Using the definitions and results of Eger8i2, we observe that
(f1,..., fn) will be a signed frame foF¢ with signatureo provided that

n n

n
XA T AT O S L [T TR

j=m+1 j=m+1
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for someA > 0. This is easy achieved by choosiffgh. 1, . . ., fn) sufficiently small.
The canonical tight frame for this signed frame is then attiigmned frame with the
desired signature.

8.4 We consider thé¢j, k)—entries

((aa) o (bb")) , = (aa") jk(bb") j = (aj18a) (bj2bia) = (aj1bjz) (@abia)
= (acb)jz((ach)’) = ((acb)(ach)”),.

8.5 We recall (see Exer. 6.17) thm,‘js((Cd) has dimensiom, and p; is the Riesz
representer of the point evaluatidp(for the apolar inner product). Thus (a) and (b)
are equivalent. Suppose that (a), and hence (b), holds. 8dehp € I'I;js(Cd) has a
unique expansiop = ¥ ; ¢k Pk, where the coeffients are uniquely determined by the
linear system

chpk(vj) =p(vj), 1<j<n,

i.e., Ac= [p(vj)], whereay, = & (Vi) = (v}, Vi) (Vio V})® = (v}, Vi)' (v} Vi) - Since
[p(vj)] = [§j(p)] can be any vector i", we concludeA is invertible. Conversely,
suppose thah = [;(v)] is invertible, then its rows are linearly independent. 8inc
the rows ofA are the linear functionalg; restricted to(vi), we conclude that thg;
are linearly independent, and hence are basiflfg((Cd)’.
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Exercises of Chapter 9

9.1 (a) Let® and¥ be orthonormal bases f@% andC%, then® U Y is an or-
thonormal basis fo€%1+%, and we hav&y, x Sy, < Sy +d-

(b) If ¥ = @, then there are additional symmetries which swap the twesay @.

(c) Let @ and¥ be orthonormal bases f@% andC%, then® ® ¥ is an orthonor-
mal basis folC%%, and we hav&y, x Sy, € Su,dy-

(d) Let @ and% be complements, so thété Y is a basis, and so every permutation
gives a symmetry ofb o ¥.

9.2 (&) This is immediate, since Sy() is a subgroup 08,, which has orden!.

(b) If Mp(0) =Ls =1, thenfy; = fj, Vj (since the vectors are distinct), so that
o must be the identity. Eadh; = mip(0) is determined by its action on a basis of
vectors for.z# taken from(f;), which gives another basis of vectors(ify). If there

are onlymvectors in( fj), then number of possible choices for the image of the first
basis vector isn, for the secondan— 1, and so on (for thd elements of the basis).

9.3 (a) Let® = (f;) be afinite frame for#’. Then foro, T € Sym(®), we have
(LO'LT)fJ = Lo'(LT fJ) = LO' ij = fO'Tj = LUT f]7

which impliesriy (0T) = 1w (0) Tlp (T), Since(f;) spans.
(b) We calculate

So(9f) =Y (af. f)fj=(g) TS (f.9°f))g" fj = (¢") 'Syo(f), Vier
J J

(c) If @ is tight, theng = L, is unitary, i.e.g* = g1, and from (b) we have
Se(of) = =0%10)(F) = 90%-10(f) = 9S(f) = 0Se ().

9.4 In view of Theorem 4.3 and Example 9.1, we may assumeahat(v; ) is tight
frame which is not a basis. Since each permutation is a syminef, vk)| = R# 0,
j #k, i.e., @ is equiangular, and its frame graphis complete. Let7 be the
spanning tree fof” with rootvy, and edgegvi,v;}, j # 1. By Theorem 8.2, we can
assume thafvy,vj) = —r, j # 1, wherer > 0. Since symmetries preserve the triple
products for distinct vectors, these must all be equal toesgralC. Hence
c . .

VLV (Vv (v ve) =C - = (Vi vio = 5, T#k Jk# L

By Exer. 3.19, we have that &€ = r3, then Grani®) has rankn, which is not

possible (b is not a basis), and so we must h&&2 = —r, so that(vj,w) = —,
V| # k, and thereforep is the vertices of the simplex.

9.5 Let @ be ana—partition frame. Since a frame and it complement have tiresa
symmetry group, it suffices to calculate the symmetry group@ complementary
tight frame (2.15). LeM be the set valuega;}, andmy := [{] : aj = m}|, me M.
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Since the action of the symmetry group is unitary, it must ntta® vectors
ej/,/d;j with aj = mto themselves. The subspac&, := spar{e; : aj = m} C R¥
are orthogonal to each other, and so the symmetry group (@jecpive symmetry
group) is the product of the symmetry groups for the equahntight frames of
the m- my vectors contained i#Z7,. There arang! unitary maps which map these
vectors to themselves. For each of these maps, the image withpies of each of
themy vectors%1 € Jm (which are equal) can be reorderedihways, giving

Sy )| = Symy(@)] = [ mel(m)™

In particular, if thea; are distinct, then the symmetry groufg x Sy, x -+ x Sy,
and for a propeo—partition frame, i.e.qrj > 2, Vj, we have the lower estimate

|Sym(@)| = [Symp(®)| > |‘l42”** =2">n.
me

9.6 From the Gramians (see Example 2.8), it is easy to see that8ym S;, and
Sym(¥) has order 3 and is generated by the cycte (123). The faithful actions of
these symmetry groups are given by the generators

m(12) - (35). m(123)=(“ ). ma23)-(*,).

These tight frames are projectively equivalent (see Ex2L,2r observe that all the
triple products are equal te1). Thus Sym(®) = Symp(¥) = Ss.

9.7 Since the action o = (a,b) is unitary,

[(gawr, GoWo)| = [(wa, 0y 'goWa)|,  01,02€ G, wi,W; € {V,e1, &}

Using 1+ w+ w? + w® + w* = 0 to simplify, these angles can be computed as

5—v5 ) 3 V5+5

[(vav)| = |(va'v)| = [(wav)| = [(wa'v)| =

V10 V10
- |w?) 4 22| . 4 oo 14
valbv)| = ——=—, 0<j<4, v,albw|® = ==
walby) = 2 <is4 3 walby= o
e albv| = (e alv)| = ——2——,  0<j<4
10+2v5
(e albv] = (e} = —EY2_ o<j<a
10+2v5

From these we verify the condition for beingd4 4)—design, i.e.,
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ZZ(UJ>Uk>|8—1Z~1+1O{2~< Ejm)\/g)s+2.( ?/%)\@)8+14}+2.0

25
2 8 V5 \8
+2o{(\/m) +( i;:\@) b= %‘:q@@)(ﬂ)?
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Exercises of Chapter 10

10.1 Since the action is unitaryh f,gv;) = (f,h*gv;) = (f,h~1gy;), and so we can
repeat the argument of Lemma 10.1, which gives

S(hf) =y (hf,gwgv=h (f,h ‘gwyh *gv= hZ<f,kvv)kv: h(S1).
9 g

10.2 Consider thé'G-homomorphisnoiS: V; — W given by

o Sfj = ok <f-,9v'>gv|<>.
i (ggG 9V

By Lemma 10.4,
aS=coj,  c=(aSVv,a;vj)/|lo}vi|*.
Using Theorem 10.5, we calculate
(0kSV;, 0jVj) = ( ZG<VJ,9V1>90ka,GjVj> = ZG<VJ,QV1><90ka7UjVj>
ge ge
= ZG<971VJan><0ka701'971Vj> = (OkV, Oj §<V17971VJ>971V1>
ge ge

B | VI G < 1
Ko B dim(v;) VT dim(v))

<0'ka, O'jVj>.

Therefore, the condition (10.16), i.&y; =0, is

G [Ivj|? (Okvi, 0} V)
dim(Vj) [logjvj|?

15y — s —
0, 0)vVi=0 <= (0gjvj,0kv%) =0.

10.3 (a) We observg (o) : R® — R8 maps# to 7. This gives an action since
p(0)p(T)x=p(0) (X)) = (Xorj) =p(0T)x = p(0)p(T) =p(0T),
which is unitary sincép(a)x, p(0)y) = ¥ j XojYoj = Xj¥j = (X,¥)-

(b) The stabiliser of consists of all 2!6! permutations which maf, 2} to itself.
Thus, by the orbit size theorem, the orbit hag(816!) = 28 vectors.

10.4 (a) We have thatx,x)p = & S4(p(9)%.p(9)%) = & T4 Ip(@)X|? > 0, with
equality possible if and only if each term is zero, ixes O (since eaclp(g) is 1-1).
(b) Sincep(g)p(h) = p(gh), we obtain

(P p(ys = 1 5 (P(@P(x p(EP(Y) = ().
g

(c) Clearlyp is a group homomorphism, and eagfg) is unitary, since by (b)
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(P(9)x.P(9)y) = (Ap(9)Bx,p(9)B™y) = (p(9)B~'x, p(9)B1Y)p
= <B_1Xa B_ly>P = <A_1Xa y>P = <A(A_1X)7y> = <X7 y>
(d) We haveB~1¢ = B~1(Bp(g)B 1BV)gec = (p(9)V)gec = @, SO thatd is similar
to Y. Since¥ is aG—frame, Theorem 10.1 implies th#€a"is aG—frame.

10.5 {,-)) is G—invariant if and only if for eacly € G

(P(@xp(@Y) = (xy) <<= (Mp(@)xp(@)Y)p = (MXY)p, Xy
= (p(9) MP(@X.Y)p = (MX,Y)p, VXY
<« p(g) Mp(g) =M.

By Schur’s lemma, the last condition implies ti\tis nonzero scalar multiple of
the identity matrix whem is absolutely irreducible, i.e., in this case @Hinvariant
inner products are scalar multiples of each other.

10.6 (a) Since the action d& on .7Z is unitary, we have

z;|gvhv z;|vg thv) 2 |G\2|vgv
> %(Z@WEM) = a(|G|||V|| )2 = a|G|2||V||4~
g

(b) As above, thét,t)—design condition simplifies, since

3 3 laun = (ol gyl (5 v )" = (IGIIMP)? = (62 v

10.7 Use the notationr® w andv®@ w for elements o744 @ 7% and4 @ 4.

(@) If @ = (gv)gec and¥ = (gw)qcc are disjointG—frames, then their direct sum is
DY = (g(VOW))ge, Whereg(x@y) := gxd gy s a unitary action.

(b),(c) If @) = (gjVj)g;cc; areG-frames, then

1

((91,92)( ! 2)) (61.05)<G1xG
\/@ \/|Gil (91,02)€G1x G2

®1® B = (01, 92)(V1®V2))(gl,gz)eelxez

OO, =

where(ga,g2) (XD Y) := gax® g2y and (g1, 02) (X®Y) := g1X® gy are unitary.
(d) Let ¥ be the complement of a normalised tightframe @ = (@)gec. Since
Gram(@) + Gram W) is the identity matrix, we have

(@) = —(g 7 her, @), h#g;
i wg>_{ — (@) =1-(g"h@r, @), h=g

so that Grarf¥) is aG—matrix, and, by Theorem 10.8/ is G—frame.
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10.8 If the action was not irreducible, then there would be a pRreR? that was
G—invariant (otherwis®2 would be a sum of 1-dimension@kinvariant subspaces,
and soG would be abelian). The restriction of the action®fo this planeP would
be a faithful representation &, and soG would be isomorphic to a finite subgroup
of % (R?). This is impossible, since the finite subgroups#{R?) are cyclic or
dihedral.

10.9 (a) Supposé&/ is anFG—module. Sinces — gv is linear map,p(g)v := gv
defines amap : G — GL(V), and sinc€g,Vv) — gvis an action

p(@)p(h)jv=g(hv) = (ghv=p(ghy = pis a homomorphism
Conversely, suppose thatis representation, and Ig:= p(g)v. Then

g(hv) = p(g)p(h)v=p(ghv=(gh)v,  lv=p(ljv=v

so(g,v) — gvis an action, ang(g) : v gvis a linear map (by definition).

(b) By definition:W is alFG—-submodule o¥ if it is closed under vector addition
and scalar multiplication, i.e., is a vector subspace, tisdciosed under the action
of G, i.e., isG—invariant.

10.10 First observe that ! is anFG-isomorphism, since

1 1

Ig=9gr — g=1 gt = gri=tlgirli=11g
The mapot~1:V; —V;j is anFG-isomorphism (check taking the inverse commutes
with the action ofG). Let A € C be an eigenvector (for a nonzero eigenvalue) of

o1~ Then(gv)gec Spans/j, and we commute
ot lgv=got lv=g(Av) = A(gv),

so thatoT~* = Aly,, as claimed.

10.11 We have the equivalences
gH=pH = glaucH — glav=v <= gv=0v

(a) The forward direction implie® — ¢ : gH — gvis a well defined map onto the
vectors in®, and the reverse direction that this is 1-1.

(b) LetN be the kernel op, so thatN Cc H. If G/H — % (2¢) : gH — p(Q) defines
a group homomorphism, then by the first isomorphism theotsmcomposition
G/N— G/H — % () : gN— gH — p(g) is a well defined injective map, and so
we must haved = N.

(c) If Gis abelian, them(gv) = (hg)v= (gh)v=g(hv) =gv,Yhe H,g€ G, and so
H stabilises’#” = spaf{gv}gcc.

10.12 (a) By Exercise 10.6, the condition fagv)gcc to be a(t,t)—design is that
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1
= ¥ [(vgv)[* = c(d, F)[|v]|*.
P

This will hold for everyv if the above polynomials of degre¢ i the entries o¥/
andv are equal. This can be verified Magmafor t = 5, but nott = 6. An easy
way to do this is to check equality at a set of poiaten which a polynomial in
M5 »(CY) is determined by its values.

(b) We observe that has order 5 anti> = —1. Hence ifv is an eigenvector oé,
then (gv)gec consists of 12010 = 12 lines (from each of which we can select a
vector to obtain(5,5)—design of 12 vectors).

10.13 Let G =C, = (&) act on af—isogonal configuratio(x; )‘j’:1 via a cyclic shift:
axj := Xj4+1, Xd+1 := X1. This action is unitary, since

e Ao = Fonra A
. ]
— Zk; ajBkCOSQ-i-ZaJ'Bj = <Zanj,Zkak>)

and so(x;) is aCp—frame.
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Exercises of Chapter 11

11.1 (a) Let

W=D - EED oo

Then we calculate
luj—udl =v6, j#k  [lvi—wll=v3, j#k

and‘<uj7uk>| = |<Vj,Vk>| = 11 J 7é k.
(b) A calculation, see (c), givav; —w|| = v/5, j # k. Here|(wj,w)| = @
(c) Sincevj = (1,0, ..., 09, with w := 7/(24-1) ' we calculate

1 2d-1
Vi —wl2=S |0t —o¥P=2d-1- Y 0™ M =2d-1 £k
aZO le

Sincew; = (!, &?, ..., @), with @ := 1/(2+1) e calculate
d

[wj —wi||? = z 0 —wtP=2d—F MW =2d—(-1)=2d+1, j#k
m=1

Remark:Notice that the separation between point&iis larger than that for those

in @ (which hasfewerpoints), and so equispacing is perhaps not the most useful
notion of “equal spacing”. The difficulty here is that thoug equal distance from
each other, the points are clumped in a particular cone. fiiemomenon can be
seen for the standard basis vector€i which are equally spaced, and all lie in the
first octant.

11.2 (a) The symmetry group has order 384 (it is the gre@p4,5557> ), which

is the largest for the class of cyclic harmonic frames of $ide. This frame consists
of scalar multiples of an orthonormal basis.

(b) The symmetry groups are bot200,31> , which is the largest for its class. The
projective symmetry groups are also bet200,31> .

113 SinceU* =U"LUf =3;(Uf,UIvUI =U 3;(f,UI"lWU 1, which gives

n-1 n-1

f= Z)(f,uj’lwuj*lv: Z)(f,ujwujv, vf.

1= =

Cancelling terms in the above givé$,U~v)U~1v = (f U 1v)U"1y, so that
UM = cv, for somec € F. For (Ulv) to be a framey must be nonzero, and o]
IV = |JlU"V|| = |lev]| = |c||]v]|, implies that/c| = 1. On the spanning séU"v}k o
we have
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UnUMY) =U" S UK UIUlv= S UK UIU (ev) = c(Utv),
J J

so thatU" = cl. If 1/a = {/c is an n-th root of ¢, then (aU)" =1, and so
1

((aU)lv) ?;0 = (v;aUv,a?U?,...,a"U"v) is a cyclic harmonic frame.

11.4 Let @ be the harmonic frame of vectors given by{a} C G. For the vectors
of @ to be distincta must generat&, which implies thaG = Z, with aa unit. The
corresponding harmonic frames dté?)) jcz,,, wherew = €2/, j.e., then-th roots
of unity.

11.5 Let G be an abelian group of order If J = {a,b} C G gives a real harmonic
frame ofn distinct vectors, thefo = —a (to be real) anda generate<s (to have
distinct vectors). Thus we must hale= Z,,, with a a unit. For such a given subset
{a,—a} C Zjy, the corresponding cyclic harmonic frame is

HIEREAR )

which is unique up to reordering. This harmonic frame mushlea equally spaced
unit vectors inR?, since the equally spaced unit vectors are the orbit of aovect
under the unitary action of the cyclic group of oraagiven by rotations througlgr%T
(and therefore are a real cyclic harmonic frame).

11.6 Representatives of the six multiplicatively inequival@relement subsets of
Zg (the unique abelian group of order 6) together with the distal|v; — vk and
angles (vj,vi)|, j # kare

{01} 1v32 01v3 {12} 26 0,1,v3,

{la 3} \/§7 \/57 2\/§a 17 2) {17 4} 27 \/éa Oa 27

{15} v2,v62v2, 12 {34} V32v7, 0,1,V3
Since the distances and angles are fixed ungles vj, we conclude that none of
these harmonic frames are conjugates of each other.

11.7 Since matrix multiplication irG commutes, fogs, g2 € G, we have
Qe=0e = aghv=ghy VheG = a=0.

If Gis nonabelian, then this does not hold. For exampleG;liee the dihedral group
of the square acting dR? in the usual way, with a reflection fixing txeaxis. Then
the orbit ofv = e; consists of four equally spaced vectors, each repeated.twic

11.8 Suppose thafG| = n, |J| = d. Then the normalised tight frame given By
is %(E'J)Eeé, and similarly for the one given b@\ J. The (&, n)—entry of the
Gramians for these normalised tight frames are
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(nls,€la) = an (Nlevs,élea) = > n(HEW).

jeG\J

These sum t(%(f],f), which is the identity matrix (orthogonality of the charars).

11.9 Letn=|®| andvj?1 '=Vj, 1<a<d. Then (up to a scalar multiple) the vectors
of Y are
(V}l’vjzz""7v?d)’ 1Sj17j2>---ajd§n-

We think of these vectors as being indexed by the pairs

There are symmetries given by

(a;ja) H(Taaja)v TES, (avja)'_> (a,aaja), (0-1""7O-d) esyw¢)d
The subgroups of the symmetries of these two types havaltintersection, and so
| Sym(W)| > [Syl| Sym(@)?| = dinr.
11.10LetWe gy = (Wg)gea, Yy = (EJ (g))‘j’:1 denote the harmonic frame given
by a choice of charactel{il, &4} C G

(Vatj,Vatk) = é1(a+j)é1(a+k) +---+&q(a+j)éa(a+k)
=& (a)&(j)&(@)&(k) +---+E&a(a)éa(j)éa(a)Ea(k)
= &1(j)éa( )+~~-+Ed(l)m=<VjaVk>-

..........

permutatlona G — G with Vg = Uwgg, Vg €G, then by (a), we calculate
(Vi Vi) = (UWgj,UWgi) = (Woj, Wak) = (Waj—aktb, W),

and so we may take= gj — gk+b.
(c) Takej =1,k=0,b=0n (b), to obtain(vi, Vo) = (Wa,Wo), i.€.,

Moreover, ifG = Z, ando is an automorphism, them= g1 is a unit.

11.11 (a) The frame given by C Zj is real if and only ifJ is closed under taking
inverses, i.e.J = —J. Sincepis an odd prime, 2 is a unit, and $e= —j if and only
if j = 0. ThusJ has the stated form. Siné@&, = Zp \ {0}, K generateg, ford > 1.
(b) The unit groupZy, is cyclic of even ordep — 1. Leta € Zy, have orderj. The

action ofa on Zp \ {0} gives”Tf1 orbits of sizej. We now count the number of
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orbits of thed—element subsets @, which give real harmonic frames (as above)
under the action oZ;, which is the number real harmonic frames.

First consider the case whenis even. Suppose thatfixes somel = KU —K,
|[J] =d. If jis even, then-1= a?, soJ consists of% orbits under the action &
(half the orbit inK and the other half in-K), and we must havg|d. If j is odd,
thenK consists o# orbits of sizej (their negatives give the remainir%g orbits
which make upl), and we must havg|(d/2). Thus Burnside orbit counting gives

p-1 p-1

hﬂéd:lil{wqrgl,d)( é >¢(j)+ 2 >< ij >¢(j)}'

j even j\gcqp—l,% 2
j odd
Whend is odd, the subsetsgiving real frames have the forin= {0} UK U —K.
These are multiplicatively equivalent if and only if thesktu —K are, and so we
may apply the previous count (withreplaced byd — 1). The formula so obtained
also holds ford = 1.
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Exercises of Chapter 12

12.1 If A= [ay] € F9*9 is Hermitian, i.e.Aj = aj, then it is determined by
ajeR, 1<j<d, axelF, 1<j<k<d.

Thus the real vector space of Hermitian matrices has diroansi
1 1 1 2
d+§d(d—1):§d(d+1) (F=R), d+2§d(d—1):d (F=0C).
12.2 (a) Take the trace d& = 3 ; ¢jP;jF to obtain

1= ;(cjaerck: Zc,-aerck(l—az),
i ]

so that thegy are constant, hence equal%dby taking the trace of = 3 ; ¢;P)).
(b) Substitutinge; = % above, and multiplying by gives

n=nda®+d(1-a?).
Thusn(1—da?) =d(1-a?) >0, soa? < %, and we may solve fan.

12.3 By (2.9), we have| fj||+ S || fil|> = d, and so

112 = Z [(Fj, fio = 11511+ ;CZH FlZl? = 511+ C2I 12 = 111
=g

Thus 1- C2d = || f{||2(1 - C?). If C = 1, then the vectors are all collinear (which is
not possible), and so we conclude tht||? is independent of.

12.4 By construction, two of thej are 3 and the other six arel. If two such
vectors are not equal, then the number of times they can h8va aame position
is 0 or 1. The corresponding inner products for these cages ar

1 a1 1., 2 _ 1
24(43( L+4-(-1)%) = 3 24(13+23( 1)+5-(-1)%)==.
12.5 Consider then lines given by thef; (some might be coincident). The acute
angle between the lines given hyand fy is 6jx = cos 1(|(fj, fi)|). Since cost is
strictly decreasing of0, 1], the asserted inequality is equivalent to

S

T .
cos‘l(max|<fj, fk>|) < cos‘lcos(f) < minfi < —.
j#k n i#k n
Rotate the fj) so that one line is the-axis. Then the lines partition the upper half
plane inton sectors. The angle of the smallest sector gives mi6.. This must be
< I, since otherwise the sum of the angles of theectors would exceed. There
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is equality if and only if all then sectors have anglg. The strict inequality follows
by calculus.

12.6 The normalisations of and¥ are(\/gfj) and(4/ %gj). Thus

<\/?gi’\/?9k> = —<\/§fi7\ﬁ,fk> = |(gj,90| = %\m,fkﬂ.

Thus if @ minimises.#.(®) over all unit-norm tight frames af vectors forF¢,
then¥ minimises.#.,(¥) over all unit-norm tight frames af vectors forF"9.

12.7 (a) LetX be the Seidel matrix of the 5—cyc(&, 2,3,4,5), i.e.

0-11 1-1

-10-11 1
2=|11-10-11
1 1-10-1
-11 1-10

This has eigenvalues-v/5,—+/5,0,v/5,v/5. The Gramian of the corresponding
nontightequiangular framed is

1
Gram®)=0Q=I1+—7=2.
m®) =Q NG
From this, we calculate (see Exer. 3.3)
2abba
2
azabb B
Gram®)=Q'=|baZab|, a _3 \/5, b :3—“@,
5 20 20
bbata
2
abbag
3 -ab b-a
~af -ab b V-1, B+l
Gram( @ =QQ'=| b —a ¥ —-ab |, a= b= :
3 10 10
b b-az -a
-ab b-a}
Thus the minimal angle between the lines givendhy® and ®" are
cos % ~ 634349, cos! 3+8ﬁ’ ~ 491176, cost 1+6ﬁ ~ 57.3610.

(b) It is easy to verify thatb = (v;) is given by vectors that lie in five of the six
diagonals of the regular icosahedron, e.g., (using thg hiatmay take
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00c-1c
V:[vj]:<l 10c 0|, ci= 1+\/§.
c-cl0 -1 2

(c) Itis easy to verify thatb“®"= (v;) is the harmonic frame given b0, 2,3} C Zs,

ie.,
11111 o
V=pyj=[1lw? o w ®|, w:i=e5,
10® w w w?
which is the lifted fifth roots of unity (see Example 5.9).

12.8 This does not hold in general. For the four isogonal vector&3 the dual
frame is equiangular (see Example 3.9), but for the five emuikar lines inR3
given by five of the six diagonals of the regular icosahednendual frame has two
angles (vj,vi)| = %(3i V/5) (see Exer. 12.7).

12.9 (a) Adding the last rows of A gives(1,1,...,1). Subtracting the muItipI%
of this from the firsin rows, gives the row equivalent matrix

(=Yt (1-a?)I0
B_< RS 'd>'

(b) SinceB is block upper triangular, its eigenvalues are those oféhdihg blocks:

(1—a?) with multiplicity n—1, n(ar — %) + (1— a?) with multiplicity 1, and 1 with
multiplicity d. Thus, the rank oA is eithern+d — 1 if

1
na—4)+(1- a?) =0,
which is equivalent taP being tight, or it has rank+ d. In any case
n+d—1<rankA) < d?

12.10 The vectors have equal norms, since
. o 1 3 1
1Vajl? = (VajVaj) +2=1+2,  |[W[*=Zv+5=5(v+3=r+2

By (12.15) and (12.16), we have

(Vaj Uor) =Nl a#b

Since(W;, W) = —a¢@m, £ # m, |[w||? = v, we have

N 1 __ _ _
(Wig, W) = é(—agam) + Eagam = a0y, £#m
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Finally,

. . 1
mMmﬂﬁﬁ%ﬁwzﬁwm

and so the vectors are equiangular (Hadamard matrices heneseof modulus 1).
The spac&€” ¢ C” @ C has dimension

1 1
d:= S|+ |7|+1= 6v(v—1)+v+1: 6(v+2)(v+3),
and the framéf;) := (Va ;) U (W) has
1
n=v(r+1)+((v+1)=-(v+1)(v+2)

2

vectors with|| fj[|2 =r+2= %(v+3), and|(fj, fi)| =1, j #k. This frame is a tight
frame forCY, by the variational characterisation (Theorem 6.1), i.e.,

Z;|mm = <w+®><¥—m¢

:g(v+1)2(v+2)(v+3):

(02 (v+3)? (znnn)

The common angle ig fj, fi)|/[| fj || = =5, ] # k.

Q-

12.11 (a) Since is Hermitian, we have-iCT = >* = 5 =iC, so that-C" =C.
(b) The condition of Theorem 12.7 fdf to give an equiangular tight frame af
vectors forCY is

C'C=-C?=53%2=(n—1)l +uZ = (n—1)l + piC,

which that impliesC'C = (n—1)I (sincep is real), i.e.C is a conference matrix,
wherey =0, i.e.,n= 2d.

12.12 (a) Expanding ouE€™C = nl, usingC" = —C and11* = J, we have

0-1* 0 1" n —1°A no
1-AJ\-1A A1) A? onl /-
Equating the blocks gives— A? = nl andAl = 0. FromAl = 0, we have

Al=(AD)1* =0, JA=(-AJ))"=0.

(b) By construction? is a signature matrix, and so it suffices to verify the second
condition of Theorem 12.7. Usintf = nJ, AJ= JA= 0 andA? = J —nl, we have
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_ 1
n+1

_ ﬁ(nJ—Z\H-I —n(d—nl)F2iyAA) = ﬁ((nz—m 21— 35iA)

(Q=1)?—nA£iynd—1)A+ivnAJ 1))

2 . 2
=(n—-1)I :Fm(i(J—l)JrlﬁA) =(n—-1)I q:ﬁz.

Thus the second condition holds, with

=

g=7 2 gon___mw  _n,1
- VnFT 2 2/An—1+p2 272

(c) Since|u| < 2, we can choosé = 3(—u ++/4— [u[?i) in the third condition.

12.13 (a) Since—1 has no square root in Gff), it follows thatN = —S. Hence, if

we add 0 to the difference s&tthen the additional differences-0s,s—0,s€ S

give exactly one extra copy of each nonzero elemef&.of

(b) SinceG = NU {0} U S (disjoint union),N andN U {0} are the complementary
difference sets t&U {0} andS (respectively). Sinc& — —x is an automorphism

of G, it follows that the harmonic frames given BN and bySU {0},NuU {0} are
unitarily equivalent up to reordering by an automorphisthgdrem 11.4).

(c) Letz=x+iy = (&]|s,n|s) be the inner product between two distinct vectors of
the harmonic framabs = (¢|s)¢ .- The inner product between the corresponding
vectors of®g gy is z+ 1. Since each of these frames is equiangular (they are given

by difference sets)z+ 1| — |z = 2x+ 1 is constant, i.e., witd = "5, we have
(d+1)(n—d—1) d(n—d) 1

X41=z+1P—|z? = ] - =0 = x=-3.

Thus the real parts of the signature matrices for the equiangparmonic frames
given bySandSuU {0} are harmonic frames given I8andSuU {0} are

n-d  nt1l d+1 n-d-1  n+1

These signature matrices can be calculated explicitly liyguthe the formula for
quadratic Gauss sums (see [Kal06], [RenQ7]), or by (12.63).

(d) LetW = [E|S]Eeé be the synthesis map for the equiangular harmonic frame
Ps= (§]s)gcq, andl = (1,...,1). By (c), the of diagonal entries %W have the
form

-3 [ D) 1 1-3 [drDn-1) _ 1
d

11 a-% q
Z——§+|y, Z+y2_? - yz_Z

Since®s is unlifted, we hav&Vv1l* = 0. Hence the frame ofd= g+ 1 vectors with

synthesis operator
V= va 1
0 V2w
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is a tight frame forC2™ (it has orthogonal rows of equal norm). Its Gramian is

viv o (Va0 varh_(a VA
1 vaw*)\ 0 vaw VAL 1T +2Wrw ) -
The off diagonal entries df1* + 2W*W have the form

1 . .
1+ 2(—§+|y> —2y,  |2y|= 2\/32 N

and so it is equiangular. This example is due to Zauner [Za&a® an equiangular
tight frame ofn = 2d vectors forC? whose signature matrix has off diagonal entries
+i, it can be shown that the canonical tight frame of the frantainbd by removing
a vector is an equiangular tight framerof 1 vectors forC? (see [Ren07], [Str08]).

12.14 By Theorem 12.6, the Gramian of the normalised equiangiglat frame is

d - n—d
P— ﬁ(l +Cn7dz), Cn7d = m

Sinceﬁcn_,d = Cyn—d, the complementary orthogonal projection is

d d

| n—d
n n

|—P—1— Coal = T(' +Cana(-5)),

so the complementary equiangular tight frame has reducgdhisire matrix—5.
The complement of astg,k,A,v)isasrdv,v—k—1v—2—2k+pu,v—2k+A),
which gives the desired parameters. Alternatively, a cahiotvs the vertex degree
of the complementary graphké= (n— 1) —k— 1, and the other parameters follow
from (12.35)

A,_S(n—k—Z)—n , h—k-2

2 =T
12.15 Without loss of generality, we may assume t@at , is the leading principal

submatrix, so that
Q: (Q\?;r \é> , V E (Cn—rxr.

Thus (by block multiplication), the leading block of 8 — nQ gives

d@ , —nQy ;= —dVV".

Since rankVV*) =rankV*V) < min{r,n—r}, the result follows, and the equations
are nontrivial only whem < %n.

12.16 (a) SinceG is Hermitian with constant diagonal 1 and constant moduffis o
diagonal entries, we have all but the unitary property. Sithe frame is tight, its
canonical Gramian is an orthogonal projection, @%)2 = %G, and we calculate
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d d
U'U=U%=1-4-G+4-G=1I.
n n

(b) By constructiorz is Hermitian, with constant diagonal 1 and constant modulus
off diagonal entries. Thus it suffices to show tlﬂ:ﬁ is an orthogonal projection,
i.e., G? = §G. SinceU? =U*U =1, we calculate

G2 = (Zd) (1—2U+U2) = (Z%I)Zza—U):gG.

12.17 By the variational characterisation of tight frames, weéhav

22 (i = 310w +n—f

J#k

We recall that in Kblder’s inequality with one vector beir{d, . .., 1) there is equality
if and only if the other vector has entries of constant moslulu
(a) In Holder's inequality take the conjugate exponefﬁﬁ and%, to obtain

P

ZZI Vi, Vi [P = Z (Vi W) |P+n < (Z( ) )12(Z(<vj,vk>|p)'2’)g+n

[ 2k ik
2 p
_ (%—n)?
n —n ( V V ) N=———>x—-+n
Z' i (R—n)z-1
J#k

with equality if and only if(v;) is equiangular.
(b) Take the conjugate exponerté_% and § in Holder’s inequality, to obtain

Z| Vi, Vi) |2+n< (Z(l)pﬁpz)l§(2(|<V17Vk>|2)g)s+n

ik j#k j#k

(n? —n B (Z|v,,vk|p)

J#k

2

U\N

which gives the desired inequality, with equality if andyoiil (v;) is equiangular.
(c) Forp= 2, equality in (a) and (b) is the variational characteratf being tight.

12.18 (a) Since two frames are unitarily equivalent if and onhhiéir Gramians are
equal, the condition (12.65) is equivalent to

CIAINAE (A (PUAl Pr/\z))*[v Wl (PoAl Pr/\2> '

Block multiplying out, using/j*vj =1, gives
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I ViW _ | (PoA1) " VSWs (PrA2)
WiVp | (PrA2)* WiV (PoAr) [ '

which is equivalent ta, = Al‘ngngPT/\z (Hadamard matrix equivalence).
(b) The nonzero 4—products for the vectgvge;) and (Wie;j) of the first pair of
MUBs are

(Viex, Wiej) (Wiej, Viem) (Viem, Wier) Wier, Vie) = (Ha)jk(H1)mj(H1)im(H1)ke-

Since the vectors in the pairs of MUBs are projectively uilitaequivalent via
UVigj = aj\eeqj, UWiej = BjWoerj, the condition for equivalence of Hadamard
matrices is

(H1) jk(H1)ke(H1) im(H1)mj = (H2) 0,2k (H2) ok r¢ (H2) o0, tm(H2) om, 7 -

Itis enough to check this condition fgrk, |, mcorresponding to a basis of 4—cycles
for the cycle space of the frame graph (the complete bipagtiaphKq ), which
has dimension? —2d +1 = (d — 1)2.
12.19 (a) Multiplying out, usingu? = w, gives
1 1< s(s+d) g5k _ s(std)+2stkj)
- . ]S a S a S ]
(FRF)k= dgow u 2d Zju

S|

(b) Supposel is odd. Since the= 3 ands= 3 +d terms in the second sum above
are equal, this implies that the sum above is twice the sumtheeeven terms, i.e.,

d-1 d-1
G(a,ad+2(k— j),2d) =2 zoua<2f>2+<ad+2<k*i>><2f> =2 zbearZH(kfnr
r=| r=|

= 2G(2a,2(k— j),d).

Since 2 is a unit, witl2 = % completing the square gives the desired formula
G(2a,2(k Eowza{ (r+2a(k—]))*~(2Z(k-1)%) = (p-2K-D’G(2a,0,d).

Supposel is even. Then we can complete the square as follows.

2d-1
G(a,ad+2(k— j), Za (st +al ) 2~(§+al-))?)

= palzralk=i’G(a,0,2d).
(c) By (a) and (b), the modulus of the entriesFof'R¥F for d odd and even are

1 1 1 1
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Exercises of Chapter 14

14.1 (a) Expanding givesP; — cil, R — Cal) = g1y — 1 — G+ dcic = 0.

(b) Forcy = 0, we solve the above to get = g1;. Thus(Pj — g;1) is the dual
basis to(P}).

(c) Since the vectors giving; ) are a tight frame, we havg; P; = dI, i.e., the linear
dependency (P} — 31) = 0. Suppose thay ; aj(Pj — cl) = 0 for some scalara;,
i.e.,y;jajP; =cy;ajl. Since(P)) is a basis ang ; P, = dl, thea; must be constant,
saya; = a, and the condition becomesy ; P, = adl = d?cal. Thus(a;) can be
nonzero if and only it = .

(d) By (a) and (c)(P; —cl) is orthogonal if and only if1; — 2c+dc? = 0,c# §,
ie,c=3(1% ﬁ).

(e) Since the traceless matrices are the orthogonal corepleoidl, the projection
* (P, —cl,l) 1 1

P —cl— 00 | =P —cl—S(1—cd)l =P —5l.

d

Remark:By (d), c can be chosen s@; —cl) is an orthogonal basis, and so this
shows thatP; — %) is an (equiangular) tight frame for the traceless matrices.

14.2 (a) Expanding, and using the trigonometric identities gig22 sinxcosx,
2cogx = 1+ cosX, we have

Vo ( cog § singcosee“"’) 1 <1+c a—ib>.

sing cos§e? sin? 5 ~“2\a+ib1-c

(b) Using (a), the image ofv* is

A_\@ c a-—ib
~ 2 \a+ib —c )’

where||Al|2 = 1(c? + (a2 +b?) + (a2 + b?) + ¢2) = 1. The form ofA clearly shows
that the map is onto.
(c) SinceAis Hermitian, it suffices to calculate its trace and Frobsmarm:

d 1 d d
racdh) =\ g1 W g =g (tg) =
d 2 1 d 2 d
Il = traceA%) = g tracew’ = W'+ 1) = =7 (1= g + @) =1

If the map is onto, theP = 4/ %A+ %I is a rank one orthogonal projection 64

for any traceless Hermitian matr& with unit Frobenius norm. IA is zero except
for the principal 2x 2 submatrixB, then
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— d—
p_,/9=1(BOY 172 0 _(\/9gB+Gl O )
d \00/"d\0la 0 g,

which clearly has rank larger than one tbr- 3.
See [S0S16] for more detail about the Bloch sphere and asioakhip with SICs.

14.3 (a) The synthesis map of the Bloch vectors o= (v, Sy Qv,SQv) is

1 <1 1 -1 —1)
—(1-1-1 1),
v3li1-11 1

which clearly gives the vertices of a regular tetrahedron.

Taking the first column o = i gives the Sl
(b) Taking the first column ofev = (17 ab he SIC

1 (3— ﬁ) 1 (3+ \/§>
Vio-6va\ 46 ) isreva\ 4ve)
14.4 (a) Since(S Q)ap = ZQ(Sj)aa(Qk)ab =>a 5a,a+jwkb5ab = wkbaa,b-»-h

(-kaj)ab = Z(-Qk)aa(sj)ab = Z wkaéaaéa,bﬂ = wk<b+j>5a,b+j = (wijij)ab-
a

a
(b) Use (a) and induction an(it clearly holds forr = 0,1):

(SjQ)r _ w%(rfl)(rfz)jks(rfl)jQ(rfl)ksj_Qk
wl(r—l)(r—Z)ij(r—l)j(w(r—l)ijj_Q(r—l)k)_Qk _ w%r(r—l)jkg’j_Qrk'

In particular, ford even, we havéSQ)? = —I, and soSQ has order 8.
(c) Sincect = 1, repeated application of (a) gives

h(8 QN1 = SQPF(QKQPS?) = SQPI (w Ak-Pgagkb)
_ w—a(k—b)sa(gbsj—a)_ok—b — alk-b)+b(j-a) g ok _ (,bi-akg ok

14.5 Using, (S QX)4p = wP*8y 5 j, we have
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SJ SJ WA Bk w—bB
(( ;% aa a/3( )B ;%\ﬂ o,B+] \/a
_ LG @Dk bai) _ ik bl 5 yatk-ba
d;w W =w *w dga)
= w kP k= (w *skQT)
(R QYR ) ap =

Z% 20 (92" ap(R") o

Zua (a+d) 5aawB 5G,B+ju b(b+d)5ﬁb
B

[
™M

(b+i)(b+j+d) gk —blbrd) 5 i+ +Digpks

uJ(Jer b(j+k) b | (u] J+d)Sj_Qj+k)ab

":

M(S QXML = RF19 Q"F)R ! = R(w kskQl)R?
_ wfjku—k(—k+d)gk9j—k _ uk(k—ZHd)gk_ijk’

(Pa(sj Qk)Pgl)ab = Z Z(Po)aa(sj -Qk)aﬁ(P;)Bb

a B

1
= z Z 5a7oawﬁk5a7[3+150703 =a’ kbécrla,crlbﬂ
a B

= @O bk “abroj = (S71Q% )
14.6 The matrices® andQ? are diagonal, with
(RY)jj = 99 = (1) )09 = (-))* = (-1)) = (@F);;.
From (14.13), we have (S2)F 1 = Q%.
14.7 We have associativity

((A,zn)(B,28))(C,zc) = (AB,(za0B)zs) (C,zc) = (ABC, (240 BC)(z50C)zc),

(Aza)((B,28)(C,zc)) = (A,za) (BC,(z80C)zc) = (ABC, (za 0 BC)(z30C)zc),
and identity(l,1)

(1,1)(Aza) = (1A, (1o A)za) = (A Za), (A,za)(1,1) = (Al (zaol)1) = (A za),

with inverse(A, Za) ™t = (A 1,z 0o A7) = (AL, (Zao A™H) )
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(A Zna) YA Zp) = (AL Z7 o AT (A Za) = (ATIA (Zy T o ATEA)ZA) = (1,1),
(A Za)(AZp) = (A ZA) (AL, Z oA™Y = (AAL (Zao A D) (Z3 1o ATY)) = (1,2).

14.8 (a) Expanding, and using d&) = ad — By =1, gives

ca(p,g) = (yp1+ 0p2)(ady + Bop) — P2t
= ayp101 +Bypidz+ (ad — 1) p20is + BIP202
= aypits + BYP1G + ByP201 + BAP20z = P OAG.

(b) Sinceca(p+ 0, p+0) = ca(p, p) + 2ca(p,q) +ca(q,q), we have

Z(p+Q) Z(p+q) (—p)CAPP)(—py)cal@) wW°A(P.0)

2(P)2a(0)  Z(P)Z(A) (—p)eAPTaPId  (—p)Zapd

Let B := (. Substituting int@ap(p) = za(Bp)zy(p) gives

(,”)<ABD)1(ABP>2 (,“)(ABp)l(ABmz %(p) (fu)(Bph(Bp)z
(—p)PP2 (_u)(Bp)l(Bp)z P (—p)Pep2 ’

and cancellation givegy(p) = 2a(Bp)Zy(p). From (14.19), (14.20), we get

Zan(P)

= Z(Bp)

2k (j,k) = w K (—p) KT = oIk golk = 1,
2R(J,k) = IJJ(Jer)(_u)]k*l(JJrk) _ ul<]+d)u7

J'2

() =ppi=1

SinceM = RF, this giveszy = (2ro Yr)2r = 1. Fora= S QK, g, = |, so that
Zg ok = Zg ok. A simple calculation (see Exer. 14.4) givegok, i.e.,

(SJ'_Qk)Sm_QPz(g'_Qk)*l = fP—iP2gPiQP2 Zg ok(p) = wkPL—ip2
(c) For anyB = (‘;’/ g) € Slo(Zaq), expanding p+dj)Tos(p+dj) gives

ay(pi+2djipy+d?j5) + 2By (pLp2+djip2 +djapy + d?j1j2)
+ B3 (P3+2dj2p2 +d?j3) = aypi+ 2By pip2 + BS p5 = p' ogp mod 2.
Hence the argument of (b) goes through.
14.9 (a) Fromzap(p) = zo(P)Za(Wb(P)) andian(p) = Ya(Yh(p)), we obtain
P1 P2 P1 P2 Ub(P)1 Wb(P)2
Ctlpab&zzyabmzﬁb(p) - Cnlubgal)lzzumz (p Cgua(CL/Jlap»lzzﬂa(wb(p))zZa(“’b(p))’

which isZy, = 2y(2a 0 Yy). SinceSQP(S Q%) (FQP) 1 = wPi-3kgi QK we have

25001, K) = Zengn (k) = P12,
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(b) Since deS) = det( Q) = (—1)4 1, and(— )9 = (-1)9u® = (—-1)%*+1, we have
detUp) = det(c}c5S Q) = (—p)2U+H (—1)(@-DIH) = (—) 20+ =1,

Henceza(p)? = det(za(p)Uy,p)) = det@dpat) = 1, i.e,. Z(p) is ad-th root of
unity. From Lemma 14.1, we calculate

. p@aH
E(Jak):mw J :(;JJ J.
(d+D)(j+k) . o
so(i k)= H T iid) — i)
Rk = p @+ (+j+k) H =H :
a u(d+l)(j+k) K(k—2i+d K(k_2j+3
d+1)(j+k
Zv(j,k) = u(+—)(]+> — u(dﬂ*l)((l*ﬂ'_l)jﬁ»(lfg)k).

“(d+1)(0*1j+ok) B

These are indeed powers @f(for the last, ifd is even thero, o1 are odd).
y o

(38) (59)(58) = (ias”on “%0™) = (53]

which is equivalent to déM) = ad — By =1.
(b) The inverse oM € Sly(Z) is given by the formula

(58) - am (%)= (5 )

(c) Asin (b), the inverse iBLy(Zg) is given by

(3 g) - <5V_GB>'

14.11 Suppose thab € Z3, has odd order, saya2+ 1. Sinceb? is a unit, we have

14.10 (a) ForM = <a B), the conditiorM™ AM = A gives

e d-1 R d-1 o g mi2 patly
\/aood _ ubj(]+d) _ %ubbaj(b j+d) _ ZOIJJ +bHdj XOGH(J +b dj)'
j€Zq I= I= 1=

Evaluating the Gauss sum using the quadratic reciproaity(1#.108) gives

\/aoo‘d = \fde%(df(baﬂd)z) _ \/a(\/i>17b2a+2d.
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Ford even,b must be odd, and fat odd, we may assume thiats odd (by replacing
it by b+ d if need be). Thud? = 1 mod 8, so thaty g = (Vi) 9.

14.12 (a) The coefficient matrix of thke x k linear system

1 1 . 1\ /P |
A1 Ay e /\k P, A
A2 AZ A2 Pl _ | A
/\th(.fl )\571 )\l|<(71 H( Ak.fl

is the transpose of a Vandermonde matrix, and so is inverfiliius the system can
be solved to give eadR as a unique linear combination bfA, A2, ... AL

(b) For the eigenvalues &, ?, . .., w*~1 the coefficient matrix is thi x k Fourier
matrix F, (multiplied by v/k). SinceFy is unitary, we can compute the inverse of the
coefficient matrix by taking its Hermitian transpose, tovedior P, ;

1 1 1
Py — k-1 !
P, l w w A
P2 11 @ ... @3k A2
. k 0 .
P 1 1k 1... k-2 \A1L

(c) If Ais d x d, then by (b) the multiplicity of the eigenvalueis
tracgPy ) = %(d+Xtrace{A) + A traceA?) -+ A trace AL)).

If Ais unitary, i.e. A"t = A*, and& < ¢ <k— 1, thenA! = A% = (A" )k~ gives

l\).‘ ~ N

tracgA’) = trace(A“*)*) = tracg Ak-7),  1<k—/(<
(d) It follows from F2 = P_; thatF has order 4. SincE® =F 1 =F, we have
1 - =2 2 B
my, = Zr(dJr/\trace(F)Jr)\ tracgF?) 4+ +A traceF)),
where, by the quadratic reciprocity law (14.108),

trace{F):ﬁ (1,0,d) = ;( i)(1+(—i)d),
and

tracgF?) = z (3+(-1)9).

Q.\H
NI

LS PIDES

Q-
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Thusm, depends o modulo 4, as given by Table 14.6.
(e) Sincez® =1,2? =71 =Z7*, we have

m, (d +AtracgZ) 4+ A trace(Z))

w \

With T = e%?, the quaderatic reciprocity law (14.108), fae= 3, b = c = d, gives

tracgZ) = 91— 1 zu] (j+d)+2j2 — 4t 1 \/7(3 d § -2dkk+1)

2+17, d=0mod 3;
1-1)2+179={1, d=1mod 3;
1+17, d=2mod3

22 1
\/§(2+ 9 = 3
Thusm, depends or modulo 3, as given by Table 14.7.

14.13 (a) It suffices to show thaR has orded’. SinceRjj = (—u)j2 and—pis a
primitive d’—th root of unity, the diagonal matri® has orded’ (considerj = 1).

(b),(c) Lett = eg, a primitive —th root of unity. Takea = ¢, b= ¢d + 2(k— j),
¢ = d in the quadratic reciprocity law (14.108), to get

1d 1
1R€F jk_ ZZ aB(F)Bk* ; z u 2a1”éa(a+d)“2ak

1 /d 7 (ed-(ed+2(k—))2 é — T1(4B24 (td+-2(k—j))B)
= d eeﬁ Z e 7

_ 3\/3(\@1&1( i [52+dB 0B

Ford odd, and fod even and’ odd, we have

(71)%B2+dﬁ _ (71)%B+d8 _ (71)B(%+d) -1

)

so that the last sum becomgg (7! %), whichis¢if T/* =1, i.e.,j —k=0 mod¢,
and is zero otherwise, which gives (b). Fbeven and’ even, we have

»\‘5’

(—1)FP+dB — (_1)PP — e 2P — ;2P

)

so the sum becom@ﬁ(ri*k*%)ﬁ, which is¢ if j —k— 9 =0 mod¢, and is zero
otherwise, which gives (c).

14.14 (a) From Exer. 14.13 (b), we have
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— 7l<j7k)2 | — = -
(FIRPF) j = §(\ﬂ)l—3d (=p)738797, J k=0mod 3;

d 0, j—k#0mod 3
since(—1)i k= (—=1)30-0 = (—1)~30-K* for j —k =0 (mod 3. Multiplication
by (—1)9-1 = (-1)-3d, followed by left and right multiplication by the diagonal
matricesR3 @ andR gives the desired formula fgW\s) jx.

(b) The symplectic operatioM], M := R¥2F-1R3FR, has order 3, i.e(cM)® =1,
for some scalac € T, since it has the following symplectic index of order 3

La -1 3
wo (72 3\ _(10\%%(0-1 10\°/0-1\/10
a”\1+%a 1) \11 10 11) \10)\11)"
SincecM is unitary, we can determinefrom (cM)? = (cM) 1 = ¢-IM* (at some
nonzero entry). By the formula of (a) divided by 1)9-1 = (—1)1-3¢, we calculate
d-1 3

- 1_34\ 2 142,42 1.2, 2d,2
(Moo= 5 MaaMao = (1 (VI )" 5 (pymaervatdatiadt
a=0 a=0mod 3

Since(—1)3 = (—1)B = u% and 3| a, the sum overr =0 (mod 3 evaluates to

wa
o
wia

-1 41 -1
zwwzz&wﬂqusz&W*uJ%W%
@ o g 3

=0 f=o
by the quadratic reciprocity law (14.108) Sindéd*)go = \/g(\ﬂ)*<1*3d), we have

(M*) (\ﬁ)f(lf3d) d s )
= (MZ)zz = (ﬁ)2(173d>(\ﬁ)l’% = (\/i)4(§ b= (—1)3 1_ (_1)d 1)

so thatc = (—1)9-1, andW, has order 3.
(c) SinceF ~1R®F is circulant, with constant diagon@/%(\ﬂ)l*w, we have

traceW) = (—1)**tracgR *1F ~1R°F) = (—1)"1\/3 (Vi) ¥ tracgR32H1).

Sincer® =1, u% =1, and 3| d, we calculate

tracgR3 &+1) = d71u<%a+1>j<1+d> _ dfl(rauy%aﬂ)i(wd) _ dflrajzui%di
2 2 22

N

d
3-1

d_1
3
a(3k4-c)?

2 2
u(3k+c) +d(3k+c) _ Tacz ucd+cz Z)( u3)3k +(d+20)k
k=

N

Il
o
Il
=3
™
-
o
Il
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By the quadratic reciprocity law, the sum ovetan be written as

o3 (3 HET20K) _ \F e (d—(d+2c)?) )3 e 3 (§F%+(d+20)B)
=4 o p=0

— \/gllwcz(\/i)ld

where the sum ovg8 simplifies to 1+ T%*°+ 78+, Thus

(_ T) %Bz+(d+20)ﬁ ,
0

™M

traCE{Wa) — (_1)d71 j(\/i)lm\/g(\ﬂ)ldciracz(l"'r%C+T%+C)

i d d
=—— (14213 +21%(1—-13)).
%l a-19)
(d) SinceT® = 172 = 12 = (1P)2, the eigenvalues = 1,7, 12 of W, satisfyA = A2,
and so, by Exer. 14.12, the multiplicity of the eigenvaluef W, is

m, = % (d+A 2tracgW,) + A traceWa)).

which depends omand$ (mod 3.
(i) Ford=3 mod 9,d #£ 3, % =1 (mod 3, so thatr§ = 1, tracéW,) = 3, and

a6 ) =1;
(d+3(A%+2)) = {d33

m, =
2
3, A=T,T%

Wl

(i) Ford =6 mod 9, =2 (mod 3, so that tracé\b) = —3, and

46 ) =1;
(d—3(A2+2)) = {dis

— 2
3 A*l,l.

Wl

(e) The factW = (R~1F)~1Z(R~1F), with c a scalar, follows from the conjugacy

1 . (0-1\ [10\ */0-1
Wo=9 729  9={1 1 )= 11 10)
By matrix multiplication,r*-%W, = (R"1F)~1Z(R"1F) is equivalent to

RFRFIRF 1= (—10)% 1 = (vi)t .

From the calculation (14.62), we ha®F RFRF= (v/i)}~9I, and so it suffices to
prove thatF ~*RF~! = FRF. By the quadratic reciprocity law, we have
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(F-IRF 1) ’k_a Z ~2ja alatd) ~2ka _ i o8 (a2+a(d-2j—2K))
_ %xfde%( —(d-2j-202) _ %(\[i)lfd(_l)ﬁkuf(ﬁk)z.

From this, we havéF ~1RF 1) = (FIRF1)_j _« = (FRF)jx.
14.15 By the commutativity relation (14.5), we have

f) qu ( U) Pip2td2gPr QP2 gl — ( ) P1P2+0 2 ¢,)P2%1 GP1+ ( P2+ 2

— (_U)szh P1Q2(_u)(P1+P2) O1+02) SRt P2t — (_u)(pq}Dqu_

From this we obtain

DD p=(—)P PDy p=1 — D,'=Dp,
Dplﬁq = (,”)(p-,q}—mﬁp)@q@p = (,u)2<p7q>|jq|jp = w(m)@qﬁp_
Now
|jp+dq = (—p)(Prida)(p2tde)gpr QP2 — (_u)d<p1QZ+DZQ1+dPlQ1)5p.

Since(—u)¥ = (—1)4*1, for d odd the scalar on the left hand side is 1, anddor

evenitis
(—1)ProetP — (_1)Peth—P1% — (_7)(PA)

14.16 (a) SinceDp = (—p)PrP2Up, whereUp := Up modd = SPLQP2, we have
a(—p)PP2U0 et = w(XﬁBp)(_IJ)(BP)l(BP)zLij’ Vp e Z2.
SinceBp= Ap modd, we havey, = A, and
za(p) = w(X:Ap}(_l/l)(BP)l(Bp)z*Ple7 pe Zﬁ,
where

cs(p, p) := (Bp)1(Bp)2 — p1p2;
is calculated modula’ (but depends only op modd). As in Exer. 14.8 (a), we
havecg(p, p) = p' gsp.
(b) An elementB, x] € kerf provided6([B, x]) = (I,1). Ford odd, this implies
B = s =, while zy(p) = wX-P) = 1 givesy = 0, and sof is 1-1. Ford even, we
obtain (14.45) since

Ya=Bmodd=1, de(B)=1 =— B:(“rd Sd)

td 1+rd

and usingog = (td sd> and(— )9’ = w?i gives



544 17 Solutions
d
2a(p) = w(X7p)(_u)dtp%+dsp% — 1= 2P XISt EsR X = (S§> .

(c) Each Appleby index has the foriB, 0], so that
za(p) = (—p)" = p ™ mi= (Bp)1(Bp)2— prp2.
(i) Since 2,d? = 0 modd’, dj?> = dj modd’, we calculate
m=(d—1)p1((d+1)p1+ (d—1)pz) — p1p2 = 5 — 2p1p2 modd’,

(d+1)m= p5—2p1po+dps — 2d pLp2 = p5— 2p1 P2 +dpz modd’,
so that
0-1 . L
Ya = (1 _1), Za(j, k) = p 2,

Thusa= Z (up to a scalar).
(i) We have

m

(1 +(d+ 3P (50~ Py + (A~ 2)p2) — pape

4
(34-1) pi —6p1p2+ (d —6)p5 modd’,

which gives(d + 1)m= (1d — 1)p? — 6p1p + (d — 6)p modd’, so that

1 3 . 14_1)i2_g@i a2
b= (g 3) aliok) =ik 0-0,

We have the factorisation

d

d+1 3 10\ /0-1\ /10| */0-1)\ [10\°
a0 %)-(18) (T0) (1) (0)(3)
and so, by Lemma 14.3, we hage- R-1F ~1R-3FRS (up to a scalar multiple).

(iii) Let B = v/d+ 1. We have

m= (—vd+ 1p1+dpa)(dpr+ (d— A+ 1)pp)
= —dvd+1(pZ + pip2 + p3) +dp1p2 modd’,

Ford odd,m(d + 1) = (d? 4+ d)pyp2 = 0 mod 21, so thatzy(p) = 1. Ford even,

Za(p) = p(@FDM = M — (1)~ VAL(PLprp2tp3) + P2

— (_1\P3P1P2P3+P1P2 — (_1\P1tP2 — 3 (PLtp2)
(-1) (-1) w :

Thus
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_ (B ) 1) = oS @+ (+k) 1, d odd;
v < -B)’ alk =0 (—1)i+k deven

and we can take

a=Sd@+) g3dd+lp Pgﬁ,d d odd;
S2Q2P 5, deven

(iv) We observe that ifl is even, therk is even and is odd, so thakd = d modd'.
Since defF;) = —1, the operation is antiunitary. We have the factorisation

E_ d—2k K 0-1\ (1 0
¢~ \d-k d+2«/\1 0 0-1)°
where

<d—2K K ) _ (1 o)‘”z (K 0 ) (o _1)—1 <1 0)"‘2
d—«k d+2k 11 0d-3k/)\1 0 11 :
Sincek (d—3k) =1 modd’, k is a unitinZy, and so we may take= RA*2P,F ~1RI-2FC.
14.17 (a) The commutativity follows from (14.5), i.e.,
(SQ)(sQ™ = Sw'sR")QM = W' FO ™.
(b) Since(A,B) = tracg AB*), we have
(SQf,SO™ = tracgSQ‘Q S Y) = tracd Q"™ =0, (—meZ).

(c) A symplectic index foa = (R'F)~1 = F IR is given by
s_ (0 1) (10)\_(-1
“\-10/\-¢1)—\-10)"

za(,) = (=) (COHICD = (P2

so that

Thus
(RF)1sQ/(RF)=asR‘a t=z(1,0)S ™ot = (—u)'Q1,

i.e., SQ! has distinct eigenvalues-p) ‘w1 = u@-Ylw-I with corresponding
eigenvectorK'Fe;.

(d) The matrices in the first set are diagonal, and so havenegéeors{e;}. Up to
multiplication by a scalar, the matrices.irt; are powers 08Q‘, and so have the
same eigenvectors. We can compute the diagonalisation by

(SQf)r _ w%r(r—l)éSr_Qré _ ((7u)—€Q—1)f _ (7“)—r[_Q—r’
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or
(RF) IS Q"(RF) = za(r,r)S Q" = (—p) Q.

The eigenvalues will not all be distinctrifis not a unit.

14.18 (a) Recall the determinant is the product of the eigenvalveshave

d-1
det(S) =detFSF 1) =def Q) = I_Lw'fwzl‘ w241 — jdd-1) _ (_1yd-1,

From the formula for the sum of consecutive squares, we have

d
Z j(j+d)=Zdd+1)(2d+1)+ = dz(d+1) d(d+1)(5d+1).

Sincel = % — 12,/i%, we have that d¢R) depends on mod 12, i.e.,

detR) = z uJ (j+d) _ % (d+1)(5d+1) _ ZZ(d+1)(5d+l) _ Tl—d2i3(d+l)2.

The determinant of andZ can be calculated from the Tables 14.6 and 14.7. Since
det(F) depends o mod 8, we first consider det), for which the table gives

det(Z) d 1) 17 d=1mod3
T otherwise

SinceZ = 79~ 1RF, we have
detF) = det(Zd 1|) 1det(R) 1det(Z) —d(d— 1)572(d+1)(5d+1)58(d—1)2

—d?—d+2 .
:Zf3d273d+6:(\/|) 3d?-3d+6 _ , /f 2 _j1-3dd+1)

(b) Since defic™*M) = c~9detM), cis ad—th root of detM). Sincey is ad—th root
of —1, we can take

&._ S dodd;
uS, deven;

>

_JQ, dodd;
| uQ, deven

ForF, we can take = i? to be a fourth root of unity whed 0 mod 4, by solving
_d2—
Ao VP 2a= _d?—d+2mod 8

e.g, ford =3 mod 8, &= 6 givesa=1,F = ¢ 'F = —iF. Ford = 0,4 mod 8, we
must takec to be a 4—th root of unity. By similar calculations fdé£, we obtain
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u‘%F, d =0 mod 8;

F, d=1,6 mod 8; 1 d=0mod 3
. |iF,  d=27mods; , |¥ P ¢=Ymods
F= Z=<7, d=1mod 3;

—iF, d=3mod 8;
u%F, d =4 mod 8;
—F, d=5mod 8;

TZ, d=2mod 3;

andone cantakR=ZF 1. o
(c) The subgroups ofS Q,F,R) containing (S Q) are canonical abstract error
groups. Fod = 2, the canonical abstract error group, index group pairs are

(8,4),(4,2) (16,9),(8,3), (243),(123), (4828),(2412).
These include the two which are not dicyclic groups (see Eptah3.21). Fod = 3,
(27,3),(9.2), (548),(184), (819),(27.3), (10815), (36.9),

(16214), (54,5), (216.88), (72,41), (648532, (216 153.

Ford = 4, there are 19 canonical abstract error groups. The firsafew
(64,19), (16,2), (128749, (32,34), (128782, (32,31), (128545, (32 24),

(192 4), (48,3), (25624064, (64,242, (25621237, (64,236),
(25617275, (64,216), (256217, (64,18), (256395, (64,34).
The remaining ones have orders 384, 512, 768, 1024, 1538, 307

14.19 (a) SinceF andR have finite orders (4 and') their eigenvalues, and hence
determinants, are roots of unity. ThiesndR can be multiplied by appropriate roots
of unity to obtain matrice andR with determinant 1 (see Exer. 14.18). The group
(If,l% contains all elements dF, R) up to multiplication by am-th root of unity
(wheren is fixed). Since(F,R)  SlLy4(C), the only scalar matrices that can belong
to it are those given bg—th roots of unity. Since

Cspld) . (FR (F,Rwl)
1 n(FR (wl)

1

andCsp(d)/[l] is finite, we conclude thafF, R) must be finite.
(b) SinceF commutes wittP_; = (P_1)~! = F?, it suffices to show thaR does also

(P_1RP.1)jk = Z Z 5j,7al-1a(a+d)5a,ﬁép,7k - “—i(—j+d)5jk = ui(j+d)5jk = (R)jk-
a B

14.20 (a) SinceA = A*, we haveg(A)* = g(A) = g(A*) if and only if

g(aj) =9@&j),  Vik
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which is equivalent tg commuting with conjugation of@({aj}) (sinceg fixesQ).
(b) If g commutes with conjugation, thegiv') = g(v)T = g(v)' = g(v)*, so that

g(wW) =g(v)g(v’) =gv)g(v)*,  g(v)*g(v) =g(v)g(v) =g(v'v) =g(1) =1,

i.e.,g(w*) is a rank one orthogonal projection, with the necessity gheammute
with conjugation from (a).

(c) Sinceg(IT) is an orthogonal projection, by (bd,must commute with complex
conjugation orQ(/7). Sinceg is an automorphism dE fixing 1 € Q, it mapsu to
another 2-th root of unity, and sg commutes with complex conjugation @{u),
and hence on the SIC field= Q(I1, u).

-10
(a) It suffices to show the symplectic indicesbodindZ do not commute:

0 -1\ /0-1 -11 10 0-1 0 -1

= (50) (1) -(01) (1% -G ) (% 0)-=
From (a), it follows that the subgroup generatedlandZ is nonabelian (fod > 2).
(b) Sinceb andZ are symmetries of all the = 2,3 SICs, their symmetry groups are
nonabelian.
(c) If bandZ are symmetries of a SIC, then the symmetry group is nonab&ian-
ilarly, if b andM, are symmetries of a SIC, then the symmetry group is nonahelia
since their symplectic indices do not commute:

d+1 3\ /24 d42 -3 d-1\ /d+1 3
B("g?’ d—2) = (dfl 3 )7 \dr23d )= ¢34 2)B
14.22 Sincectc=1,c< T, [a] - T = [a] - (v*) is well defined, and we observed that
it maps (Weyl-Heisenberg) SIC fiducials to SIC fiducials. &anitary, we have

14.21 We observe thdi= F ~1C has the (extended) symplectic ind&x ( 0 _1>,

[a- M = (av)(av)* = a(w)a* = alla’.
For aC antiunitary, we observgaC)~! = C~ta~! andfT = Cl1C%, so that
[aC]- M = (aCV)(aCV)* = (av)(av)* = avwa* = alla ' = (aC)l1(aC) 1.

Thus, for[a] € PEQ), [a]- T = alla~%, and so is an action on the SIC fiducials.

14.23 (a) It suffices to show that the conjugates of the generatois are inE.
Clearlyi = u=* € E. Sincel1* = (wW")* = w* = I1, we havelT = (IM*)" =T,
i.e., the conjugate of an entry 6f is an entry off7.

(b) Since[a] - (v") := (av)(av)*, [a] € PEQd), defines an action of the extended
Clifford group on the Weyl-Heisenberg SIC fiducial projest¢see Exer. 14.22),
it sufficies to show that the entries 6F = [a] - [T belong toE = Q(I7,u) for the
nonscalar generatoes= S, Q,F,R,C (Theorem 14.1). Foa unitary, [’ = alla 1,
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so the entries of1’ belong toE provided that the entries &f do. This works for
a=S Q,R (sinceu € E by definition). Fora = F, we modify this argument. We
observe thafl’ = (v/dF)M(v/dF)~1, wherey/dF has entries irE (formerly the
SIC field was defined to contaiid, so thatF itself would have entries in the SIC
field [AYAZ13)). Finally, for a=C, 1’ = I, which has entries ift by (a).

14.24 (a) We have(éa]fl'” =tracga 1MaDy) = tracgMMaDpa 1), so (14.43) gives

X‘[,a]fl‘” — trace [ wPBP Dgy) = w<b’Bp>XE’;7p'

ReplacinglT by [a] - [T, gives the stated formula.
(b) Sincel* = I, we havelT = 1". Using tracéA) = tracg A" ), we calculate

Xy = XQT = trace /1" Dp) = tracgD [ 1) = tracg1D})).
SinceDp = (—u)P1P2SP1QP2 andST =S4, QT = Q, (14.5) gives
|j'F|; _ (_“)plPZQPZS_pl _ (_“)plpzw—plpzs—m_sz _ (_u)—Plng—pl_sz _ ﬁijp’

so that

Xy = tracg1D}) = tracgMD_3p) = X},

(c) By part (a), the formula holds for an Appleby index withtd = 1. Hence
it suffices to consider an antiunitaf®C], with Appleby index[BJ,b] = [B, b][J,0],
where detBJ) = —1. Now([aC]- 1 =aCl1Ca ' =alla ! = [a]- 1. Sinceac C(d)
has Appleby indeXB, b], by (a) and (b), we have

X,n‘]p = Xpﬁ = w(b,Bp)Xéa[])'n = w(b.Bp)X‘[aapC]-l'l .

Replacingp by —J p above gives

n_ ,n _ (b—BJp),[8CTT _ _ (bdetBJ)BIp), [aC]-11
Xo =X(Z32p= wf p>X—BJp = oPdet®) p>Xdet(B.])BJp'
0-1 ap

14.25 First supposeth&8 =F, = 1.1
isinC(F,) if and only if AR, = FA, i.e.,y = —8, a + 3 = 8, which gives

SCESRIE GRS

ThereforeC(F,) = {al + BF,: a,B € Zg} NGLx(Zy). By the Cayley—Hamilton
theorem, we have? + F,+1 = 0, so that

. Then a matriA = v 6) € GLy(Zy)

(a1l + BiF) (a2l + BoFr) = anal + (012 + 021)F + BB (—F — 1)
= (a2l + BF) (a1l + BiF),
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andC(F;) is abelian. Thu€(F;) is the uniqgue maximal abelian subgroup containing
F,, and hence containing(/7) andS(/7) (which are abelian and contal).
Now suppose thad = ARA~L, for someA € ESLy(Zy ). Then

C(B) = AC(R,)A = {al + BARA ™ : a, B € Zg } NGL2(Zy),

which is abelian, since it is the conjugate of an abelian grduis the maximal
abelian subgroup containir®) and hence containing (/1) andS(/7), as before.

14.26 (a) It suffices to show this for the generaters- S Q,F,R (Theorem 14.1).

For these, we havé Q,R, vi® 'F ¢ Q(u)9d c E9x4,
(b) It suffices to consider the generators of part (a). Bygay.we haveg(S) = S

9(Q) = Q%, and, similarlyg((—p)i*3j) = (—u)*i* & givesg(R) = R, Sinceg
commutes with conjugation, we have

(V" TF)avit ) =gFF) =gl =1,
S0 thatg(\ﬁdle) is unitary, and it is in the Clifford group, since
g(Vi' RS2 g(ViTTR) L= g(FSI R HE ) = g(w K ks )
— o ke Kl

(c) We observg([a]) is well defined, since ib € [a) withb=za z€ E, |z hen

S, gon 8 S0t <o)
g(h([a))) = g([h(a)]) = [g(h(a))] = [(gh)(a)] = (gh)([a))-
(d) The Appleby index multiplicatiofB1, b1][B2, b2] = [B1Bz, b1 + B1by] satisfies
[HgB1Hg *, Hgby][HgB2Hg *, Hgbz] = [Hg(B1B2)Hg *, Hg(by + B1bz)],
and so it suffices to show the formula for the generators. Kirmwe have
9(f([0, pl)) = 9([Dp]) = [Drgpl = f([0,Hgp)),

and withB, denoting the symplectic index of a symplectic operatain

ByR) = Breo = (BR) = (kt; S) = ((1) k(;) (i 2) (é k:1) = HgBrHg

- (48)- () (3D 6) man

14.27 (a) Sincefa] - 1 = alla~1, we have
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bleSy <« bAbl=1 <+ abal@lal)(aba?l)l=anatl
> [a[b][a] "t =[aba ] € Sy.n-
(b) By Exer. 14.26, for anja) € PEQd), we may assume th&(a) C E. Thus
@eSy <« [@-N=MN <= allal=r, whereQ@acE

= g(@g(Mo@ *=g(N) <= [g(a)]-g(M)=g()
<~ g([d)=[9(a)] € Syn)-

(c) The fiducialg(/7;) is on some orbit’, and so there if] € PEQd) with
g(r;) = [a] - M.
By (a) and (b), we have
Sy =San = 9(S)=[a S, =[Syl "

Let[a] € Sp; be canonical order 3, with symplectic indexThen by the above,
there is soméav| € S, , with symplectic indexM, and

g(fa]) = [g(av)] = [al[am][a] *.

Let [B,q] be an Appleby index cé. SinceHgLHg*1 is a symplectic index afi([a.]),
it follows from the above that the Appleby indices satisfy

[HgLHy*, 0] = [B,q][HgMHg *, 0][B, ] ! modK,

whereK is the kernel of the Appleby indexing homomaorphi$gof (14.57), which
is the kernel off (see Theorem 14.2), aral= b (mod K) means thaa b € K.
ExpandingHgLHg *,0][B, ] = [B,q][HgMHg *, 0], gives

[HgLHy 'B, HgLHy ‘o] = [BHgMH *, q] modK.

For d odd, K is trivial, so thatHgLHglq = ¢. For d even, multiplication by an
element oK adds(s$,t9), st € {0,1}, to the second index, so that

0 modd, disodd;

A—1g= (HeLHs1—g=
(A=1)a= (HgLHg " —1)q {omodg, dis even

whereA:= HgLHg*1 modd has trace-1 (sincea_ is canonical order 3). By (14.71),
we haveA? = —A—1, so that(—A—21)(A—1) = 3I, and we have

0 modd, dis odd;
Omodd, diseven

3q—<A2|><A|>q—{
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(d) If d is odd, then 3 is a unit, so thatj3- 0 givesq = 0. If d is even, we have

d

q= (Sg) , s,t € {0,1}.
3
N 14+rd sd sd . o
Multiplication of [B,q] by [( .| .4 )] € K gives a symplectic index.
td 1+4rd t)é

Hence, ifl1 = I1; is a centred fiducial, theg(/1
that

[a] - M, with [a] symplectic, so

Sy(m) = S = @S, a7,
which consists of symplectic operations, ig{/7) is a centred fiducial.
Remark:lf d =0 mod 3, then it can be shown thats unique, withg=0 mod%.
(e) We show that if7 is strongly centred, then all centred fiducials on its exéehd
Clifford orbit are strongly centred. By (c), every centred fiducial on the extended
Clifford orbit of I1 has the forma] - 1, where[a] is symplectic, with symplectic
indexB. By (14.89), we have

@m0
Xdetg)gp = Xp € E1,

so that[a] - 1 is strongly centred.

(f) For the first part, we need only consider the cdse 0 mod 3. Here, we have
g(r;) = [a] - My, where[a] has extended Appleby indéB,q] with g=10 mod%,
i.e.,qj=a;3, aj € {0,1,2}. By (14.89),

-
X = wladet®n) XE(BSBW Vpez3,

which implies that the third roots of unigy? = (esz)"J are inE;. Now

2d 2d 2mi

aue®)=a(-w¥) =(-p 3=e%,

sow’li is fixed byg; (isinEq) if and only ifa; = 0, i.e.,q= 0 and[a] is symplectic.
Now consider altl. Sinceg; € %, we havey: (1;) = [a] - 1}, where[a] is sympletic,
with sympletic indexB. Let 1 = [1;. Then by (14.90) and (14.89), we have

(&-n
B

u(M) _ 0 n_ _ ()
Xop =Xp: Xp = Xdetgigp = Xdetgjpp 7P

so that] = det(B)B, which givesB = —J. The symplectic operation with sympletic
indexB = —Jis P_;C, so that

G1(M) = [P-1C] - 1T = P_1ge(M)P{ = P4 TP 1.
14.28 (a) The composition is given by the multiplication formuace

(a101)0(8202) (V) = (a101)(a202(v)) = a101(82)91(92(V)) = a101(a2) 9192(V),
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and the product is iXX (see Exer. 14.26). Since composition is associative, ficast
to verify the formula given for the inverse, i.e.,

(g '@hg Hag =g @y @glg=gatal=g*()=lI,

(ag(g '@ hHg ) =ag(g Hat))gg t=aa t1=1.

(b) The multiplication is well defined, since ffa € PC(d) one can always choose
ac E9d (see Exer. 14.26), and in its definitianis unique up to multiplication by
a unit scalac; € E, and therefore

([cr81]01) ([c282]92) = [C1@101(C282)]0102 = [C1C28101(82)]0102 = [@101(82)] 9102

The group properties can verified by taking representativE& <9, and using (a). It
is clear PQd) and%; are subgroups. PE@) appears as the subgroup @€ x (gc)
(it is easily checked the multiplication is consistent).

(c) The formula for[alg- IT is well defined (multiplyinga by a unit scalar inE
doesn’t change its value). It gives a group action, sjhde 7 = I1, and

laa]onr - ([agl gz 1) = [anan - (292(1T)a; ') = 2191 (22) 01(92 (1) (@3 )y *
= (a101(a2))(9192) (M) (a1 (82)) ~* = ([aa] ) ([22]g2) - 1.
If M = vV is stabilised byag, i.e., (agv)*(agv) = vv*, then unit vectoragvandv
gives the same rank one orthogonal projector, and so mustibsaalar multiples
of each other. Sincg]g has finite orderd; is assumed to be a finite abelian group),
the scalar is a root of unity.
(d) It is easy to verify that this multiplication gives a gmuwith identity (I, 0,1],

and inverse
[B,b,g] " = [Hy "B Hg, —Hy "B 'b,g7 1.

Further, we have
fig, (1B, b1, 91][B2, bz, 2]) = f([B1Hg, B2Hg,", b1 +B1Hg, ba]) 0102,
and sincef is a homomorphism
fo. ([B1, b1, 91]) fer, ([B2, b2, 92]) = F([By, b1])9a f([B2, b2])g2

= f([B1,ba])g1(f([B2,b2]))0192 = f([B1,ba]) f([Hg, B2Hg,*, Hg, 2] 0102
= f([B1, ba][Hg, B2Hg, ', Hg, b2]) 9102 = f([B1Hg, BoHg, b, b1 -+ BaHg, bo])0102.

Thusfy, is a homomorphism, with kernel ke, ) = {[B,b,1] : [B,b] € ker(f)}.
(e) The ma® is a homomorphism, since
O([B1, b1, ] [B2, bz, gf?]) = O([B131B2J 11, by + B1J/1by, gl 12])

= [B1d1Bpd 1130112 ) 4+ B1J)1hy)

= [B13", br] [B22'2, by = ©([Ba, by, g1 O/ B2, b, g¥).
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An index|B, b, g};] is in its kernel if and only ifBJI,b] = [1,0], i.e.,b= 0, and
B =1 — (-1))=det(BJ)=defl)=1 — j=0, B=I,

so that[B, b, gé] =1,0,1], and therefor® is an isomorphism.
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Exercises of Chapter 15

15.1 Suppose & j <n. Then forc: A,_j — R andb: Ay — R, we calculate

|d[=n a! |d[=n a! Y (—|G‘)j

g Uk ()0,

<ch7b>v,n: Z (V)a (ch)cxba: Z (V)a Z (J) (—a)y Ca—yPa
lylI=]

:|/3|:n7”y|:,- B+y'\y
_ % (V+B)y J (7B*V)y
_lmzznq' B! CBW:,-B! (B+y)! <y> (=), bg.iy»
and so(R})! is given by
))'b)g = VABy (1) (=B=V)y

lyl=]
= 2o 2 e ()
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Exercises of Chapter 16

16.1 (a) The integral converges, and defines a bounded linearsimae

[T )y auF < [ )R [ 1@ 1) Pdu() < Bl fIFgl>
(b) The linearity ofS, and inequality follow from

(810 =650 = [(f.6)efdut),  S61) = [ |(f.15)du(i).
(c) Expandf = SS1f = S1Sf, and use

(S7H, fj) = (f, 7)), 5“1/J<fafj>fjdu(1'):/J<f,fj>§lfjdu(i)-

(d) The linear functional definingais bounded, since (by Cauchy—Schwarz)

it tparanai] < ¢t 0P et lalE <BI1IPIalR,

The formula fov* f follows from

(Vif,a) = (f,Va) ) = /<f faydu() = (((F, 5))jea, @ ey (p)-
16.2 With Sthe frame operator (see Exer. 16.1), the proof of Theorengi@ek
tracgS)? < dtracd ),

with equality if and only if(f;)jc; is tight. Let(e;) be an orthonormal basis, then
thetrace formula(see Exer. 2 13) and Plancherel, gives

traceS) = ;SQ ,€0) Z/I fi,e)?du(j) /<§| fj. 0] ) ()
= [IilPdu().

wacas) = 3 (§50).e) = 3 [ ( fien it fj>du(k)> (f)&) dul)

=//< (e, fio)( fJ,ee> fie, fj) du(k)du(j)
—//\ fie, f)[2dp(K)dp(j).
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Substituting these into the inequality above gives theltesu

16.3 We recall thaS (and hencé& 1) is Hermitian.
@P; = (V*S W) =V*S =Py, P =V*S V'SV =V*S IV = Pp.
(b) We have

(Poa)j = (S Va 1)) = Va S 1)) = [ (@ch.S 1)) du(
=[S )adu) = (Po] -ua);
(c) From the frame definition, we have
2 = [ 105 S 2 12du() = [ (8 F)2u(i) < BIS 2
so thatv € Lo(u). We calculate
e VB = [ (10,871 (T ST du())
:/J (SEf,SEE)(SE, S Ef)du(j) = (S 2, S E 1),

by the Plancherel identity for the normalised tight fra(&;% fj).

16.4 The frame operatd®= Al, and so has finite trace:

traceS= /trace{ fi) fidu(j /||f1|| du(j) = p@d) = Ad,

_d_
u@J)-

16.5 (a) Letx € 27, so thatx = Px, and point evaluation of at j is given by

which givesz =

j =X = (x.&j) = (Pxej) = (X,Pg),

which impliesK; = Pej.
(b) Sinces7 is the orthogonal complement of the vecttrl, ..., 1), one computes

mhok=;
Ki(k) = {n1
n’

otherwise

This frame is the vertices of the simplex.

16.6 (a) LetP be the orthogonal projection onto a subspacef 57, andK be the
reproducing kernel fogZ. For f € J#', we have

f(x) = (f,Ke) = (Pf,Kq) = (f,PKy),
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so that’z” is reproducing kernel Hilbert space, with kerig} (X, ) = (PKy, PKy).
(b) LetP; be the orthogonal projection ont#], and writef =3 ; fj, fj € 7. Then

Zf Z fi, (Kpx) = Y (P, (Kj)x) = 3 (f,Pi(Kjx) = 3 (,(Kj)x)
]

J J

= <f,(sz)x>, Ve,
J

so thaty ; K| is the reproducing kernel o’

16.7 Every subspace? of L,(S) is the orthogonal direct sum of its projections onto
the s7. If 2 is rotationally invariant, then so is its projection onte tiotationally
invariant subspace#, which is eithers%; or 0 (by the irreducibility of77;). Thus
A has the asserted form.

16.8 Substituter = 2 t=|x|,y —3|’|> to obtain

5 2000 = -7 5 o (Gl e

16.9 (a) Forly(S) = s & s#, (16.20) and (16.40) give

Ze(x) = 2 (0 = 27 (0 + 2V (x) = 1+ d(x ).

For My(RY) = Zy@ 24 :VO(O) @V(l), (16.47) gives the reproducing kernel

ZO(x,y) ZW(x,y) 1 1 d(x§)
K(x,y) = : + ’ = +——>%),
aredS)||1)3, aredS)|1]3, aredS) ( 11do 11224 )

with the corresponding tight frame given By = K(-,¢&).
(b) Let&; = (xj,¥j,Zj), then the Gramian oZg,){_, is

1+3(&1,&1) 1+3(&1, &) 1+3(&1,&3) 1+ 3(&1,84)
1+3(&,&1) 1+3(&2,&2) 14 3(&2,&3) 1+ 3(&2,4)
1+3(&3,¢1) 1+ 3(&3,€2) 1+3(&3,83) 1+ 3(&3,¢4a)
1+3(84,&1) 1+3(84,&2) 1+3(8a,&3) 1+ 3(&a,4)
This factors ag\*A, with A column equivalent t®, where
1 1 1 1 1 0 0 0

V31 V3% V3% V34 B | VIR X X=X X=X

V3y1 V3y2 V3yz V/3ya| T VALY —Y1Ys-ViVa— Y1l

V3z V32 V323 V3u V3n zn—-nz-znu-2n

The polynomlals(Zg ) _, are a basis if and only if their Gramian is invertible, i.e.,
B is invertible. By takmg a cofactor expansion along the ficst, it follows thatB
is invertible if and only if the vector§, — &1, &3 — &1, £&4— &1 are not coplanar.
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(c) The basis{Z(gj )?:1 is orthogonal if the off diagonal entries of its Gramian aye 0

ie.,
1

1+3(¢,&) =0, j#k = <fj,fk>=—§,

1#k

S0 that(Ej)‘j‘:l are the vertices of a regular simplex.

16.10 (a) By (16.56) and the multinomial identity, we have

o= (13537) 2,0 (@) = (s

(b) Since the holomorphic polynomials of degrees, .., n are orthogonal, we add
their reproducing kernels, to get

< (d=1+p
K(z,w)—pzo( 41 )(z,w>p.

(c) Differentiating the (absolutely convergent) geonteseries

1
1+x+x2+---:ﬁ, X <1,

d —1 times gives

dl - (d+1)! d—1)!
(d_l)!+ﬂx+( er! LN El—x))d’

o (d=1+p\ , 1
pzo( o PP W<t

X <1,

Thus, we have

ad (d—1+p 1

2, foEW ="y ><Z’W>p:<1<z,w>>d'

(d) Expanding the Poisson kernel, as in Exer. 16.8, gives

pzw) = 27 _ 1-/7?
U w=Z2 T (1 (zw) — (w,2) + ]| Z]]2)
172 (zw) + (w,2)
= 5o = T anan t=|z ’ A :d’
Tt YT G
:1_szc(d>w Zk.
=12 3 6 (F5 )

Equating the homogeneous polynomials of dedgraez gives
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_ () ((zwW) +{w2) @ ({ZW)+(w2)
> Kealzw) = 267 (F ) 1R (F )

Pk

16.11 (a) Forx = &, we have
S xSV z|v,|2 NEEE
[

Scaling so thafjv|| = 1, gives the orthogonality (see Exer. 2.4).
(b) SinceS* = S1, we calculate

Z| X, V) [? Z\Xa+JVa+Xb+JVb|
= XarjIVal* + 3 X0+ 2 Vol? + Y (KarXo+jVaVh + Xa- | X+ Vavb)
] ] ]

= |IVI|2[|X]|? + VaVi (S X, S72X) 4 Vavp (S 2, S Px)
= [IVII2|IX]12 + 20 (Va¥(S* X, %)).

Here the absolute convergence of the terms in the bracketadfalows by the
Cauchy—Schwarz inequality. Fee ze, + &y, z€ C, we have

(P X) = (z&a b+ €a, 280+ &) = (€a,26) =2

Thus for(S'v) to be a tight frame (with frame bounj@||?), we must have,v, = 0.

(c) The previous argument can be modified to show thawih finite support gives
atight frame(Slv) for £,(Z) if and only if vis a nonzero scalar multiple of a standard
basis vector. Here, a calculation gives

SIxSVPZ=VMRKE+2 T O(vh(S X)),
J

{a,b}Csupgv)
a#b

Sincea— b could be equal for different pairs, we have to be careful withchoices
for x. Letaandb be the minimum and the maximum of sygp(the support of). If
supVv) has at least two elements, i.a2 s b, then choosing = ze, + e, above leads
to the necessary conditiogvy = O for a tight frame, which cannot be satisfied.
(d) By (a), it suffices to showSlv) is orthogonal. Clearly(Sv,S') = (v, v) =
for k— ¢ odd, and so it remains to consider the clase/ = 2m, m+#£ 0. Here

1 1 1 1 1
)3 2n+12n+2m+1 ZmZ(2n+1_ 2n+2m+1)’

nez

(S, V) = Z ViVl 2m =

which is zero, since the series converges absolutely.
(e) To find all suchv € £5(Z), we identify eactv € />(Z) with a f € L»(T) via the
Fourier transform, i.ef(z2) = 3;vZ, vj = (f(2),Z),(1), where



17 Solutions 561

= [T eaEna

(12,92, = 5 0

and||v|| = || f||L,(r)- Here the shifSon {3(Z) corresponds to multiplication tgyon
Lo(T), so that(Slv) gives a tight frame fof,(Z) if and only if (Z' f (2)) <z gives a
tight frame forL»(T), i.e.,

ZI 2,21 @),m P = 1 IEym IOl ), Y9 La(T).

Now

> 192,21 (@),m P = 3 19D (2, 2),m) P = 119 F@)IIE,

] ]

so thatf must satisfy

1fall,my = I fllLmllgllm, Ve Lo(T),

i.e., f must have constant modulus. Thus thier which (Sjv) is a tight frame for
0>(Z) are precisely thosewhich are the Fourier coefficients of a nonzero function
with constant modulus. The example of (d) is (up to a scalagmgby f = 1 on
[0,m1] and f = —1 on[m,271]. Since the only trigonometric polynomials with unit
modulus orl are the monomials, we also recover (b) and (c).

16.12 Letz=(z,...,2zg) € CY, and fix j. We need to show that

(2,8)& do(&) = @&+t zEa)g 0o (@),

d d
4= aredsS) /g, areds)

This follows from the simple calculations
L&a&ido(@) =0, k£,
/\5,\2(10 /1d areas) (sincey ;|&j[2 = 1).

16.13 For p € %4, Cauchy—Schwarz gives

Kk K
p(&)] = 1(p. 2! < [IplsIZls,

(k)

with equality if and only ifp is a scalar multiple oZ . Takingp = ZX gives

20091 =127 @)1l < 127112 ls = 1271 = 27 (&)

with equality if and only ifx = &, which gives (a). Lefu;) be an orthonormal basis
for J#. Then taking the trace of linear operators in (16.10) gi¥dsi(e.,
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dim(yﬁ)—z<u,,/<uj,z<k>> §k>dg(5)>g §/S<u,-,<uj,z§k>>sz§k>>gdo(f)
- [( 3| 2 &)= [I12{2do(e) = 12|

By the argument for (a) and (b), we have that the maximu|¢ﬁi§) ls = v/ dim(%),

which is attained if and only ip = Z /||Z ||g (the unique scalar multiple dfék)
which is positive a€ and has unit norm)

2=2().

16.14 This the variational characterisation (see Propositio2)16f (§); s being

a continuous tight frame faf¢ (Proposition 16.4, Exer. 16.12). It can be proved
directly by using (6.29), i.e.,

[ [1xyPaoidot) = [ IyPend.mdoty) = 5 =5 ( [ xx1dow)”

16.15 The monomialgz?) 4| are orthogonal with respect ta -), x and(-,-)s,

_ al _ (@d-al (d-1)a]
E2er=qp E e =g it jap © Pk

(a) This follows from the above by linearity.
(b) By the reproducing property, (a) and (6.20), we have

= [ (M0 s (50T e dotw)

- (kzil 1) /Sc<f7<'5W>k>o,k<',W>kdO'(W)
= <k—gi1 1) s f(W)<’W>kdO'(W), Vf e H(k’o)

(c) From the formula, we obtain a Beta integral

2
Ik, = [ e doe) = S22 [ a2t
_ _ 2\d— 22k  \d—2k
—(d 1)/0(1 r2)8-2r% 2rdr — (d— )/0(1 £)9-2tk dit

B (d—2)Ik! (k+d—1\*
_(d_l)(k+d—1)!( d—1 ) '
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algebra of group matrices, 332
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bra—ket notation, 364
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canonical factorisation, 74
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canonical matrix, 75
canonical oblique dual, 59, 68
canonical order 3 Clifford operation, 394
canonical order 3 symplectic unitaries,
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complement of a difference set, 269
complement of a frames, 105
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complementary tight frame, 18
complete frame graph, 168
complex(t,t)—design, 126
complext—design, 126

Cauchy—Schwarz inequality, 38, 114, 143, 149complex conjugate equivalence, 11

Cayley graph, 309

Cayley transform, 155

Cayley transform, truncated, 155

CDMA systems, 113

centralG—frame, 230, 336

central force, 135

central group frame, 230

central tightG—frames, classification, 337

centrally symmetric, 116

centred SIC fiducial, 405

character group, 133, 246

character of a representation, 334

character table of a finite abelian group, 246

characters of a finite abelian group, 246

Chebyshev method, 53

Chebyshev polynomials, 430

Chebyshev polynomials of the first kind, 413

Chinese remainder theorem, 398

chordal graph, 174

Chu—Vandermonde identity, 435

circulant graph, 303

circulant matrix, 213

class function, 336

Clifford action, 386

Clifford action of the extended Clifford group,
385

Clifford action on SICs, 386

Clifford group, 361, 368

Clifford group, generators for, 372

Clifford group, monomial representation of,
391

Clifford operation, 368

complex conjugate of a Hilbert space, 26
complex conjugation map, 11, 190
complex equiangular tight frames, 310
complex frame, 41, 63

complex Hadamard matrix, 281

complex polytope, 343

complex projective sphere, 129

complex reflection, 240, 343

complex reflection group, 240

complex tight frame, 21

complex unit sphere, 122
complexification, 227

compressed sensing, 4

condition number of a frame, 46
condition number of the frame operator, 47
conductor, of a ray class field, 412
conference graph, 296

conference matrix, 296, 314, 327
conjugate gradient method, 53

conjugates of the canonical order 3 symplectic

unitaries, 398
conjugation map, 26
connected components of a graph, 168
connection set of a graph, 309
constant diagonal Hadamard matrix, 282
continuous frame, 442
continuous generalised frame, 441
continuous tight frame, 2
continuous tight frame expansion, 441

continuous tight frame of zonal harmonics, 446

continuous tight frames fag?,, 454
contraction map, 66
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coordinates with respect to a tight frame, 29
Coulomb force, 135
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cross—correlation, 3, 22, 113
cubature formula, 119, 122
cubature formula, existence of, 119
cubature rule, 119, 122, 123
cubature rule for the sphere, 459
cube, 222, 252, 346

cube roots, 283
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cuboctahedron, 346

cycle space of a finite graph, 171
cyclic convolution, 83

cyclic difference set, 269

cyclic frame, 247

cyclic group, 210, 213

cyclic harmonic frame, 247
cyclic harmonic frames foE?, 255
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cyclic shift, 81

cyclic shift matrix, 366
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cyclic vector, 465
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discrete Fourier transform matrix, 369
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dual frames, 54
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Fourier transform, 443
Fourier transform matrix, 25
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frame algorithm, 53
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frame bounds, 32, 46, 64
frame force, 115, 135
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frame graph, 100, 165
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frame operator, 12, 27, 32, 62
frame potential, 115
frame potential, global minimisers, 136
frame potential, local minimisers, 136
Frame Research Centre, 186
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frame transform operator, 12
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generalised barycentric coordinates, properties,
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Grassmannian packing problem, 268
Grassmannian space, 268
group algebra, 210, 215
group algebra ove, 332
group covariance, 361, 365
group frame, 209, 210
group matrix,G—matrix, 213
group of rotations, 2
growing a flag set, 201

Haar measure, 463

Haar measure 08Q(d), 451

Hadamard conjecture, 25

Hadamard difference set, 273
Hadamard matrix, 9, 25, 278
Hadamard matrix ofvj) and(w;), 320
Hadamard product of matrices, 183
Hadamard type difference set, 273
Hahn polynomials, 429, 433

Hall’s Eulerian function, 254
Hamiltonian circulant graph, 297
harmonic frame, 9, 229, 245, 247
harmonic frame with distinct vectors, 249
harmonic frame with real vectors, 249
harmonic function, 445

harmonic polynomials, 117

harmonic upper bound, 304
Heisenberg frame, 366

Heisenberg group, 366

Heisenberg group, normaliser of, 368
Heisenberg operation, 372

Hermite polynomials, 453

Hermitian complex Hadamard matrix, 281
Hessian matrix, 141, 149
hexadecachoron, 346

highly symmetric tight frame, 223, 349

highly symmetric tight frames, construction,

342
Hilbert class field, 412
Hilbert's 12—th problem, 401
Hilbert—Schmidt inner product, 29
Hoggar lines, 365, 367, 399
homogeneou&—frame, 226
homogeneous components, 225
homogeneous polynomials, 117
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index group of the Clifford operations, 374

index group, of a nice error frame, 353

index map[a] — (Ya,za) of the Clifford
operations, 374

inner direct sum of frames, 100

inner product preserving map, 27

inner product, apolar, 120

inner product, Bombieri, 120

inner product, Fisher, 120

intermediate SIC field, 410

invariant polynomials, 239

invariant subspace, 44

irreducibility, 85

irreducibleG—frame, 218

irreducible character, 334

irreducible characters of a finite abelian group,
246

irreducible group representation/action, 218

irreducible tensors, 108

isogonal configuration, 41, 63, 212, 265, 309

isolated point (of a graph), 294

isometric embedding, 131

isometry, 8, 13, 25, 27

Jacobi inner product, 430

Jacobi measure, 431

Jacobi polynomials, 429, 433, 437
Jordan—Hlder theorem, 226

ket |v), 364

Kirkman frame, 312

Kronecker product, 252
Kronecker—Weber theorem, 401

Lowdin orthogonalisation, 35, 60, 68
La Jolla Difference Set Repository, 273
Laplace’s equation, 445

Laplacian, 147

Lauricella function of typed, 429, 435
least squares solution, 60

Legendre polynomials, 429, 430, 437, 453
Legendre polynomials on a square, 231
Legendre symbol, 399

Lie group, 152, 163

lift, 110

lift of a frame, 104

lifted equally spaced vectors, 105

homogeneous polynomials on a Hilbert space lifted roots of unity, 105

120
Householder transformation, 155, 159
hyperplane, 343

icosahedron, 116, 222, 252, 288
imprimitive finite reflection group, 345

lifting a frame, 104

linear action, 210

linear dependencies, 72

linear map, 79

linear reproduction, 97

LLL (Lenstra—Lenstra—Lo&sz) algorithm, 404
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local compact (topological) group, 463
local frame, 180
Lucas—Fibonnacci SIC, 413

Mobius function, 81

Magma, 342, 347

majorisation, 157

Maschke’s theorem, 225, 227

matrices, 75

matrices with respect to a normalised tight
frame, 29

matrix with respect to a tight frame, 29

maximal abelian—algebra, 322

maximal number of MUBSs, 174

maximal SIC field, 410

maximally symmetric frame, 198

maximally symmetric tight frame, 198

maximum cross—correlation, 266

maximum sizey(d) of a spherical two—distance
set, 304

Mercedes—Benz frame, 3, 189, 288

minimal angle, 266

minimal SIC field, 410

minor of a graph, 316

modulation, 2

modulation matrix, 366

monomial representations of the Clifford
group, 391

monomials, 121

mother wavelet, 366

MUB, 22, 127, 174, 209, 318

MUB problem, 22, 325

MUBs, 22

multi-indices, 92

multinomial identity, 96

multiple orthogonal polynomials, 438

multiplet, 403

multiplicative equivalence, 254

multiplicatively equivalent subsets of a group,
254

multiresolution analysis, 2

multivariate continuous Hahn polynomials,
439

multivariate Hahn polynomials, 439

multivariate Jacobi polynomials, 431

multivariate orthogonal polynomials, 231, 438

multivariate shifted factorial, 95
mutually unbiased bases, 22, 174, 318
MWBE codebook, 271

Naimark’s theorem, 15
near frames, 51

neighbourhood of a switching class of graphs,

294

Index

nested roots, 400

nested SIC fields, 413

nice (unitary) error basis, 353

nice (unitary) error frame, 353

nice error bases, 221, 353

nice error basis, 222

nice error frames, 353

non-adjacent vertices of a graph, 291

noncanonical dual frame, 54

noncyclic harmonic frame, 248, 256

normal equations, 183

normal field extension, 401

normalised eutactic star, 16

normalised frame, 48

normalised frame potential, 115

normalised surface area measure, 122

normalised tight frame, 7, 8

normalised tight frames and linear mappings,
29

normalised tight frames, algebraic variety of,
151, 152

normalising a frame, 47

number of angles, 318

number of generators of@-invariant frame,
234

number of harmonic frames, 258

numerical SIC, 361

oblique dual frames, 57

oblique projection, 58

octahedron, 222, 252, 346

octaplex, 346

optimal frame bounds, 32, 49, 50, 52, 61, 64

optimal Grassmannian frame, 268

order of a difference set, 269

orthogonal basis, 100

orthogonal compression, 101

orthogonal decomposition into homogeneous
components, 226

orthogonal dilation, 101

orthogonal frames, 42

orthogonal polynomials, 69, 231

orthogonal polynomials of Appell, 437

orthogonal polynomials of Proriol, 437

orthogonal polynomials on the simplex, tight
frames for, 429

orthogonal polynomials on the triangle, 429

orthogonal projection, 25

orthogonal projection formula, 24, 62

orthogonal projection, one—dimensional, 267

orthogonal resolution of the identity, 28

orthogonality (of irreducible characters), 246

orthogonality of frames, 101

orthonormal bases, 248, 267, 271
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orthonormal basis, 9, 24, 189
outer direct sum of frames, 100
overlaps, 402

overlaps phases, 402

Paley graph, 297, 303
Paley-type difference set, 273

parabolic subgroup of a finite reflection group,

344
Parseval frame, 8, 23
Parseval identity, 8, 13, 24
partial difference set, 308
partial isometry, 8, 25, 36, 61
partition frame, 20, 105
partition of unity, 92
path graph, 290
path—connected, 153
path—connectivity, 153
Pauli matrices, 353
Pell’s equation, 412
perfectly tight frame, 143
permutation matrices, 193
permutation matrices in the Clifford group,
380
permutations, 190
perturbation of a frame, 68
perturbation of a normalised tight frame, 61
phase-permutation representation, 391
planar difference set, 273
Plancherel identity, 8, 24
Plancherel identity, generalised, 121, 123
plane wave, 145, 146
Platonic solid, 209, 222, 252
Platonic solid, symmetry group, 222
Pochhammer symbol, 122, 431
Pohlke normal star, 15
point evaluation, 78, 187
pointwise product of matrices, 183
Poisson kerndP(x, £), 450, 467
polar decomposition, 36
polarisation identity, 7, 24
pole, 446
pole of a zonal function, 446
polynomials on projective spaces, 148
Pontryagin duality, 246, 270
Pontryagin duality map, 133, 246
positive operator, 434
positive operator valued measure, 364
potential, 135
pre-frame operator, 12
precision bumping algorithm, 404, 410
Prime Power Conjecture, 273
primitive finite reflection group, 345
primitive roots of unity, 81
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primitive strongly regular graphs, 293

principal submatrix of a matrix, 316

probability distribution, 364

projections of normalised tight frames, 25

projective, 9

projective(t,t)—designs, 130

projective Clifford group, 368

projective equivalence, 23

projective invariants, 165

projective linear group, 351

projective plane, 273

projective representation, 351

projective similarity, 176

projective similarity of vectors, 165

projective symmetry group of a frame, 189,
190, 195

projective symmetry group of a harmonic
frame, 262

projective unitary equivalence, 11, 26, 165,
166

projective unitary equivalence of harmonic
frames, 260

projective unitary group, 351, 365

projectively equivalent, 11

projectively repeated, 262

projectively similar, 176

projectively unitarily equivalent, 11

Proriol polynomials, 438

Proriol's orthogonal basis, 429

prototypical example, first, 1

prototypical example, second, 3

pruning a set of flags, 201

pseudo—dual frames, 56

pseudodual, 57

pseudoinverse, 31, 60

pseudoreflection, 343

PSLQ algorithm, 404

guadratic distance (between frames), 51
quadratic reciprocity law, 418

guadratic residue, 297

quadrature rule for the sphere, 459
guantum measurements, 364

guantum state determination, 22
guantum system, 364

radial function, 447

radially symmetric weights, 439
ramification, of a ray class field, 412
rank one orthogonal projection, 31
rank one projection, 60

rational tight frames, density of, 155
ray class conjecture, 412

ray class field, 401, 412
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ray class group, 412

real algebraic variety, 152

real cyclic harmonic frame, 251

real fiducial vectors, 417

real frame, 41, 63

real harmonic frame, 251

real MUBs, 22

real orthogonal group, 189

real projective space, 129

real projective sphere, 129

real spherical—design, 116

real spherical half—design, 116

real tight frame, 21

real unit sphere, 122

reconstruction operator, 12

rectified tesseract, 346

reduced Hadamard matrix, 322

reduced signature matrix of an equiangular
frame, 284

redundancy, 7, 47

reflection group, 343

regular, 308

regulard—polytope—configuration, 344

regular character (of an abelian group), 270

regular polygon, 90

regular two—graph, 294

reindexing a frame, 254

relative bound (on number of equiangular
lines), 287

reordering, 10

reordering a frame, 254

representation of a group, 210

representation theory, 209, 210

reproducing kernel, 118, 444

reproducing kernel fo?,, 457

reproducing kernel Hilbert space, 444

reproducing kernel tight frame, 444

ridge function, 145, 146, 447

ridge polynomial, 146, 184, 442

Riesz basis, 45, 51

Riesz representer, 31, 120

ring of coinvariants, 240

robust signal transmission, 248

robustness to erasures, 1, 3, 4

roots of unity, 107

rotation, 2, 10

row construction of a tight frame, 17

sampling, 441

scalable frame, 182

scaling to a tight frame, 182

Schur’s lemma, 226, 228

Schur-Horn majorisation, 157
Schweinler-Wigner orthogonalisation, 60

Index

Scott—Grassl| numerical SIC, 385

seeding, 15

Seidel matrix, 289

Seidel spectrum, 290

semi-regular complex polytopes, 345

semicritical frame, 110

semidirect product, 375

sensor networks, 180

Shephard—Todd classification, 345, 347

shift invariant tight frame, 86

shift matrix, 366

shifted factorial, 95

short-time Fourier transform, 443

SIC, 3, 22, 127, 174, 209, 363, 364

SIC facts, 401

SIC fiducials, algebraic variety of, 414

SIC fieldE = Q(I1, u), 400

SIC field of a multiplet, 410

SIC field, minimal, intermediate, maximal, 410

SIC problem, 22, 361

SIC problem, addictiveness, 361

SIC-POVM, 363, 364

signal transmission with erasures, 248

signal transmission with quantization, 248

signature of a signed frame, 181, 186

signed frame, 181, 186

signed frame operator, 186

similar frames, 41, 42

similarity, 42, 73, 101, 191

simple lift, 110

simple lift of a frame, 104

simplex, 73, 286, 290

simplex, vertices of, 271

Singer difference sets, 273

singular value decomposition, 62, 65

Sixteen equiangular lines ik®, 205

size of a Galois multiplet, 403

skew Hermitian matrix, 155

Sobolev dual, 68

solid spherical harmonics, 445

spanning set, 31, 32, 61, 73

spanning tree for a graph, 170

sparsness, 3

special unitary group, 152

sphere ifRY, 445

spherical(t,t)—designs, numerical construc-
tion, 139

spherical 2—design, 117

sphericalm-distance set, 309

sphericat—design, 116, 119

sphericat—designs, characterisations, 117

spherical design of harmonic index118, 119

spherical half-design, 116

spherical half—design of ordéeri19
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spherical harmonics, 445

spherical two—distance set, 304

spherical two—distance tight frame, 304

sporadic SIC, 401, 416, 424

square free integer, 257

stability, 3

stable isogon, 359

stabliser, 342

standardn-distance tight frame, 310, 346

standard terminology for frames, 23

state, 364

state, of a quantum system, 364

Steinberg’s fixed point theorem, 345

Steiner equiangular tight frame, 277

Steiner system, 275

STFT, 443

strongly centred SIC fiducial, 406

strongly disjoint frames, 42

strongly regular graph, 291

structured frames, 209

subsimplicial equiangular tight frame, 275

subsimplicial frame, 275

sum of frames, 106

sum of frames, direct, 100

sum of harmonic frames, 250

surface area measure, 122

surface area measure, invariance of, 123

surface spherical harmonics, 445

switching, 290

switching class (two—graph), 290

switching equivalent graphs, 290

symmetrict—linear maps, 120

symmetric block design, 269

symmetric Gram—Schmidt algorithm, 35

symmetric group on a set, 190

symmetric informationally complete positive
operator valued measure, 363

symmetric orthogonalisation, 35, 60

symmetric tensors, 120

symmetries of a basis, 192

symmetries of a SIC fiducial, 404

symmetries of a SIC fiducial vector, 385, 386

symmetries of the vertices of a simplex, 192
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symmetry group of a measure, 231
symmetry group of a Platonic solid, 222
symmetry group of the square, 233
symmetry group of the triangle, 233
symplectic index, 377

symplectic index, table of, 381
symplectic operation, 372

symplectic spreads, 325

symplectic unitaries, 372, 378
symplectic unitaries of order 3, 392
synthesis operator, 12, 27, 62
synthesis operator of a generalised frame, 443
Sze@ kernel, 468

Tammes’ problem, 200, 269

Teichmilller set, 325

tensor product integration formula, 123

tensor product of frames, 108

tensor product of harmonic frames, 250

tensor product of Hilbert spaces, 108

tensor product of nice error frames, 355

tensor product of vector spaces, 108

tesseract, 346

tetrahedron, 222, 252

tight G-frames as idempotents of the group
algebra, 333

tight equiangular lines, 265

tight frame, 7

tight frame, canonical, 35

tight frame, canonical copy, 15

tight frame, continuous, 2

tight frame, copy of, 15

tight frame, early examples, 2

tight frame, equal-norm, 9

tight frame, repeated vectors, 8

tight frame, unit-norm, 9

tight frames of orthogonal polynomials on the
simplex, 429

tight frames, construction of, 158

tight frames, existence of, 157

tight fusion frame, 179

tight generalised frame, 441

tight signed frame, 181

symmetries of the Weyl-Heisenberg SICs, 38%ightness, 47

symmetries, of a fiducial, 385

symmetry, 191

symmetry group oh equally spaced vectors,
193

symmetry group of a—polytope—
configuration, 344

symmetry group of a complementary frame,
196

symmetry group of a frame, 189-191

symmetry group of a harmonic frame, 250

Tikhonov regularization (of the pseudoinverse),
484

time—frequency localisation, 1

topologically irreducible, 463

torsion point, 401

total potential, 135

trace formula, 13, 26

translate, 260

translation, 2, 260

Tremain equiangular tight frame, 278
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Tremain frame, 278

triangular graph, 301, 310

triangulated graph, 174

trigonal bipyramid, 199, 343
trigonometric polynomials, 251, 463
triple products, 165, 167, 174, 284, 365
trivial difference sets, 271
two—distance set, 304

two—graph (switching class), 290

ultraspherical polynomials, 447

unfaithful action, 190

unimodular simplex, 278

union of frames, 99

unit sphere, 122

unit sphere ifRY, 445

unit sphere, complex, 122

unit sphere, real, 122

unit-norm frame, 9

unital equiangular tight frame, 312

unitarily equivalent frames, 40

unitarily equivalent tight frames, 10

unitarily equivalent tight frames up to
reordering, 10

unitarily equivalent via an automorphism, 254

unitarily inequivalent tighDz—frames, 331

unitary action, 211

unitary continuous representation, 463

unitary equivalence, 23

unitary equivalence of harmonic frames, 253

unitary equivalence of tight frames, 10

unitary equivalence of tight frames up to
reordering, 10

unitary equivalence up to reordering, 10

unitary group, 152

unitary group, parametrisations of, 155

Index

unitary group, projective, 365

unitary images of tight frames, 24

unitary map, 211

unitary matrix, 152

univariate Jacobi polynomials, 430
univariate orthogonal polynomials, 68, 69

variational characterisation of tight frames,
114

variational formula, 13

vertex—transitive graphs, 224

vertices of the cube, 107, 248, 264

vertices of the simplex, 19, 20, 248

Von Neumann algebra, 465

Waring formula, 116

wavelet system, 2, 5, 209

wavelets, 1

WBE sequences, 113

Wedderburn’s Theorem, 238
weighted(t,t)—design, 128

Welch bound, 113

Welch bound equality sequences, 113
Weyl displacement operation, 372
Weyl-Heisenberg SIC, 366
Weyl-Heisenberg SIC, symmetries of, 389
Wirtinger calculus, 146

Wirtinger complex differential operators, 146

Zak transform, 465

Zauner matrixz, 384

Zauner'’s conjecture, 22, 361

Zauner’s conjecture, stronger form, 385
zonal function, 446

zonal harmonic, 446



